Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.648
Filtrar
1.
Nat Commun ; 15(1): 3755, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704385

RESUMO

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Assuntos
Anticoagulantes , Escherichia coli , Heparina , Sulfotransferases , Sulfotransferases/metabolismo , Sulfotransferases/genética , Heparina/metabolismo , Heparina/biossíntese , Anticoagulantes/metabolismo , Anticoagulantes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/química , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Dissacarídeos/metabolismo , Dissacarídeos/biossíntese , Dissacarídeos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
2.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710561

RESUMO

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Assuntos
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacologia , Glucanos/isolamento & purificação , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Agaricales/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Peso Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Basidiomycota/química , Sobrevivência Celular/efeitos dos fármacos
3.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710573

RESUMO

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Assuntos
Antivirais , Herpesvirus Humano 1 , Polissacarídeos , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Herpesvirus Humano 1/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Animais , Células Vero , Humanos , Sulfatos/química , Sulfatos/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos
4.
Carbohydr Polym ; 337: 122156, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710572

RESUMO

Seaweeds represent a rich source of sulfated polysaccharides with similarity to heparan sulfate, a facilitator of myriad virus host cell attachment. For this reason, attention has been drawn to their antiviral activity, including the potential for anti-SARS-CoV-2 activity. We have identified and structurally characterized several fucoidan extracts, including those from different species of brown macroalga, and a rhamnan sulfate from a green macroalga species. A high molecular weight fucoidan extracted from Saccharina japonica (FSjRPI-27), and a rhamnan sulfate extracted from Monostroma nitidum (RSMn), showed potent competitive inhibition of spike glycoprotein receptor binding to a heparin-coated SPR chip. This inhibition was also observed in cell-based assays using hACE2 HEK-293 T cells infected by pseudotyped SARS-CoV-2 virus with IC50 values <1 µg/mL. Effectiveness was demonstrated in vivo using hACE2-transgenic mice. Intranasal administration of FSjRPI-27 showed protection when dosed 6 h prior to and at infection, and then every 2 days post-infection, with 100 % survival and no toxicity at 104 plaque-forming units per mouse vs. buffer control. At 5-fold higher virus dose, FSjRPI-27 reduced mortality and yielded reduced viral titers in bronchioalveolar fluid and lung homogenates vs. buffer control. These findings suggest the potential application of seaweed-based sulfated polysaccharides as promising anti-SARS-CoV-2 prophylactics.


Assuntos
Antivirais , COVID-19 , Mananas , Polissacarídeos , SARS-CoV-2 , Alga Marinha , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais , Humanos , SARS-CoV-2/efeitos dos fármacos , Alga Marinha/química , Antivirais/farmacologia , Antivirais/química , Células HEK293 , Camundongos , COVID-19/prevenção & controle , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/metabolismo , Desoxiaçúcares/farmacologia , Desoxiaçúcares/química , Enzima de Conversão de Angiotensina 2/metabolismo
5.
AAPS PharmSciTech ; 25(5): 99, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714608

RESUMO

Hypericum perforatum (HP) contains valuable and beneficial bioactive compounds that have been used to treat or prevent several illnesses. Encapsulation technology offers protection of the active compounds and facilitates to expose of the biologically active compounds in a controlled mechanism. Microcapsulation of the hydroalcoholic gum arabic and maltodextrin have hot been used as wall materials in the encapsulation of HP extract. Therefore, the optimum microencapsulation parameters of Hypericum perforatum (HP) hydroalcoholic extract were determined using response surface methodology (RSM) for the evaluation of HP extract. Three levels of three independent variables were screened using the one-way ANOVA. Five responses were monitored, including total phenolic content (TPC), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), carr index (CI), hausner ratio (HR), and solubility. Optimum drying conditions for Hypericum perforatum microcapsules (HPMs) were determined: 180 °C for inlet air temperature, 1.04/1 for ratio of maltodextrin to gum arabic (w/w), and 1.98/1 for coating to core material ratio (w/w). TPC, antioxidant activity, CI, HR, and solubility values were specified as 316.531 (mg/g GAE), 81.912%, 6.074, 1.066, and 35.017%, respectively, under the optimized conditions. The major compounds of Hypericum perforatum (hypericin and pseudohypericin) extract were determined as 4.19 µg/g microcapsule and 15.09 µg/g microcapsule, respectively. Scanning electron microscope (SEM) analysis revealed that the mean particle diameter of the HPMs was 20.36 µm. Based on these results, microencapsulation of HPMs by spray drying is a viable technique which protects the bioactive compounds of HP leaves, facilitating its application in the pharmaceutical, cosmetic, and food industries.


Assuntos
Antioxidantes , Cápsulas , Composição de Medicamentos , Goma Arábica , Hypericum , Extratos Vegetais , Polissacarídeos , Solubilidade , Hypericum/química , Extratos Vegetais/química , Composição de Medicamentos/métodos , Goma Arábica/química , Polissacarídeos/química , Antioxidantes/química , Antioxidantes/farmacologia , Cápsulas/química , Secagem por Atomização , Fenóis/química , Dessecação/métodos
6.
AAPS PharmSciTech ; 25(5): 101, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714629

RESUMO

BACKGROUND: Niacin, an established therapeutic for dyslipidemia, is hindered by its propensity to induce significant cutaneous flushing when administered orally in its unmodified state, thereby constraining its clinical utility. OBJECTIVE: This study aimed to fabricate, characterize, and assess the in-vitro and in-vivo effectiveness of niacin-loaded polymeric films (NLPFs) comprised of carboxymethyl tamarind seed polysaccharide. The primary objective was to mitigate the flushing-related side effects associated with oral niacin administration. METHODS: NLPFs were synthesized using the solvent casting method and subsequently subjected to characterization, including assessments of tensile strength, moisture uptake, thickness, and folding endurance. Surface characteristics were analyzed using a surface profiler and scanning electron microscopy (SEM). Potential interactions between niacin and the polysaccharide core were investigated through X-ray diffraction experiments (XRD) and Fourier transform infrared spectroscopy (FTIR). The viscoelastic properties of the films were explored using a Rheometer. In-vitro assessments included drug release studies, swelling behavior assays, and antioxidant assays. In-vivo efficacy was evaluated through skin permeation assays, skin irritation assays, and histopathological analyses. RESULTS: NLPFs exhibited a smooth texture with favorable tensile strength and moisture absorption capabilities. Niacin demonstrated interaction with the polysaccharide core, rendering the films amorphous. The films displayed slow and sustained drug release, exceptional antioxidant properties, optimal swelling behavior, and viscoelastic characteristics. Furthermore, the films exhibited biocompatibility and non-toxicity towards skin cells. CONCLUSION: NLPFs emerged as promising carrier systems for the therapeutic transdermal delivery of niacin, effectively mitigating its flushing-associated adverse effects.


Assuntos
Administração Cutânea , Liberação Controlada de Fármacos , Niacina , Polissacarídeos , Ratos Wistar , Absorção Cutânea , Pele , Animais , Ratos , Niacina/administração & dosagem , Niacina/química , Niacina/farmacologia , Polissacarídeos/química , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Pele/metabolismo , Pele/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos , Rubor/induzido quimicamente , Resistência à Tração , Masculino , Sistemas de Liberação de Medicamentos/métodos , Tamarindus/química , Polímeros/química
7.
Food Res Int ; 186: 114371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729729

RESUMO

In this study, the impact of soy hull polysaccharide (SHP) concentration on high-internal-phase emulsions (HIPEs) formation and the gastrointestinal viability of Lactobacillus plantarum within HIPEs were demonstrated. Following the addition of SHP, competitive adsorption with soy protein isolate (SPI) occurred, leading to increased protein adhesion to the oil-water interface and subsequent coating of oil droplets. This process augmented viscosity and enhanced HIPEs stability. Specifically, 1.8 % SHP had the best encapsulation efficiency and delivery efficiency, reaching 99.3 % and 71.1 %, respectively. After 14 d of continuous zebrafishs feeding, viable counts of Lactobacillus plantarum and complex probiotics in the intestinal tract was 1.1 × 107, 1.3 × 107, respectively. In vitro experiments further proved that HIPEs' ability to significantly enhance probiotics' intestinal colonization and provided targeted release for colon-specific delivery. These results provided a promising strategy for HIPEs-encapsulated probiotic delivery systems in oral food applications.


Assuntos
Emulsões , Lactobacillus plantarum , Polissacarídeos , Probióticos , Proteínas de Soja , Peixe-Zebra , Proteínas de Soja/química , Animais , Polissacarídeos/química , Lactobacillus plantarum/metabolismo , Glycine max/química , Viscosidade
8.
Int J Med Mushrooms ; 26(6): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801084

RESUMO

The prevalence of diabetes is increasing worldwide, and it is very important to study new hypoglycemic active substances. In this study, we investigated the hypoglycemic effect of Chroogomphus rutilus crude polysaccharide (CRCP) in HepG2 cells and streptozotocin-induced diabetic mice. A glucose consumption experiment conducted in HepG2 cells demonstrated the in vitro hypoglycemic activity of CRCP. Furthermore, CRCP exhibited significant hypoglycemic effects and effectively ameliorated insulin resistance in insulin resistant HepG2 cells. In high-fat diet and streptozotocin-induced diabetic mice, after 4 weeks of CRCP administration, fasting blood glucose, fasting serum insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, glutamate transaminase, alanine transaminase, and insulin resistance index significantly decreased, while high-density lipoprotein cholesterol and insulin sensitivity index (ISI) were markedly increased. Moreover, hematoxylin-eosin (HE) staining and immunofluorescence labeling of tissue sections indicated that CRCP attenuated the pathological damage of liver and pancreas in diabetic mice. These results indicate that CRCP is a potential hypoglycemic agent.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Hipoglicemiantes , Resistência à Insulina , Polissacarídeos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos , Células Hep G2 , Masculino , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Insulina/sangue , Insulina/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Agaricales/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Estreptozocina
9.
Biomolecules ; 14(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785920

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting a growing number of elderly people. In order to improve the early and differential diagnosis of AD, better biomarkers are needed. Glycosylation is a protein post-translational modification that is modulated in the course of many diseases, including neurodegeneration. Aiming to improve AD diagnosis and differential diagnosis through glycan analytics methods, we report the glycoprotein glycome of cerebrospinal fluid (CSF) isolated from a total study cohort of 262 subjects. The study cohort consisted of patients with AD, healthy controls and patients suffering from other types of dementia. CSF free-glycans were also isolated and analyzed in this study, and the results reported for the first time the presence of 19 free glycans in this body fluid. The free-glycans consisted of complete or truncated N-/O-glycans as well as free monosaccharides. The free-glycans Hex1 and HexNAc1Hex1Neu5Ac1 were able to discriminate AD from controls and from patients suffering from other types of dementia. Regarding CSF N-glycosylation, high proportions of high-mannose, biantennary bisecting core-fucosylated N-glycans were found, whereby only about 20% of the N-glycans were sialylated. O-Glycans and free-glycan fragments were less sialylated in AD patients than in controls. To conclude, this comprehensive study revealed for the first time the biomarker potential of free glycans for the differential diagnosis of AD.


Assuntos
Doença de Alzheimer , Biomarcadores , Polissacarídeos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Humanos , Biomarcadores/líquido cefalorraquidiano , Polissacarídeos/líquido cefalorraquidiano , Polissacarídeos/química , Masculino , Feminino , Idoso , Glicosilação , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Glicoproteínas/líquido cefalorraquidiano , Estudos de Casos e Controles
10.
Proc Natl Acad Sci U S A ; 121(22): e2317227121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771870

RESUMO

The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.


Assuntos
Polissacarídeos , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Polietilenoglicóis/química , Colesterol/química , Colesterol/metabolismo , Lipídeos/química
11.
J Sep Sci ; 47(9-10): e2400122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772731

RESUMO

In this study, several amino acids deep eutectic solvents were prepared using L-valine and L-leucine as hydrogen bond acceptors, and L-lactic acid and glycerol as hydrogen bond donors. These amino acids' deep eutectic solvents were first used as buffer additives to construct several synergistic systems along with maltodextrin in capillary electrophoresis for the enantioseparations of four racemic drugs. Compared with single maltodextrin system, the separations of model drugs in the synergistic systems were significantly improved. Some key parameters affecting chiral separation such as maltodextrin concentration, deep eutectic solvent concentration, buffer pH, and applied voltage were optimized. In order to further understand the specific mechanism of the amino acids deep eutectic solvents in improving chiral separation, we first calculated the binding constants of maltodextrin with enantiomers using the capillary electrophoresis method in the two separation modes, respectively. We also used molecular simulation to calculate the binding free energy of maltodextrin with enantiomers. It is the first time that amino acids deep eutectic solvents were used for enantioseparation in capillary electrophoresis, which will greatly promote the development of deep eutectic solvents in the field of chiral separation.


Assuntos
Aminoácidos , Eletroforese Capilar , Polissacarídeos , Estereoisomerismo , Aminoácidos/química , Aminoácidos/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Solventes Eutéticos Profundos/química , Ligação de Hidrogênio
12.
Food Res Int ; 187: 114395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763655

RESUMO

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Assuntos
Antioxidantes , Chenopodium quinoa , Esterificação , Chenopodium quinoa/química , Relação Estrutura-Atividade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , Pectinas/química , Polissacarídeos/química , Prebióticos , Animais , Camundongos , Alimento Funcional , Células RAW 264.7 , NF-kappa B/metabolismo
13.
Food Res Int ; 187: 114428, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763678

RESUMO

In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 µg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.


Assuntos
Glucose , Metabolismo dos Lipídeos , Nanopartículas , Polissacarídeos , Rubus , Selênio , Humanos , Selênio/química , Células Hep G2 , Polissacarídeos/farmacologia , Polissacarídeos/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Glucose/metabolismo , Nanopartículas/química , Rubus/química , Tamanho da Partícula , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
14.
Carbohydr Polym ; 338: 122172, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763719

RESUMO

Polysaccharide-based hydrogels are promising for many biomedical applications including drug delivery, wound healing, and tissue engineering. We illustrate herein self-healing, injectable, fast-gelling hydrogels prepared from multi-reducing end polysaccharides, recently introduced by the Edgar group. Simple condensation of reducing ends from multi-reducing end alginate (M-Alg) with amines from polyethylene imine (PEI) in water affords a dynamic, hydrophilic polysaccharide network. Trace amounts of acetic acid can accelerate the gelation time from hours to seconds. The fast-gelation behavior is driven by rapid Schiff base formation and strong ionic interactions induced by acetic acid. A cantilever rheometer enables real-time monitoring of changes in viscoelastic properties during hydrogel formation. The reversible nature of these crosslinks (imine bonds, ionic interactions) provides a hydrogel with low toxicity in cell studies as well as self-healing and injectable properties. Therefore, the self-healing, injectable, and fast-gelling M-Alg/PEI hydrogel holds substantial promise for biomedical, agricultural, controlled release, and other applications.


Assuntos
Alginatos , Hidrogéis , Polissacarídeos , Alginatos/química , Hidrogéis/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Polissacarídeos/química , Polietilenoimina/química , Humanos , Reologia , Animais , Bases de Schiff/química , Injeções , Camundongos
15.
Carbohydr Polym ; 338: 122199, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763725

RESUMO

Deep eutectic solvents (DES) emerge as promising alternatives to conventional solvents, offering outstanding extraction capabilities, low toxicity, eco-friendliness, straightforward synthesis procedures, broad applicability, and impressive recyclability. DES are synthesized by combining two or more components through various synthesis procedures, such as heat-assisted mixing/stirring, grinding, freeze drying, and evaporation. Polysaccharides, as abundant natural materials, are highly valued for their biocompatibility, biodegradability, and sustainability. These versatile biopolymers can be derived from various natural sources such as plants, algae, animals, or microorganisms using diverse extraction techniques. This review explores the synthesis procedures of DES, their physicochemical properties, characterization analysis, and their application in polysaccharide extraction. The extraction optimization strategies, parameters affecting DES-based polysaccharide extraction, and separation mechanisms are comprehensively discussed. Additionally, this review provides insights into recently developed molecular guides for DES screening and the utilization of artificial neural networks for optimizing DES-based extraction processes. DES serve as excellent extraction media for polysaccharides from different sources, preserving their functional features. They are utilized both as extraction solvents and as supporting media to enhance the extraction abilities of other solvents. Continued research aims to improve DES-based extraction methods and achieve selective, energy-efficient processes to meet the demands of this expanding field.


Assuntos
Solventes Eutéticos Profundos , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Solventes Eutéticos Profundos/química , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Animais , Solventes/química , Fracionamento Químico/métodos , Plantas/química
16.
Food Chem ; 451: 139408, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735097

RESUMO

Fruits are a rich source of polysaccharides, and an increasing number of studies have shown that polysaccharides from fruits have a wide range of biological functions. Here, we thoroughly review recent advances in the study of the bioactivities, structures, and structure-activity relationships of fruit polysaccharides, especially highlighting the structure-activity influencing factors such as extraction methods and chemical modifications. Different extraction methods cause differences in the primary structures of polysaccharides, which in turn lead to different polysaccharide biological activities. Differences in the degree of modification, molecular weight, substitution position, and chain conformation caused by chemical modification can all affect the biological activities of fruit polysaccharides. Furthermore, we summarize the applications of fruit polysaccharides in the fields of pharmacy and medicine, foods, cosmetics, and materials. The challenges and perspectives for fruit polysaccharide research are also discussed.


Assuntos
Frutas , Polissacarídeos , Frutas/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Relação Estrutura-Atividade , Humanos , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia
17.
Int J Biol Macromol ; 268(Pt 2): 131975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692551

RESUMO

Vitamin E (VE) microencapsulation using a green surfactant emulsifier not only protects the active substance and is also environmentally friendly. In this study, we used alcohol ether glycoside as an emulsifier to prepare VE microcapsules using the biological macromolecule Zein and various polysaccharides. The resulting nano microcapsules exhibited a spherical structure, stable morphology, uniform size, and a >90% encapsulation efficiency. They also had good thermal stability and slow-release properties. Of these, xanthan gum/Zein-VE microcapsules were superior, with antioxidant properties up to 3.05-fold higher than untreated VE. We successfully developed VE nano microcapsules that meet eco-friendly and sustainable requirements, which may have applications in the food and pharmaceutical industries.


Assuntos
Antioxidantes , Cápsulas , Polissacarídeos , Vitamina E , Zeína , Zeína/química , Vitamina E/química , Polissacarídeos/química , Antioxidantes/química , Antioxidantes/farmacologia , Polissacarídeos Bacterianos/química , Tamanho da Partícula , Composição de Medicamentos/métodos
18.
Methods Mol Biol ; 2775: 367-373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758330

RESUMO

Glucuronoxylomannan (GXM) is the principal capsular component in the Cryptococcus genus. This complex polysaccharide participates in numerous events related to the physiology and pathogenesis of Cryptococcus, which highlights the importance of establishing methods for its isolation and analysis. Conventional methods for GXM isolation have been extensively discussed in the literature. In this chapter, we describe two fast methods for obtaining extracellular fractions enriched with cryptococcal GXM.


Assuntos
Cryptococcus , Polissacarídeos , Polissacarídeos/química , Antígenos de Fungos/imunologia , Cryptococcus neoformans , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/química , Humanos
19.
Food Res Int ; 183: 114175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760120

RESUMO

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Assuntos
Furaldeído , Lactose , Reação de Maillard , Leite , Polissacarídeos , Pós , Lactose/química , Polissacarídeos/química , Leite/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Furaldeído/análogos & derivados , Furaldeído/química , beta-Galactosidase/metabolismo , beta-Ciclodextrinas/química , Hidrólise , Secagem por Atomização , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidade , Espectrometria de Fluorescência , Proteínas do Leite/química , Manipulação de Alimentos/métodos
20.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731484

RESUMO

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Assuntos
Antioxidantes , Emulsificantes , Emulsões , Ácido Glicirrízico , Simulação de Acoplamento Molecular , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Emulsões/química , Emulsificantes/química , Emulsificantes/farmacologia , Ratos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Química Verde , Humanos , Ratos Sprague-Dawley , Nanopartículas/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Fabaceae/química , Masculino , Tamanho da Partícula , Movimento Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...