Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(6): 189, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695970

RESUMO

The potential effect of microplastics is an increasingly growing environmental issue. However, very little is known regarding the impact of microplastics on the vermicomposting process. The present study explored the effect of non-biodegradable (low density polyethylene; LDPE) and biodegradable (polybutylene succinate-co-adipate; PBSA) microplastics on earthworm Eisenia fetida during vermicomposting of cow dung. For this, earthworms were exposed to different concentrations (0, 0.5, 1 and 2%) of LDPE and PBSA of 2 mm size. The cow dung supported the growth and hatchlings of earthworms, and the toxicity effect of both LDPE and PBSA microplastics on Eisenia fetida was analyzed. Microplastics decreased the body weight of earthworms and there was no impact on hatchlings. The body weight of earthworm decreased from 0 to 60th day by 18.18% in 0.5% of LDPE treatment, 5.42% in 1% of LDPE, 20.58% in 2% of LDPE, 19.99% in 0.5% of PBSA, 15.09% in 1% of PBSA and 16.36% in 2% of PBSA. The physico-chemical parameters [pH (8.55-8.66), electrical conductivity (0.93-1.02 (S/m), organic matter (77.6-75.8%), total nitrogen (3.95-4.25 mg/kg) and total phosphorus (1.16-1.22 mg/kg)] do not show much significant changes with varying microplastics concentrations. Results of SEM and FTIR-ATR analysis observed the surface damage of earthworms, morphological and biochemical changes at higher concentrations of both LDPE and PBSA. The findings of the present study contribute to a better understanding of microplastics in vermicomposting system.


Assuntos
Microplásticos , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Compostagem , Polietileno/toxicidade , Plásticos Biodegradáveis
2.
J Hazard Mater ; 470: 134283, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613956

RESUMO

The coexistence of microplastics (MPs) and heavy metals in sediments has caused a potential threat to sediment biota. However, differences in the effects of MPs and heavy metals on microbes and plants in sediments under different sediment conditions remain unclear. Hence, we investigated the influence of polyethylene (PE) and polylactic acid (PLA) MPs on microbial community structure, Pb bioavailability, and wheatgrass traits under sequential incubation of sediments (i.e., flood, drainage, and planting stages). Results showed that the sediment enzyme activities presented a dose-dependent effect of MPs. Besides, 10 % PLA MPs significantly increased the F1 fractions in three stages by 11.13 %, 30.10 %, and 17.26 %, respectively, thus resulting in higher Pb mobility and biotoxicity. MPs altered sediment bacterial composition and structures, and bacterial community differences were evident in different incubation stages. Moreover, the co-exposure of PLA MPs and Pb significantly decreased the shoot length and total biomass of wheatgrass and correspondingly activated the antioxidant enzyme activity. Further correlation analysis demonstrated that community structure induced by MPs was mainly driven by sediment enzyme activity. This study contributes to elucidating the combined effects of MPs and heavy metals on sediment ecosystems under different sediment conditions.


Assuntos
Sedimentos Geológicos , Chumbo , Microplásticos , Poluentes Químicos da Água , Sedimentos Geológicos/microbiologia , Chumbo/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Microbiota/efeitos dos fármacos , Poliésteres , Polietileno/toxicidade , Inundações , Bactérias/efeitos dos fármacos
3.
J Hazard Mater ; 470: 134249, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603909

RESUMO

In cold regions, microplastics (MPs) in the soil undergo freeze-thaw (FT) aging process. Little is known about how FT aged MPs influence soil physico-chemical properties and microbial communities. Here, two environmentally relevant concentrations (50 and 500 mg/kg) of 50 and 500 µm polyethylene (PE) and polypropylene (PP) MPs treated soils were subjected to 45-day FT cycles (FTCs). Results showed that MPs experienced surface morphology, hydrophobicity and crystallinity alterations after FTCs. After 45-day FTCs, the soil urease (SUE) activity in control (MPs-free group that underwent FTCs) was 33.49 U/g. SUE activity in 50 µm PE group was reduced by 19.66 %, while increased by 21.16 % and 37.73 % in 500 µm PE and PP groups compared to control. The highest Shannon index was found in 50 µm PP-MPs group at 50 mg/kg, 2.26 % higher than control (7.09). Compared to control (average weighted degree=8.024), all aged MPs increased the complexity of network (0.19-1.43 %). Bacterial biomarkers of aged PP-MPs were associated with pollutant degradation. Aged PP-MPs affected genetic information, cellular processes, and disrupted the biosynthesis of metabolites. This study provides new insights into the potential hazards of MPs after FTCs on soil ecosystem in cold regions.


Assuntos
Microplásticos , Polietileno , Polipropilenos , Microbiologia do Solo , Poluentes do Solo , Urease , Polietileno/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Urease/metabolismo , Congelamento , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Solo/química
4.
J Hazard Mater ; 470: 134124, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565020

RESUMO

Microplastics are known to negatively affect anaerobic digestion (AD) of waste activated sludge. However, whether thermal hydrolysis (TH) pretreatment alters the impact of microplastics on sludge AD remains unknown. Herein, the effect of TH on the impact of polyethylene (PE) microplastics in sludge AD was investigated. The results showed that the inhibition of methane production by PE at 100 particles/g total solids (TS) was reduced by 31.4% from 12.1% to 8.3% after TH at 170 °C for 30 min. Mechanism analysis indicated TH reduced the potential for reactive oxygen species production induced by PE, resulting in a 29.1 ± 5.5% reduction in cell viability loss. In addition, additive leaching increased as a result of rapid aging of PE microplastics by TH. Acetyl tri-n-butyl citrate (ATBC) release from PE with 10 and 100 particles/g TS increased 11.5-fold and 8.6-fold after TH to 68.2 ± 5.5 µg/L and 124.0 ± 5.1 µg/L, respectively. ATBC at 124.0 µg/L increased methane production by 21.4%. The released ATBC enriched SBR1031 and Euryarchaeota, which facilitate the degradation of proteins and promote methane production. This study reveals the overestimated impact of PE microplastics in sludge AD and provides new insights into the PE microplastics-induced impact in practical sludge treatment and anaerobic biological processes.


Assuntos
Metano , Microplásticos , Polietileno , Esgotos , Anaerobiose , Microplásticos/toxicidade , Hidrólise , Polietileno/toxicidade , Metano/metabolismo , Eliminação de Resíduos Líquidos/métodos , Temperatura Alta , Poluentes Químicos da Água/toxicidade , Reatores Biológicos
5.
J Hazard Mater ; 470: 134164, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583200

RESUMO

Strawberry, a globally popular crop whose fruit are known for their taste and health benefits, were used to evaluate the effects of polyethylene microplastics (PE-MPs) on plant physiology and fruit quality. Plants were grown in 2-L pots with natural soil mixed with PE-MPs at two concentrations (0.2% and 0.02%; w/w) and sizes (⌀ 35 and 125 µm). Plant physiological responses, root histochemical and anatomical analyses as well as fruit biometric and quality features were conducted. Plants subjected to ⌀ 35 µm/0.2% PE-MPs exhibited the most severe effects in terms of CO2 assimilation due to stomatal limitations, along with the highest level of oxidative stress in roots. Though no differences were observed in plant biomass, the impact on fruit quality traits was severe in ⌀ 35 µm/0.2% MPs treatment resulting in a drop in fruit weight (-42%), soluble solid (-10%) and anthocyanin contents (-25%). The smallest sized PE-MPs, adsorbed on the root surface, impaired plant water status by damaging the radical apparatus, which finally resulted in alteration of plant physiology and fruit quality. Further research is required to determine if these alterations also occur with other MPs and to understand more deeply the MPs influence on fruit physio-chemistry.


Assuntos
Fragaria , Frutas , Microplásticos , Raízes de Plantas , Polietileno , Fragaria/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Frutas/efeitos dos fármacos , Polietileno/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Antocianinas/análise , Estresse Oxidativo/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 276: 116296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593498

RESUMO

Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Nitrilas , Estresse Oxidativo , Polietileno , Piretrinas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Piretrinas/toxicidade , Nitrilas/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Polietileno/toxicidade , Adsorção
7.
Ecotoxicol Environ Saf ; 277: 116346, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669869

RESUMO

Microplastics, plastic particles 5 mm or less in size, are abundant in the environment; hence, the exposure of humans to microplastics is a great concern. Usually, the surface of microplastics found in the environment has undergone degradation by external factors such as ultraviolet rays and water waves. One of the characteristics of changes caused by surface degradation of microplastics is the introduction of oxygen-containing functional groups. Surface degradation alters the physicochemical properties of plastics, suggesting that the biological effects of environmentally degraded plastics may differ from those of pure plastics. However, the biological effects of plastics introduced with oxygen-containing functional groups through degradation are poorly elucidated owing to the lack of a plastic sample that imitates the degradation state of plastics found in the environment. In this study, we investigated the degradation state of microplastics collected from a beach. Next, we degraded a commercially available polyethylene (PE) particles via vacuum ultraviolet (VUV) irradiation and showed that chemical surface state of PE imitates that of microplastics in the environment. We evaluated the cytotoxic effects of degraded PE samples on immune and epithelial cell lines. We found that VUV irradiation was effective in degrading PE within a short period, and concentration-dependent cytotoxicity was induced by degraded PE in all cell lines. Our results indicate that the cytotoxic effect of PE on different cell types depends on the degree of microplastic degradation, which contributes to our understanding of the effects of PE microplastics on humans.


Assuntos
Microplásticos , Polietileno , Raios Ultravioleta , Poluentes Químicos da Água , Microplásticos/toxicidade , Polietileno/toxicidade , Polietileno/química , Humanos , Poluentes Químicos da Água/toxicidade , Praias , Sobrevivência Celular/efeitos dos fármacos , Animais , Plásticos/toxicidade , Linhagem Celular
8.
PLoS One ; 19(3): e0285515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446761

RESUMO

Micro- and nanoplastics are widespread throughout the world. In particular, polyethylene (PE) and polyethylene terephthalate or polyester (PET) are two of the most common polymers, used as plastic bags and textiles. To analyze the toxicity of these two polymers, oligomers with different numbers of units were used as models. The use of oligomers as polymeric templates has been used previously with success. We started with the monomer and continued with different oligomers until the chain length was greater than two nm. According to the results of quantum chemistry, PET is a better oxidant than PE, since it is a better electron acceptor. Additionally, PET has negatively charged oxygen atoms and can promote stronger interactions than PE with other molecules. We found that PET forms stable complexes and can dissociate the guanine-cytosine nucleobase pair. This could affect DNA replication. These preliminary theoretical results may help elucidate the potential harm of micro- and nanoplastics.


Assuntos
Microplásticos , Polietileno , Polietileno/toxicidade , Microplásticos/toxicidade , Plásticos/toxicidade , Polietilenotereftalatos/toxicidade , Polímeros , Oxidantes
9.
Ecotoxicology ; 33(3): 296-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498245

RESUMO

This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.


Assuntos
Ciclídeos , Animais , Polietileno/toxicidade , Microplásticos/metabolismo , Plásticos , Exposição Dietética/efeitos adversos , Dieta , Nutrientes , Ração Animal/análise , Suplementos Nutricionais
10.
Environ Pollut ; 348: 123854, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527586

RESUMO

Microplastic (MP) pollution is becoming an emerging environmental concern across aquatic and terrestrial ecosystems. Plastic mulching and the use of pesticides in agriculture can lead to microplastics and agrochemicals in soil, which can result in unintended exposure to non-target organisms. The combined toxicity of multiple stressors represents a significant paradigm shift within the field of ecotoxicology, and its exploration within terrestrial ecosystems involving microplastics is still relatively limited. The present study investigated the combined effects of polyethylene MP (PE-MP) and the agrochemical carbendazim (CBZ) on the earthworm Eisenia fetida at different biological levels of organization. While E. fetida survival and reproduction did not exhibit significant effects following PE-MP treatment, there was a reduction in cocoon and hatchling numbers. Notably, prolonged exposure revealed delayed toxicity, leading to substantial growth impairment. Exposure to CBZ led to significant alterations in the endpoints mentioned above. While there was a decrease in cocoon and hatchling numbers, the combined treatment did not yield significant effects on earthworm reproduction except at higher concentrations. However, lower concentrations of PE-MP alongside CBZ induced a noteworthy decline in biomass content, signifying a form of potentiation interaction. In addition, concurrent exposure led to synergistic effects, from oxidative stress to modifications in vital organs such as the body wall, intestines, and reproductive structures (spermathecae, seminal vesicles, and ovarian follicles). The comparison of multiple endpoints revealed that seminal vesicles and ovarian follicles were the primary targets during the combined exposure. The research findings suggest that there are variable and complex responses to microplastic toxicity in terrestrial ecosystems, especially when combined with other chemical stressors like agrochemicals. Despite these difficulties, the study implies that microplastics can alter earthworms' responses to agrochemical exposure, posing potential ecotoxicological risks to soil fauna.


Assuntos
Benzimidazóis , Carbamatos , Oligoquetos , Praguicidas , Poluentes do Solo , Animais , Feminino , Masculino , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Ecotoxicologia , Ecossistema , Poluentes do Solo/análise , Solo/química , Praguicidas/farmacologia
11.
Sci Total Environ ; 923: 171494, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453077

RESUMO

Pesticides and microplastics are common pollutants in soil environments, adversely affecting soil organisms. However, the combined toxicological effects of aged microplastics and pesticides on soil organisms are still unclear. In this study, we systematically studied the toxicological effects of azoxystrobin and four different aged polyethylene (PE) microplastics on earthworms (Eisenia fetida). The purpose was to evaluate the effects of aging microplastics on the toxicity of microplastics-pesticides combinations on earthworms. The results showed that different-aged PE microplastics promoted azoxystrobin accumulation in earthworms. Meanwhile, combined exposure to azoxystrobin and aged PE microplastics decreased the body weight of earthworms. Besides, both single and combined exposure to azoxystrobin and aged PE microplastics could lead to oxidative damage in earthworms. Further studies revealed that azoxystrobin and aged PE microplastics damage the intestinal structure and function of earthworms. Additionally, the combination of different aged PE microplastics and azoxystrobin was more toxic on earthworms than single exposures. The PE microplastics subjected to mechanical wear, ultraviolet radiation, and acid aging exhibited the strongest toxicity enhancement effects on earthworms. This high toxicity may be related to the modification of PE microplastics caused by aging. In summary, these results demonstrated the enhancing effects of aged PE microplastics on the toxicity of pesticides to earthworms. More importantly, aged PE microplastics exhibited stronger toxicity-enhancing effects in the early exposure stages. This study provides important data supporting the impact of different aged PE microplastics on the environmental risks of pesticides.


Assuntos
Oligoquetos , Praguicidas , Pirimidinas , Poluentes do Solo , Estrobilurinas , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Raios Ultravioleta , Poluentes do Solo/análise , Estresse Oxidativo , Solo/química
12.
J Contam Hydrol ; 262: 104325, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38428349

RESUMO

Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 µg L-1) with a mean size of 15-25 µm and lead acetate Pb(C2H3O2)2 (0.0, 2.5, and 5 mg L-1), both individually and in combination, through the exposure of the freshwater grass shrimp, Caridinia fossarum for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.


Assuntos
Metais Pesados , Compostos Organometálicos , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos/toxicidade , Ecossistema , Chumbo , Polietileno/toxicidade , Água Doce , Glicogênio , Lipídeos , Poluentes Químicos da Água/toxicidade
13.
Aquat Toxicol ; 270: 106901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493548

RESUMO

The adverse effects of microplastics (MPs) on Daphnia magna have been extensively studied; however, their population-level effects are relatively unknown. This study investigated the effect of polyethylene MP fragments (33.90 ± 17.44 µm) and benzophenone-3 (BP-3), which is a widely used plastic additive (2.91 ± 0.02% w/w), on D. magna population dynamics in a 34-day microcosm experiment. In the growth phase, neither MP nor MP/BP-3 fragments changed the population size of D. magna compared with the control. However, MP/BP-3 fragments significantly reduced (p < 0.05) the population biomass compared to that of the control, whereas MP fragments did not induce a significant reduction. The MP/BP-3 group had a significantly higher (p < 0.05) neonate proportion than that in the control and MP groups. MP/BP-3 fragments upregulated usp and downregulated ecrb, ftz-f1, and hr3, altering gene expression in the ecdysone signaling pathway linked to D. magna growth and development. These findings suggested that BP-3 in MP/BP-3 fragments may disrupt neonatal growth, thereby decreasing population biomass. In the decline phase, MP fragments significantly decreased (p < 0.05) the population size and biomass of D. magna compared with the control and MP/BP-3 fragments. This study highlights the importance of plastic additives in the population-level ecotoxicity of MPs.


Assuntos
Benzofenonas , Microplásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Daphnia magna , Polietileno/toxicidade , Daphnia , Poluentes Químicos da Água/toxicidade , Dinâmica Populacional
14.
Ecotoxicol Environ Saf ; 272: 116086, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354433

RESUMO

Anthropogenic influences such as plastic pollution are causing serious environmental problems. While effects of microplastics on marine organisms are well studied, less is known about effects of plastic particles on terrestrial organisms such as plants. We investigated the effects of microplastic particles on different growth and metabolic traits of savoy cabbage (Brassica oleracea var. sabauda). Sections of seedlings exposed to polystyrene particles were analysed by coherent Raman scattering microscopy. These analyses revealed an uptake of particles in a size range of 0.5 µm to 2.0 µm into cells of the hypocotyl. Furthermore, plants were grown in substrate amended with polyethylene and polystyrene particles of different sizes (s1: 200-500 µm; s2: 100-200 µm; s3: 20-100 µm; s4: < 100 µm, with most particles < 20 µm; s5: < 20 µm) and in different concentrations (c1 = 0.1%, c2 = 0.01%, c3 = 0.001%). After several weeks, shoot and root biomass were harvested. Leaves were analysed for their carbon to nitrogen ratio, while amino acid and glucosinolate composition were measured using high performance liquid chromatography. Plastic type, particle size and concentration showed distinct effects on certain plant traits. Shoot biomass was interactively influenced by size and concentration of polyethylene, while root biomass was not modified by any of the plastic exposure treatments. Likewise, the composition and total concentrations of leaf amino acids were not affected, but the leucine concentration was significantly increased in several of the plastic-exposed plants. Glucosinolates were also slightly altered, depending on the particle size. Some of the observed effects may be independent of plastic uptake, as larger particles were not taken up but still could affect plant traits. For example, in the rhizosphere plastic particles may increase the water holding capacity of the soil, impacting some of the plant traits. In summary, this study shows how important the plastic type, particle size and concentration are for the uptake of microplastics and their effects on plant traits, which may have important implications for crops, but also for ecosystems.


Assuntos
Brassica , Microplásticos , Microplásticos/toxicidade , Plásticos/análise , Ecossistema , Poliestirenos/análise , Brassica/metabolismo , Plantas/metabolismo , Polietileno/toxicidade , Polietileno/análise
15.
Sci Total Environ ; 918: 170616, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38311086

RESUMO

The present study investigates the morphological, physicochemical, and structural changes occurred by the UV-B aging process of low-density polyethylene microplastics (LDPE MPs), as well as the bioactive potential of both pristine and UVaged MPs towards healthy peripheral blood lymphocytes. Specifically, LDPE MPs (100-180 µm) prepared by mechanical milling of LDPE pellets, were UV-B irradiated for 120 days (wavelength 280 nm; temperature 25 °C; relative humidity 50 %) and further examined for alterations in their particle size and surface, their functional groups, thermal stability, and crystallinity (by means of SEM, FTIR spectroscopy, XRD patterns, and TGA measurements, respectively). In parallel, isolated human peripheral blood lymphocytes were treated with different concentrations (25-500 µg mL-1) of either pristine or aged MPs (UVfree and UV120d LDPE MPs) for assessing the cytogenotoxic (by means of trypan blue exclusion test and the cytokinesis-block micronucleus assay using cytochalasin-B) and oxidative effects (using the DCFH-DA staining) in both cases. According to the results, UVfree and UV120d-LDPE MPs, with a size ranging from 100 to 180 µm, can differentially promote cytogenotoxic and oxidative alterations in human lymphocytes. In fact, UVfree LDPE MPs not being able to be internalized by cells due to their size, could indirectly promote the onset of mild oxidative and cytogenotoxic damage in human peripheral lymphocytes, via a dose-dependent but size-independent manner. The latter is more profound in case of the irregular-shaped UV120d-LDPE MPs, bearing improved dispersibility and sharp edges (by means of cracks and holes), as well as oxygen-containing and carbonyl groups. To our knowledge, the present findings provide new data regarding the bioactive behavior of pristine and UV-B aged LDPE MPs, at least in the in vitro biological model tested, thus giving new evidence for their size-independent and/or indirect mode of action.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Idoso , Polietileno/toxicidade , Polietileno/química , Plásticos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 918: 170642, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38320694

RESUMO

The emergence of microplastics as contaminants has raised concerns regarding their potential toxicity. Recent studies on microplastic pollution caused by food packaging have drawn attention to its impact on health. However, despite being used extensively in food packaging, there is little knowledge about the toxicity of polyethylene microplastics (PE-MPs). Here, we studied the toxicity of PE-MPs on the model animal honeybees using different particle sizes (1 µm, 10 µm, 100 µm in diameter). Oral exposure to 100-µm PE-MPs resulted in elevated honeybee mortality and increased their susceptibility to pathogens. This is likely due to the mechanical disruption and gut microbial dysbiosis by PE-MPs. Snodgrassella, a core functional gut bacteria, was specifically enriched on the surface of PE-MPs, which perturbs the gut microbial communities in honeybees. Furthermore, the increased mortality in challenge trials with the opportunistic pathogen Hafnia alvei for PE-MPs pre-exposed honeybees revealed a potential health risk. These findings provide fresh insights into evaluating the potential hazards associated with PE-MPs.


Assuntos
Microbioma Gastrointestinal , Polietileno , Abelhas , Animais , Polietileno/toxicidade , Microplásticos , Plásticos , Disbiose
17.
Sci Total Environ ; 921: 171160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395170

RESUMO

The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.


Assuntos
Fungicidas Industriais , Pirazóis , Tiofenos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Peixe-Zebra/metabolismo , Polietileno/toxicidade , Polietileno/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
18.
Environ Pollut ; 346: 123624, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387544

RESUMO

Emerging contaminants can act as contributing factors to the decline of amphibian populations worldwide. Recently, scientists have drawn attention to the potential ecotoxicity of microplastics and nanomaterials in amphibians, however, their possible effects on embryonic developmental stages are still absent. Thus, the present study analyzed the developmental toxicity of environmentally relevant concentrations of polyethylene microplastics (PE MPs; 60 mg/L) and titanium dioxide nanoparticles (TiO2 NPs; 10 µg/L), isolated or in combination (Mix group) on bullfrog embryos, Aquarana catesbeiana, adapting the Frog Embryo Teratogenesis Assay (FETAX, 96h). Allied to the FETAX protocol, we also analyzed the heart rate and morphometric data. The exposure reduced the survival and hatching rates in groups exposed to TiO2 NPs, and to a lesser extent, also affected the Mix group. TiO2 NPs possibly interacted with the hatching enzymes of the embryos, preventing hatching, and reducing their survival. The reduced effects in the Mix group are due to the agglomeration of both toxicants, making the NPs less available for the embryos. PE MPs got attached to the gelatinous capsule of the chorion (confirmed by fluorescence microscopy), which protected the embryos from eventual direct effects of the microplastics on the hatching and survival rates. Although there were no cardiotoxic effects nor morphometric alterations, there was a significant increase in abdominal edemas in the hatched embryos of the PE MPs group, which indicates that osmoregulation might have been affected by the attachment of the microplastics on the embryos' gelatinous capsule. This study presents the first evidence of developmental toxicity of environmental mixtures of microplastics and nanoparticles on amphibians and reinforces the need for more studies with other amphibian species, especially neotropical specimens that could present bigger sensibility. Our study also highlighted several features of the FETAX protocol as useful tools to evaluate the embryotoxicity of several pollutants on amphibians.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos , Rana catesbeiana , Polietileno/toxicidade , Poluentes Químicos da Água/toxicidade
19.
Sci Total Environ ; 919: 170837, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350569

RESUMO

Microplastics (MPs) accumulating in freshwater sediment have raised concerns about potential risks to benthic dwelling organisms, yet few studies have examined the long-term impacts caused by MP exposure. This study investigated alterations to lipid profiles in an Australian freshwater invertebrate, Chironomus tepperi, induced by polyethylene MP fragments (1-45 µm) at environmentally relevant concentrations (125, 250, 500 and 1000 MPs/kg sediment), using a two-generational experimental design. In the parental generation, the relative abundance of triacylglycerols, total fatty acids and unsaturated fatty acids exhibited apparent hormetic patterns, with low-concentration stimulation and high-concentration inhibition observed. The overall trend in these lipid classes is consistent with previously observed changes to polar metabolite profiles, indicating that ingestion of MPs could inhibit nutrient assimilation from food leading to disruption of energy availability. In the first filial generation continuously exposed to MPs, however, abundance of cholesterol and total fatty acids increased with increasing exposure concentrations, suggesting different effects on energy metabolism between the parental generation and offspring. No differences in the lipidome were observed in first filial larvae that were not exposed, implying that MPs pose negligible carry-over effects. Overall, the combined results of this study together with a preceding metabolomics study provide evidence of a physical effect of MPs with subsequent impacts to bioenergetics. Nevertheless, future research is required to explore the potential long-term impacts caused by MPs, and to unravel the impacts of the surfactant control as a potential contributor to the observed hormetic response, particularly for studies exploring sub-lethal effects of MP exposure using sensitive omics techniques.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Polietileno/toxicidade , Chironomidae/fisiologia , Lipidômica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Austrália , Ácidos Graxos , Lipídeos/toxicidade
20.
J Hazard Mater ; 465: 133417, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183945

RESUMO

The widespread presence of soil microplastics (MPs) has become a global environmental problem. MPs of different properties (i.e., types, sizes, and concentrations) are present in the environment, while studies about the impact of MPs having different properties are limited. Thus, this study investigated the effects of three common polymers (polystyrene, polyethylene, and polypropylene) with two concentrations (0.01% and 0.1% w/w) on growth and stress response of lettuce (Lactuca sativa L.), soil enzymes, and rhizosphere microbial community. Lettuce growth was inhibited under MPs treatments. Moreover, the antioxidant system, metabolism composition, and phyllosphere microbiome of lettuce leaves was also perturbed. MPs reduced phytase activity and significantly increased dehydrogenase activity. The diversity and structure of rhizosphere microbial community were disturbed by MPs and more sensitive to polystyrene microplastics (PSMPs) and polypropylene microplastics (PPMPs). In general, the results by partial least squares pathway models (PLS-PMs) showed that the presence of MPs influenced the soil-rhizosphere-plant system, which may have essential implications for assessing the environmental risk of MPs.


Assuntos
Microbiota , Microplásticos , Poliestirenos , Plásticos , Polietileno/toxicidade , Polipropilenos , Solo , Rizosfera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...