Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.621
Filtrar
1.
Jt Dis Relat Surg ; 35(2): 340-346, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727113

RESUMO

OBJECTIVES: The aim of this study was to investigate the effects of adding hexagonal boron nitride at four different concentrations to polymethylmethacrylate (PMMA) bone cement, which is commonly used in orthopedic surgeries, on the mechanical properties and microarchitecture of the bone cement. MATERIALS AND METHODS: The study included an unaltered control group and groups containing four different concentrations (40 g of bone cement with 0.5 g, 1 g, 1.5 g, 2 g) of hexagonal boron nitride. The samples used for mechanical tests were prepared at 20±2ºC in operating room conditions, using molds in accordance with the test standards. As a result of the tests, the pressure values at which the samples deformed were determined from the load-deformation graphs, and the megapascal (MPa) values at which the samples exhibited strength were calculated. RESULTS: The samples with 0.5 g boron added to the bone cement had significantly increased mechanical strength, particularly in the compression test. In the group where 2 g boron was added, it was noted that, compared to the other groups, the strength pressure decreased and the porosity increased. The porosity did not change particularly in the group where 0.5 g boron was added. CONCLUSION: Our study results demonstrate that adding hexagonal boron nitride (HBN) to bone cement at a low concentration (0.5 g / 40 g PPMA) significantly increases the mechanical strength in terms of MPa (compression forces) without adversely affecting porosity. However, the incorporation of HBN at higher concentrations increases porosity, thereby compromising the biomechanical properties of the bone cement, as evidenced by the negative impact on compression and four-point bending tests. Boron-based products have gained increased utilization in the medical field, and HBN is emerging as a promising chemical compound, steadily growing in significance.


Assuntos
Cimentos Ósseos , Compostos de Boro , Força Compressiva , Teste de Materiais , Polimetil Metacrilato , Compostos de Boro/química , Compostos de Boro/farmacologia , Polimetil Metacrilato/química , Cimentos Ósseos/química , Teste de Materiais/métodos , Porosidade , Estresse Mecânico
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732100

RESUMO

The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1ß induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1ß compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.


Assuntos
Resinas Compostas , Fibroblastos , Gengiva , Interleucina-1beta , Polimetil Metacrilato , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/citologia , Resinas Compostas/farmacologia , Resinas Compostas/química , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Cultivadas , Fator de Transcrição RelA/metabolismo , Adesão Celular/efeitos dos fármacos
3.
J Indian Prosthodont Soc ; 24(2): 165-174, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650342

RESUMO

AIM: (1) To assess the release of stable silver nanoparticles (AgNPs) of small scale dimension added to heat polymerized polymethyl methacrylate (PMMA) in 6 months. (2) Assessing the influence of incorporating minimal concentrations of stable AgNPs with nanoscale dimensions into heat polymerized PMMA over a 6 month period on its antifungal efficacy (AF), flexural strength (FS), and impact strength (IS). SETTINGS AND DESIGN: Incorporating nanoparticles with a very small scale may have minimal impact on mechanical properties due to their diminutive size. However, the influence of these small scaled nanoparticles on antimicrobial efficacy and potential escalation in toxicity to host cells through leaching remains unexplored. AgNPs were prepared using an Ultrasonic Probe sonicator and the addition of ammonia to obtain stabilized AgNPs (< 0.01 nm) of small scale dimension. The characterization of these AgNPs involved ultraviolet visible spectroscopy, X ray diffraction, Zetasizer, and transmission electron microscopy with energy dispersive spectroscopy (TEM). MATERIALS AND METHODS: The prepared AgNPs were then added in various percentages by weight (0%-0.5%) to fabricate 252 modified PMMA samples of sizes 10 mm × 3 mm (AF, n = 108), 65 mm × 10 mm × 3 mm (FS, n = 72), and 65 mm × 10 mm × 2.5 mm (IS, n = 72) as per ADA specification no. 12. These samples underwent testing for leaching out of AgNPs and efficacy against Candida albicans for 6 months. The effect on FS and IS was evaluated using the three point bending test and Charpy's Impact Tester, respectively. STATISTICAL ANALYSIS USED: Intergroup comparison of CFU between various concentrations of AgNP was done using the Kruskal-Wallis ANOVA test succeeded by Mann-Whitney test for pair wise comparisons. Difference in CFU of various concentrations over 6 months was seen using one way ANOVA test. Intergroup comparison of FS and IS was performed using a one way ANOVA test, followed by a post hoc Tukey's test for pair wise comparisons. RESULTS: Repeated tests showed no leaching out of AgNPs from the denture base resin into the storage medium. All concentrations of AgNPs incorporated in resin showed inhibition of Candida growth. Intergroup comparison of FS and IS revealed highly statistically significant differences (F = 15.076, P < 0.01 and F = 28.266, P < 0.01) between the groups showing a reduction in strength. CONCLUSION: The AgNPs of small scale dimension incorporated into the denture base resin imparted a strong antifungal effectiveness against C. albicans, which did not decline during the study period and did not cause any release of nanoparticles. 0.5% showed the best antifungal efficacy. This may prove to be a viable and highly effective treatment for the prevention of Candida associated denture stomatitis. However, the inclusion of these particles resulted in a decrease in both FS and IS, and this reduction was directly proportional to the percentage of added AgNPs, with 0.5% demonstrating the least IS and FS.


Assuntos
Antifúngicos , Resistência à Flexão , Nanopartículas Metálicas , Polimetil Metacrilato , Prata , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Teste de Materiais , Técnicas In Vitro , Microscopia Eletrônica de Transmissão
4.
Lab Chip ; 24(10): 2721-2735, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38656267

RESUMO

We report the generation of ∼8 nm dual in-plane pores fabricated in a thermoplastic via nanoimprint lithography (NIL). These pores were connected in series with nanochannels, one of which served as a flight tube to allow the identification of single molecules based on their molecular-dependent apparent mobilities (i.e., dual in-plane nanopore sensor). Two different thermoplastics were investigated including poly(methyl methacrylate), PMMA, and cyclic olefin polymer, COP, as the substrate for the sensor both of which were sealed using a low glass transition cover plate (cyclic olefin co-polymer, COC) that could be thermally fusion bonded to the PMMA or COP substrate at a temperature minimizing nanostructure deformation. Unique to these dual in-plane nanopore sensors was two pores flanking each side of the nanometer flight tube (50 × 50 nm, width × depth) that was 10 µm in length. The utility of this dual in-plane nanopore sensor was evaluated to not only detect, but also identify single ribonucleotide monophosphates (rNMPs) by using the travel time (time-of-flight, ToF), the resistive pulse event amplitude, and the dwell time. In spite of the relatively large size of these in-plane pores (∼8 nm effective diameter), we could detect via resistive pulse sensing (RPS) single rNMP molecules at a mass load of 3.9 fg, which was ascribed to the unique structural features of the nanofluidic network and the use of a thermoplastic with low relative dielectric constants, which resulted in a low RMS noise level in the open pore current. Our data indicated that the identification accuracy of individual rNMPs was high, which was ascribed to an improved chromatographic contribution to the nano-electrophoresis apparent mobility. With the ToF data only, the identification accuracy was 98.3%. However, when incorporating the resistive pulse sensing event amplitude and dwell time in conjunction with the ToF and analyzed via principal component analysis (PCA), the identification accuracy reached 100%. These findings pave the way for the realization of a novel chip-based single-molecule RNA sequencing technology.


Assuntos
Nanoporos , Ribonucleotídeos/química , Ribonucleotídeos/análise , Temperatura , Polimetil Metacrilato/química
5.
Clin Exp Dent Res ; 10(2): e842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597122

RESUMO

OBJECTIVE: To investigate the effect of common beverages on four currently used provisional restoration materials: Protemp®4, Integrity®, polymethyl methacrylate (PMMA) block, and acrylic resin. Flowable resin composite is included as a control group. MATERIALS AND METHODS: Each material was formed into disks of 10-mm diameter and 4-mm thickness (N = 40) by loading the material into acrylic molds. The exposed surface in the mold was covered using a glass slide to prevent an oxygen inhibition layer, and polymerization then proceeded. The solidified disks were placed in distilled water for 24 h. These samples (n = 8) were then immersed for 14 days in one of four different beverages: water, orange juice, cola, and coffee. Changes in color dimension, hardness, and roughness were observed and then analyzed using two-way repeated analysis of variance. RESULTS: The provisional materials had more obvious changes in all three color dimensions than the flowable resin composite. Integrity showed the biggest changes, followed by acrylic resin and PMMA block, whereas Protemp had the smallest changes. The hardness of all the materials significantly decreased after immersion in any of the beverages for 14 days. There were no changes in surface roughness when the materials were immersed in distilled water. The surface roughness of the PMMA block significantly decreased in orange juice whereas that of Integrity and acrylic resin significantly increased in cola. CONCLUSION: Different kinds of provisional materials had different degrees of staining due to their composition. Moisture had a significant influence on the hardness of materials, and the acidity of cola significantly roughened the surface of the provisional materials.


Assuntos
Bebidas , Polimetil Metacrilato , Resinas Acrílicas , Café , Água
6.
ANZ J Surg ; 94(4): 724-732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572937

RESUMO

INTRODUCTION: Surgical glove perforation has been linked to a double-fold increased risk of surgical site infection. Infection in the context of arthroplasty can have devastating consequences. In orthopaedics, use of polymethyl methacrylate (PMMA) bone cement is commonplace, and the impact on glove strength and perforation risk is not fully understood. This study aimed to examine the resistance to perforation and thickness of gloves following PMMA exposure, in accordance with the International Organization for Standardization (ISO) standard for glove integrity. METHODS: Pairs of gloves were separated and randomly sorted into exposure and control groups. Twenty pairs of latex and 40 pairs of polyisoprene gloves were used. Exposure group glove cuffs were in contact with cement from a single surface of the glove for 13 min as cement cured. Force to perforation and glove thickness were tested in accordance with ISO guidelines. RESULTS: Latex gloves were found to have a significantly increased force to perforation following PMMA exposure (10.26 Newtons (N) vs. 9.81 N, P = 0.048). Both polyisoprene under- and over-gloves were shown to have no significant change in strength to perforation post exposure (9.69 N vs. 9.83 N, P = 0.561, and 10.26 N vs. 10.65 N, P = 0.168, respectively). All groups were over the ISO standard minimum strength of 5 N. CONCLUSIONS: Exposure of latex and polyisoprene surgical gloves to PMMA bone cement does not appear to increase glove perforation risk and rather may improve natural rubber latex glove strength. This study supports the use of latex and polyisoprene surgical gloves in procedures that involve the handling of PMMA bone cement.


Assuntos
Luvas Cirúrgicas , Ortopedia , Humanos , Polimetil Metacrilato/efeitos adversos , Cimentos Ósseos/efeitos adversos , Látex
7.
Anal Chem ; 96(17): 6764-6773, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619911

RESUMO

Tremendous efforts have been made to develop practical and efficient microfluidic cell and particle sorting systems; however, there are technological limitations in terms of system complexity and low operability. Here, we propose a sheath flow generator that can dramatically simplify operational procedures and enhance the usability of microfluidic cell sorters. The device utilizes an embedded polydimethylsiloxane (PDMS) sponge with interconnected micropores, which is in direct contact with microchannels and seamlessly integrated into the microfluidic platform. The high-density micropores on the sponge surface facilitated fluid drainage, and the drained fluid was used as the sheath flow for downstream cell sorting processes. To fabricate the integrated device, a new process for sponge-embedded substrates was developed through the accumulation, incorporation, and dissolution of PMMA microparticles as sacrificial porogens. The effects of the microchannel geometry and flow velocity on the sheath flow generation were investigated. Furthermore, an asymmetric lattice-shaped microchannel network for cell/particle sorting was connected to the sheath flow generator in series, and the sorting performances of model particles, blood cells, and spiked tumor cells were investigated. The sheath flow generation technique developed in this study is expected to streamline conventional microfluidic cell-sorting systems as it dramatically improves versatility and operability.


Assuntos
Separação Celular , Técnicas Analíticas Microfluídicas , Humanos , Separação Celular/instrumentação , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Porosidade , Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Polimetil Metacrilato/química
8.
Biomed Mater ; 19(4)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653261

RESUMO

Artificial bone graft with osteoconductivity, angiogenesis, and immunomodulation is promising clinical therapeutics for the reluctant healing process of bone defects. Among various osteogenic substitutes, polymethyl methacrylate (PMMA) bone cement is a quit competitive platform due to its easy deployment to the bone defects with irregular shape and biomimetic mechanical properties. However, the biologically inert essence of PMMA is reliant on the passive osseointegration and cannot provide sufficient biologic cues to induce fast bone repair. Bioactive glass could serve as an efficient platform for the active osteogenesis of PMMA via ionic therapy and construction of alkaline microenvironment. However, the direct of deployment of bioactive glass into PMMA may trigger additional cytotoxicity and hinder cell growth on its surface. Hence we incorporated ionic therapy as osteogenic cue into the PMMA to enhance the biomedical properties. Specifically, we synthesized core-shell microspheres with a strontium-doped bioactive glass (SrBG) core and hydroxyapatite (HA) shell, and then composited them with PMMA to introduce multifunctional effects of HA incorporation, alkaline microenvironment construction, and functional ion release by adding microsphere. We preparedxSrBG@HA/PMMA cements (x= 30, 40, 50) with varied microsphere content and evaluated impacts on mechanical/handling properties, ion release, and investigated the impacts of different composite cements on proliferation, osteogenic differentiation, angiogenic potential, and macrophage polarization. These findings provide new perspectives and methodologies for developing advanced bone biomaterials to promote tissue regeneration.


Assuntos
Cimentos Ósseos , Durapatita , Microesferas , Osteogênese , Polimetil Metacrilato , Estrôncio , Cimentos Ósseos/química , Polimetil Metacrilato/química , Osteogênese/efeitos dos fármacos , Porosidade , Estrôncio/química , Animais , Camundongos , Durapatita/química , Materiais Biocompatíveis/química , Teste de Materiais , Proliferação de Células/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cerâmica/química , Vidro/química , Humanos , Substitutos Ósseos/química
9.
Biosens Bioelectron ; 257: 116312, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657380

RESUMO

Pre-eclampsia (PE) is a life-threatening complication that occurs during pregnancy, affecting a large number of pregnant women and newborns worldwide. Rapid, on-site and affordable screening of PE at an early stage is necessary to ensure timely treatment and minimize both maternal and neonatal morbidity and mortality rates. Placental growth factor (PlGF) is an angiogenic blood biomarker used for PE diagnosis. Herein, we report the plasmonic fiber optic absorbance biosensor (P-FAB) strategy for detecting PlGF at femtomolar concentration using polymethyl methacrylate (PMMA) based U-bent polymeric optical fiber (POF) sensor probes. A novel poly(amidoamine) (PAMAM) dendrimer based PMMA surface modification is established to obtain a greater immobilization of the bioreceptors compared to a linear molecule like hexamethylenediamine (HMDA). Plasmonic sandwich immunoassay was realized by immobilizing the mouse anti-PlGF (3H1) on the U-bent POF sensor probe surface and gold nanoparticles (AuNP) labels conjugated with mouse anti-PlGF (6H9). The POF sensor probes could measure PlGF within 30 min using the P-FAB strategy. The limit-of-detection (LoD) was found to be 0.19 pg/mL and 0.57 pg/mL in phosphate-buffered saline and 10× diluted serum, respectively. The clinical sample testing, with eleven positive and eleven negative preeclamptic pregnancy samples, successfully confirmed the accuracy, reliability, specificity, and sensitivity of the P-FAB based POF sensor platform, thereby paving the way for cost-effective technology for PlGF detection and its potential for pre-eclampsia diagnosis.


Assuntos
Técnicas Biossensoriais , Dendrímeros , Ouro , Nanopartículas Metálicas , Fibras Ópticas , Fator de Crescimento Placentário , Pré-Eclâmpsia , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/sangue , Gravidez , Feminino , Humanos , Dendrímeros/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Fator de Crescimento Placentário/sangue , Ouro/química , Nanopartículas Metálicas/química , Limite de Detecção , Imunoensaio/métodos , Imunoensaio/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Animais , Camundongos , Polimetil Metacrilato/química
10.
J Mater Chem B ; 12(18): 4389-4397, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38623831

RESUMO

A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.


Assuntos
Cimentos Ósseos , Hidrazonas , Isoniazida , Isoniazida/química , Isoniazida/farmacologia , Cimentos Ósseos/química , Animais , Hidrazonas/química , Hidrazonas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/administração & dosagem , Camundongos , Liberação Controlada de Fármacos , Polimetil Metacrilato/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
11.
Bone Joint J ; 106-B(5): 435-441, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688480

RESUMO

Aims: Refobacin Bone Cement R and Palacos R + G bone cement were introduced to replace the original cement Refobacin Palacos R in 2005. Both cements were assumed to behave in a biomechanically similar fashion to the original cement. The primary aim of this study was to compare the migration of a polished triple-tapered femoral stem fixed with either Refobacin Bone Cement R or Palacos R + G bone cement. Repeated radiostereometric analysis was used to measure migration of the femoral head centre. The secondary aims were evaluation of cement mantle, stem positioning, and patient-reported outcome measures. Methods: Overall, 75 patients were included in the study and 71 were available at two years postoperatively. Prior to surgery, they were randomized to one of the three combinations studied: Palacos cement with use of the Optivac mixing system, Refobacin with use of the Optivac system, and Refobacin with use of the Optipac system. Cemented MS30 stems and cemented Exceed acetabular components were used in all hips. Postoperative radiographs were used to assess the quality of the cement mantle according to Barrack et al, and the position and migration of the femoral stem. Harris Hip Score, Oxford Hip Score, Forgotten Joint Score, and University of California, Los Angeles Activity Scale were collected. Results: Median distal migration (y-axis) at two years for the Refobacin-Optivac system was -0.79 mm (-2.01 to -0.09), for the Refobacin-Optipac system was -0.75 mm (-2.16 to 0.20), and for the Palacos-Optivac system was -1.01 mm (-4.31 to -0.29). No statistically significant differences were found between the groups. Secondary outcomes did not differ statistically between the groups at the two-year follow-up. Conclusion: At two years, we found no significant differences in distal migration or clinical outcomes between the three groups. Our data indicate that Refobacin Bone Cement R and Palacos R + G are comparable in terms of stable fixation and early clinical outcomes.


Assuntos
Artroplastia de Quadril , Cimentos Ósseos , Prótese de Quadril , Humanos , Masculino , Feminino , Estudos Prospectivos , Artroplastia de Quadril/métodos , Artroplastia de Quadril/instrumentação , Idoso , Pessoa de Meia-Idade , Análise Radioestereométrica , Falha de Prótese , Desenho de Prótese , Medidas de Resultados Relatados pelo Paciente , Idoso de 80 Anos ou mais , Polimetil Metacrilato
12.
J Proteome Res ; 23(5): 1810-1820, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38634750

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widely employed technique in proteomics research for studying the proteome biology of various clinical samples. Hard tissues, such as bone and teeth, are routinely preserved using synthetic poly(methyl methacrylate) (PMMA) embedding resins that enable histological, immunohistochemical, and morphological examination. However, the suitability of PMMA-embedded hard tissues for large-scale proteomic analysis remained unexplored. This study is the first to report on the feasibility of PMMA-embedded bone samples for LC-MS/MS analysis. Conventional workflows yielded merely limited coverage of the bone proteome. Using advanced strategies of prefractionation by high-pH reversed-phase liquid chromatography in combination with isobaric tandem mass tag labeling resulted in proteome coverage exceeding 1000 protein identifications. The quantitative comparison with cryopreserved samples revealed that each sample preparation workflow had a distinct impact on the proteomic profile. However, workflow replicates exhibited a high reproducibility for PMMA-embedded samples. Our findings further demonstrate that decalcification prior to protein extraction, along with the analysis of solubilization fractions, is not preferred for PMMA-embedded bone. The biological applicability of the proposed workflow was demonstrated using samples of human PMMA-embedded alveolar bone and the iliac crest, which revealed anatomical site-specific proteomic profiles. Overall, these results establish a crucial foundation for large-scale proteomics studies contributing to our knowledge of bone biology.


Assuntos
Polimetil Metacrilato , Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Humanos , Polimetil Metacrilato/química , Espectrometria de Massas em Tandem/métodos , Proteoma/análise , Cromatografia Líquida/métodos , Osso e Ossos/química , Osso e Ossos/metabolismo , Inclusão do Tecido/métodos , Reprodutibilidade dos Testes
13.
Environ Sci Pollut Res Int ; 31(20): 28890-28904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564126

RESUMO

Inappropriate disposal of plastic wastes and their durability in nature cause uncontrolled accumulation of plastic in land/marine ecosystems, also causing destructive effects by bioaccumulating along the food chain. Microplastics may cause chronic inflammation in relation to their permanent structures, especially through oxidative stress and cytotoxic cellular damage, which could increase the risk of cancer development. The accumulation of microplastics in the liver is a major concern, and therefore, the identification of the mechanisms of their hepatotoxic effects is of great importance. Polymethyl methacrylate (PMMA) is a widely used thermoplastic. It has been determined that PMMA disrupts lipid metabolism in the liver in various aquatic organisms and causes reproductive and developmental toxicity. PMMA-induced hepatotoxic effects in humans have not yet been clarified. In our study, the toxic effects of PMMA (in the range of 3-10 µm) on the human liver were investigated using the HepG2/THP-1 macrophage co-culture model, which is a sensitive immune-mediated liver injury model. Cellular uptake of micro-sized PMMA in the cells was done by transmission electron microscopy. Determination of its effects on cell viability and inflammatory response, oxidative stress, along with gene and protein expression levels that play a role in the mechanism pathways underlying the effects were investigated. The results concluded that inflammation, oxidative stress, and disruptions in lipid metabolism should be the focus of attention as important underlying causes of PMMA-induced hepatotoxicity. Our study, which points out the potential adverse effects of microplastics on human health, supports the literature information on the subject.


Assuntos
Microplásticos , Estresse Oxidativo , Polimetil Metacrilato , Humanos , Polimetil Metacrilato/toxicidade , Microplásticos/toxicidade , Células Hep G2 , Estresse Oxidativo/efeitos dos fármacos , Técnicas de Cocultura , Fígado/efeitos dos fármacos
14.
J Prosthet Dent ; 131(5): 916.e1-916.e9, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443240

RESUMO

STATEMENT OF PROBLEM: Dental implants are particularly susceptible to occlusal overloading because, unlike natural teeth, they lack a periodontal ligament to help absorb occlusal forces. However, studies evaluating the impact of different crown and luting materials on the damping behavior and strain distribution of implant-supported crowns are lacking. PURPOSE: The purpose of this in vitro study was to investigate the damping behavior and strain distribution of peri-implant bone associated with 5 different CAD-CAM implant-supported crowns and 3 luting materials. MATERIAL AND METHODS: A titanium implant was embedded in a plastic tube with epoxy resin and 5 different crown materials (polymethyl methacrylate, resin-infiltrated ceramic, lithium disilicate, titanium, and zirconia) luted to prosthetic abutments with 3 different luting materials (zinc oxide non-eugenol cement, zinc phosphate cement, and adhesive resin cement) and an uncemented condition were tested (n=5). Strain gauges were attached at the crestal and apical levels of the implant model. All specimens were load tested from 0 to 200 N. Slopes of load/time, microstrain/time, and time required to reach the maximum load were examined to represent the damping behavior. Absolute maximum strain (AMS) and its occurrence level were examined to represent the strain distribution. Two-way ANOVA, followed by the Tukey HSD test, were used for statistical analysis (α=.05). RESULTS: All slopes and times to reach the maximum load in each crown material were statistically similar (P>.05), except for the polymethyl methacrylate group, which showed less steepness in all slopes and more time required to reach the maximum load significantly (P<.05). Both the polymethyl methacrylate group (224.5 ±30.2) and the titanium group (224.0 ±24.3) exhibited significantly higher AMS at the crestal level compared with the resin-infiltrated ceramic group (210.6 ±5.0) (P<.05). The lithium disilicate (218.1 ±15.0) and zirconia groups (217.3 ±14.8) demonstrated comparable AMS values with the others (P>.05). The uncemented group demonstrated steeper slopes and less time required to reach the maximum load compared with the adhesive resin group (P<.05), while slopes and times of the zinc phosphate and zinc oxide non-eugenol groups were comparable (P>.05). The uncemented group (242.7 ±25.3) exhibited significantly higher AMS at the crestal level than the other groups (P<.05). CONCLUSIONS: The crown material significantly affected the damping behavior of peri-implant bone, unlike the luting material. Polymethyl methacrylate with a high damping behavior exhibited high strain at the crestal level. In contrast, resin-modified ceramic with a moderate damping behavior exhibited low strain at the crestal level. Strain at the crestal level could be effectively reduced by approximately 13% through cementation.


Assuntos
Desenho Assistido por Computador , Coroas , Cimentos Dentários , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Cimentos Dentários/química , Cimentos Dentários/uso terapêutico , Humanos , Técnicas In Vitro , Polimetil Metacrilato/química , Cimentos de Resina/química , Teste de Materiais , Cimento de Fosfato de Zinco/química , Titânio/química , Zircônio/química , Porcelana Dentária/química , Cerâmica/química
15.
BMC Oral Health ; 24(1): 357, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509542

RESUMO

BACKGROUND: This study compared the impact of thermal cycling on the flexural strength of denture-base materials produced through conventional and digital methods, using both subtractive and additive approaches. METHODS: In total, 60 rectangular specimens were fabricated with specific dimensions for flexural strength tests. The dimensions were set according to the International Organization for Standardization (ISO) guideline 20795-1:2013 as 64 × 10 × 3.3 ± 0.2 mm. Specimens from each material group were divided into two subgroups (thermal cycled or nonthermal cycled, n = 10/group). We used distinct methods to produce three different denture-base materials: Ivobase (IB), which is a computer-aided-design/computer-aided-manufacturing-type milled pre-polymerized polymethyl methacrylate resin disc; Formlabs (FL), a 3D-printed denture-base resin; and Meliodent (MD), a conventional heat-polymerized acrylic. Flexural strength tests were performed on half of the samples without a thermal-cycle procedure, and the other half were tested after a thermal cycle. The data were analyzed using a two-way analysis of variance and a post hoc Tukey test (α = 0.05). RESULTS: Based on the results of flexural-strength testing, the ranking was as follows: FL > IB > MD. The effect of thermal aging was statistically significant for the FL and IB bases, but not for the MD base. CONCLUSIONS: Digitally produced denture bases exhibited superior flexural strength compared with conventionally manufactured bases. Although thermal cycling reduced flexural strength in all groups, the decrease was not statistically significant in the heat-polymerized acrylic group.


Assuntos
Resistência à Flexão , Temperatura Alta , Humanos , Resinas Acrílicas , Bases de Dentadura , Teste de Materiais , Polimetil Metacrilato , Propriedades de Superfície
16.
Artigo em Russo | MEDLINE | ID: mdl-38549407

RESUMO

OBJECTIVE: To evaluate mechanical strength of three methods of polymethyl methacrylate skull implant fixation in two experimental models. MATERIAL AND METHODS: The first experiment was performed on a plastic model that was as close as possible to bone in structural characteristics. The second experiment was performed on a biological specimen (a ram's head). We assessed the quality of implant fixation to bone window edges by craniofixes, ties and microscrews and lateral intercortical screws. RESULTS: Craniofixes are feasible for small flat flaps, but not advisable for wide highly curved implants. They are also the most expensive method of fixation. Implant fixation by ties and microscrews is a universal method comparable in price to craniofix. Lateral intercortical fixation is effective both for small flat implants and wide implants with large curvature. However, this method is not always applicable. CONCLUSION: Combined fixation by lateral intercortical screws and ties allows for the most effective fixation while reducing the overall price of consumables.


Assuntos
Polimetil Metacrilato , Titânio , Masculino , Animais , Ovinos , Polimetil Metacrilato/química , Crânio/cirurgia , Próteses e Implantes , Craniotomia/métodos
17.
ACS Biomater Sci Eng ; 10(4): 2398-2413, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38477550

RESUMO

In vertebroplasty and kyphoplasty, bioinert poly(methyl methacrylate) (PMMA) bone cement is a conventional filler employed for quick stabilization of osteoporotic vertebral compression fractures (OVCFs). However, because of the poor osteointegration, excessive stiffness, and high curing temperature of PMMA, the implant loosens, the adjacent vertebrae refracture, and thermal necrosis of the surrounding tissue occurs frequently. This investigation addressed these issues by incorporating the small intestinal submucosa (SIS) into PMMA (SIS-PMMA). In vitro analyses revealed that this new SIS-PMMA bone cement had improved porous structure, as well as reduced compressive modulus and polymerization temperature compared with the original PMMA. Furthermore, the handling properties of SIS-PMMA bone cement were not significantly different from PMMA. The in vitro effect of PMMA and SIS-PMMA was investigated on MC3T3-E1 cells via the Transwell insert model to mimic the clinical condition or directly by culturing cells on the bone cement samples. The results indicated that SIS addition substantially enhanced the proliferation and osteogenic differentiation of MC3T3-E1 cells. Additionally, the bone cement's biomechanical properties were also assessed in a decalcified goat vertebrae model with a compression fracture, which indicated the SIS-PMMA had markedly increased compressive strength than PMMA. Furthermore, it was proved that the novel bone cement had good biosafety and efficacy based on the International Standards and guidelines. After 12 weeks of implantation, SIS-PMMA indicated significantly more osteointegration and new bone formation ability than PMMA. In addition, vertebral bodies with cement were also extracted for the uniaxial compression test, and it was revealed that compared with the PMMA-implanted vertebrae, the SIS-PMMA-implanted vertebrae had greatly enhanced maximum strength. Overall, these findings indicate the potential of SIS to induce efficient fixation between the modified cement surface and the host bone, thereby providing evidence that the SIS-PMMA bone cement is a promising filler for clinical vertebral augmentation.


Assuntos
Fraturas por Compressão , Fraturas da Coluna Vertebral , Humanos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Polimetil Metacrilato/farmacologia , Polimetil Metacrilato/química , Osteogênese , Fraturas da Coluna Vertebral/cirurgia , Coluna Vertebral
18.
Int J Prosthodont ; 37(7): 133-141, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38498865

RESUMO

PURPOSE: To evaluate the flexural strength (FS) and microhardness of various CAD/CAM restorative materials intended for definitive use. The effect of hydrothermal aging on the mechanical properties of these materials was also investigated. MATERIALS AND METHODS: A total of 210 bar-shaped specimens (17 × 4 × 1.5 mm ± 0.02 mm) were fabricated via either subtractive manufacturing (SM) methods-reinforced composite resin (SM-CR), polymer-infiltrated ceramic network (SM-PICN), fine-structured feldspathic ceramic (SMFC), nanographene-reinforced polymethyl methacrylate (PMMA; SM-GPMMA), PMMAbased resin (SM-PMMA)-or additive manufacturing (AM) methods with urethane acrylate-based resins (AM-UA1 and AM-UA2). Specimens were then divided into two subgroups (nonaged or hydrothermal aging; n = 15). A three-point flexural strength test was performed, and five specimens from the nonaged group were submitted to microhardness testing. Specimens were subjected to 10,000 thermal cycles, and the measurements were repeated. RESULTS: Regardless of aging, SM-CR had the highest FS (P < .001), followed by SM-GPMMA (P ≤ .042). In nonaged groups, AM-UA2 had a lower FS than all other materials except SM-FC (P = 1.000). In hydrothermal aging groups, AM specimens had lower FS values than other materials, except SM-PMMA. With regard to microhardness, there was no significant difference found between any of the tested materials (P ≥ .945) in the nonaged and hydrothermal aging groups. CONCLUSIONS: The effect of hydrothermal aging on FS varied depending on the type of restorative material. Regardless of aging condition, SM-CR showed the highest FS values, whereas SM-FC had the highest microhardness. Hydrothermal aging had no significant influence on the microhardness of the tested materials.


Assuntos
Resistência à Flexão , Polimetil Metacrilato , Materiais Dentários , Resinas Compostas , Polímeros , Teste de Materiais , Propriedades de Superfície , Desenho Assistido por Computador
19.
BMC Ophthalmol ; 24(1): 103, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443841

RESUMO

PURPOSE: To measure the dislocation forces in relation to haptic material, flange size and needle used. SETTING: Hanusch Hospital, Vienna, Austria. DESIGN: Laboratory Investigation. METHODS, MAIN OUTCOME MEASURES: 30 G (gauge) thin wall and 27 G standard needles were used for a 2 mm tangential scleral tunnel in combination with different PVDF (polyvinylidene fluoride) and PMMA (polymethylmethacrylate haptics). Flanges were created by heating 1 mm of the haptic end, non-forceps assisted in PVDF and forceps assisted in PMMA haptics. The dislocation force was measured in non-preserved cadaver sclera using a tensiometer device. RESULTS: PVDF flanges achieved were of a mushroom-like shape and PMMA flanges were of a conic shape. For 30 G needle tunnels the dislocation forces for PVDF and PMMA haptic flanges were 1.58 ± 0.68 N (n = 10) and 0.70 ± 0.14 N (n = 9) (p = 0.003) respectively. For 27 G needle tunnels the dislocation forces for PVDF and PMMA haptic flanges were 0.31 ± 0.35 N (n = 3) and 0.0 N (n = 4), respectively. The flange size correlated with the occurring dislocation force in experiments with 30 G needle tunnels (r = 0.92), when flanges were bigger than 384 micrometres. CONCLUSIONS: The highest dislocation forces were found for PVDF haptic flanges and their characteristic mushroom-like shape for 30 G thin wall needle scleral tunnels. Forceps assisted flange creation in PMMA haptics did not compensate the disadvantage of PMMA haptics with their characteristic conic shape flange.


Assuntos
Polímeros de Fluorcarboneto , Tecnologia Háptica , Lentes Intraoculares , Polivinil , Humanos , Polimetil Metacrilato , Esclera/cirurgia
20.
J Oral Sci ; 66(2): 120-124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38494704

RESUMO

PURPOSE: To evaluate the flexural properties of repaired poly(methylmethacrylate) (PMMA) denture base materials for computer-aided design/computer-aided manufacturing (CAD-CAM) and to compare them with heat-activated polymerized PMMA. METHODS: A total of 288 specimens (65 × 10 × 2.5 mm) were prepared using both CAD-CAM and conventional blocks and repaired using autopolymerizing and visible-light polymerizing (VLC) materials. Microwave energy, water storage and hydroflask polymerization were applied as additional post-polymerization cycles after the repair process. The flexural strength (FS) of the specimens was evaluated using the three-point bending test. Data were evaluated statistically using 2-way ANOVA followed by Bonferroni's correction to determine the significance of differences between the groups (P ≤ 0.05). RESULTS: The FS of the denture base materials for CAD-CAM was significantly higher than that for the heat-activated group (P ≤ 0.05). The FS was significantly highest when microwave energy was used for the post-polymerization cycle. The FS values for all groups repaired with VLC resin were significantly lower than for the autopolymerization group (P ≤ 0.05). CONCLUSION: The flexural properties of denture base materials for CAD-CAM repaired using autopolymerizing acrylic resins can recover by 50-70%. Additional post-polymerization cycles for autopolymerizing repair resin can be suggested to improve the clinical service properties of repaired dentures.


Assuntos
Materiais Dentários , Resistência à Flexão , Polimetil Metacrilato , Bases de Dentadura , Teste de Materiais , Resinas Acrílicas , Desenho Assistido por Computador , Reparação em Dentadura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...