RESUMO
BACKGROUND: Autism Spectrum Disorder (ASD) is a lifelong neurodevelopmental condition affecting communication, social interaction, and behavior. Evidence suggests that environmental pollutants are associated with ASD incidence. This review aimed to analyze the effect of environmental pollutants on ASD. METHODS: Systematic review and meta-analysis of cohort studies evaluated the association between exposure to environmental pollutants and ASD. We searched COCHRANE CENTRAL, MEDLINE, CINAHL, LILACS, EMBASE, PsycINFO, Web of Science, SciELO, and gray literature from inception to January 2023. The model used for meta-analysis was inverse variance heterogeneity (IVhet). The effect measures were the beta coefficient (ß) and the relative risk (RR) with their 95% confidence intervals (95% CI). Sensitivity analyses were carried out using an instrument to screen or diagnose autism. RESULTS: A total of 5,780 studies were identified; 27 were included in the systematic review, and 22 were included in the meta-analysis. These studies included 1,289,183 participants and 129 environmental pollutants. Individual meta-analyses found a significant association between nitrogen dioxide RR = 1.20 (95% CI: 1.03 to 1.38; I2: 91%), copper RR = 1.08 (95% CI: 1.03 to 1.13; I2: 0%), mono-3-carboxy propyl phthalate ß = 0.45 (95% CI: 0.20 to 0.70; I2: 0%), monobutyl phthalate ß = 0.43 (95% CI: 0.13 to 0.73; I2: 0%) and polychlorinated biphenyl (PCB) 138 RR = 1.84 (95% CI: 1.14 to 2.96; I2:0%) with ASD. Subgroup meta-analyses found a significant association with carbon monoxide RR = 1.57 (95% CI: 1.25 to 1.97; I2: 0%), nitrogen oxides RR = 1.09 (95% CI: 1.04 to 1.15; I2: 34%) and metals RR = 1.13 (95% CI: 1.01 to 1.27; I2:24%). CONCLUSION: This study found positive associations nitrogen dioxide, copper, mono-3-carboxypropyl phthalate, monobutyl phthalate, and PCB 138, and the development of ASD, likewise, with subgroups of pollutants carbon monoxide, nitrogen oxides, and metals. Therefore, it is important to identify these risk factors in children and adolescents to contribute to ASD and identify prevention strategies effectively.
Assuntos
Transtorno do Espectro Autista , Poluentes Ambientais , Humanos , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/induzido quimicamente , Poluentes Ambientais/efeitos adversos , Poluentes Ambientais/toxicidade , Fatores de Risco , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Criança , FemininoRESUMO
Environmental pollutants, including polychlorinated biphenyls (PCBs), act as endocrine disruptors and impair various physiological processes. PCB 126 is associated with steatohepatitis, fibrosis, cirrhosis, and other hepatic injuries. These disorders can be regulated by microRNAs (miRNAs). Therefore, this study aimed to investigate the role of miRNAs in non-alcoholic fatty liver disease associated with exposure to PCB 126. Adult male C57BL/6 mice were exposed to PCB 126 (5 µmol/kg of body weight) for 10 weeks. The PCB group showed lipid accumulation in the liver in the presence of macro- and microvesicular steatosis and fibrosis with increased inflammatory and profibrotic gene expression, consistent with non-alcoholic steatohepatitis (NASH). PCB exposure also upregulated miR-155 and miR-34a, which induce the expression of proinflammatory cytokines and inflammation in the liver and reduce the expression of peroxisome proliferator-activated receptor α, which, in turn, impairs lipid oxidation and hepatic steatosis. Therefore, the present study showed that PCB 126 induced NASH via potential mechanisms involving miR-155 and miR-34a, which may contribute to the development of new diagnostic markers and therapeutic strategies.
Assuntos
Cirrose Hepática , Camundongos Endogâmicos C57BL , MicroRNAs , Bifenilos Policlorados , Regulação para Cima , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Bifenilos Policlorados/toxicidade , Masculino , Camundongos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Regulação para Cima/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Poluentes Ambientais/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genéticaRESUMO
Atrazine is one of the most used herbicides in the world, although it is banned in several countries. Pollution of terrestrial and aquatic ecosystems represents a threat to non-target organisms, with various damages already reported in different species. However, there is controversy in studies on atrazine. The question of whether atrazine increases animal mortality is not yet clearly resolved. In this context, this study aimed to carry out a meta-analytic review, focusing on studies on environmental concentrations of the herbicide atrazine to evaluate its lethal effects on various animal species. We identified and analyzed 107 datasets through a selection process that used the Scopus, PubMed, and Web of Science (WoS) databases. A significant increase in the mortality rate of animals exposed to environmental concentrations of atrazine was observed. Nematodes, amphibians, molluscs, insects, and fish showed increased mortality after exposure to atrazine. Animals in the larval and juvenile stages showed greater susceptibility when exposed to different concentrations of atrazine. Furthermore, both commercial and pure formulations resulted in high mortality rates for exposed animals. Atrazine and other pesticides had a synergistic effect, increasing the risk of mortality in animals. There are still many gaps to be filled, and this study can serve as a basis for future regulations involving atrazine.
Assuntos
Atrazina , Herbicidas , Atrazina/toxicidade , Animais , Herbicidas/toxicidade , Mortalidade , Poluentes Ambientais/toxicidadeRESUMO
Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined as morphofunctional changes in the liver. Studies have shown that Westernized eating patterns and environmental pollutants can directly induce the development of MASLD. This study evaluates the effect of co-exposure to interesterified palm oil (IPO) and 3,3',4,4',5-pentachlorobiphenyl (PCB-126) on the progression of MASLD in an animal model. C57BL/6 mice were fed IPO and co-exposed to PCB-126 for ten weeks. The co-exposure led to an imbalance in carbohydrate metabolism, increased systemic inflammation markers, and morphofunctional changes in the liver. These liver changes included the presence of inflammatory cells, fibrosis, alterations in aspartate transaminase (AST) and alanine transaminase (ALT) enzymes, and imbalance in gene expression related to fatty acid ß-oxidation, de novo lipogenesis, mitochondrial dynamics, and endoplasmic reticulum stress. Separate exposures to IPO and PCB-126 affected metabolism and MASLD progression. Nutritional and lifestyle factors may potentiate the onset and severity of MASLD.
Assuntos
Fígado , Camundongos Endogâmicos C57BL , Óleo de Palmeira , Bifenilos Policlorados , Animais , Bifenilos Policlorados/toxicidade , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Poluentes Ambientais/toxicidadeRESUMO
Rodents are considered good models for investigating genotoxic damage and mutagenic alterations caused by xenobiotic agents, due to their occupation of a wide variety of habitats. However, relatively few in situ studies have focused on DNA damage in wild rodents associated with environmental exposure. In this review, we investigate trends in the application of the micronucleus test and comet assay in in situ studies of wild rodents. A total of 33 papers were identified, distributed across 14 different countries. Brazil and Spain had the most published studies (six each), followed by Bulgaria (n = 5), Mexico (n = 4) and Italy (n = 3). Only 24 of the 2,652 recognized rodent species have been the subject of in situ studies, which have most frequently focus on species of the genus Mus. The protocols used for the micronucleus test and comet assay varied widely, although blood and bone marrow were the primary types of tissue used. Given the paucity of studies on wild rodents, we recommend further research, particularly focusing on the use of this group as bioindicators of environmental quality and the standardization of protocols.
Assuntos
Ensaio Cometa , Dano ao DNA , Monitoramento Ambiental , Testes para Micronúcleos , Roedores , Ensaio Cometa/métodos , Testes para Micronúcleos/métodos , Animais , Monitoramento Ambiental/métodos , Animais Selvagens , Poluentes Ambientais/toxicidadeRESUMO
Early life phthalates exposure has been associated with adverse respiratory outcomes. However, evidence linking prenatal phthalates exposure and childhood lung function has been inconclusive. Additionally, few studies have examined phthalates exposure as a mixture and explored sexually dimorphic associations. We aimed to investigate sex-specific associations of prenatal phthalates mixtures with childhood lung function using the PROGRESS cohort in Mexico (N = 476). Prenatal phthalate concentrations were measured in maternal urine collected during the 2nd and 3rd trimesters. Children's lung function was evaluated at ages 8-13 years. Individual associations were assessed using multivariable linear regression, and mixture associations were modeled using repeated holdout WQS regression and hierarchical BKMR; data was stratified by sex to explore sex-specific associations. We identified significant interactions between 2nd trimester phthalates mixture and sex on FEV1 and FVC z-scores. Higher 2nd trimester phthalate concentrations were associated with higher FEV1 (ß = 0.054, 95 %CI: 0.005, 0.104) and FVC z-scores (ß = 0.074, 95 % CI: 0.024, 0.124) in females and with lower measures in males (FEV1, ß = -0.017, 95 %CI: -0.066, 0.026; FVC, ß = -0.014, 95 %CI: -0.065, 0.030). This study indicates that prenatal exposure to phthalates is related to childhood lung function in a sex-specific manner.
Assuntos
Pulmão , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ácidos Ftálicos/urina , Ácidos Ftálicos/toxicidade , Feminino , Criança , México , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Adolescente , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Exposição Materna/efeitos adversos , Poluentes Ambientais/urina , Poluentes Ambientais/toxicidade , Testes de Função RespiratóriaRESUMO
The long-term effects of environmental pollution have been of concern as several pollutants are carcinogenic, potentially inducing a variety of cancers, including childhood cancer, which is a leading cause of death around the world and, thus, is a public health issue. The present scoping review aimed to update and summarize the available literature to detect specific environmental pollutants and their association with certain types of childhood cancer. Studies published from 2013 to 2023 regarding environmental pollution and childhood cancer were retrieved from the PubMed database. A total of 174 studies were eligible for this review and were analyzed. Our search strategy brought up most of the articles that evaluated air pollution (29%) and pesticides (28%). Indoor exposure to chemicals (11%), alcohol and tobacco use during pregnancy (16%), electromagnetic fields (12%), and radon (4%) were the subjects of less research. We found a particularly high percentage of positive associations between prenatal and postnatal exposure to indoor (84%) and outdoor (79%) air pollution, as well as to pesticides (82%), and childhood cancer. Positive associations were found between leukemia and pesticides and air pollution (33% and 27%); CNS tumors and neuroblastoma and pesticides (53% and 43%); and Wilms tumor and other rare cancers were found in association with air pollution (50%). Indoor air pollution was mostly reported in studies assessing several types of cancer (26%). Further studies are needed to investigate the mechanisms underlying the potential associations between indoor/outdoor air pollution and pesticide exposure with childhood cancer risk as more preventable measures could be taken.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Ambientais , Neoplasias , Praguicidas , Gravidez , Feminino , Humanos , Criança , Neoplasias/epidemiologia , Neoplasias/etiologia , Poluentes Atmosféricos/análise , Poluição Ambiental , Poluição do Ar/análise , Poluentes Ambientais/toxicidade , Praguicidas/toxicidade , Exposição Ambiental/efeitos adversosRESUMO
A growing body of literature reports the need for an integrated approach to study the effects of the physical environment on the neurodevelopment of children. Assessment of the true neurotoxicity of pollutants cannot be performed separately from the ecological and multidimensional contexts in which they act. In this study, from the perspective of the Bronfenbrenner's bioecological model, a conceptual model was developed that encompasses the social and biological characteristics of children from the gestational period to childhood, considering exposure to toxic metals. First, we present the toxicity of the main metals and some concept notions that we used in our framework, such as social and structural determinants of health, allostatic load, embodiment, and epigenetic concepts. Then, the main aspects of the Bronfenbrenner's bioecological model, which allow integration of the gene-social relationship in addition to the physical environment, where these metals act, are explained. Finally, we present and discuss the conceptual framework showing how, in real life, biological and social factors may together influence the neurodevelopment of children. Although this model is based on a group of contaminants, it opens new horizons on how environmental sciences, such as neurotoxicology and environmental epidemiology, can articulate with the theoretical models from human sciences to provide a broader approach to study the effects on human neurodevelopment.
Assuntos
Meio Ambiente , Poluentes Ambientais , Criança , Humanos , Brasil , Poluentes Ambientais/toxicidade , Relações InterpessoaisRESUMO
Polycyclic aromatic hydrocarbons (PAHs) and toxic metals are widely spread pollutants of public health concern. The co-contamination of these chemicals in the environment is frequent, but relatively little is known about their combined toxicities. In this context, this study aimed to evaluate the influence of the co-exposure to PAHs and toxic metals on DNA damage in Brazilian lactating women and their infants using machine learning approaches. Data were collected from an observational, cross-sectional study with 96 lactating women and 96 infants living in two cities. The exposure to these pollutants was estimated by determining urinary levels of seven mono-hydroxylated PAH metabolites and the free form of three toxic metals. 8-Hydroxydeoxyguanosine (8-OHdG) levels in the urine were used as the oxidative stress biomarker and set as the outcome. Individual sociodemographic factors were also collected using questionnaires. Sixteen machine learning algorithms were trained using 10-fold cross-validation to investigate the associations of urinary OH-PAHs and metals with 8-OHdG levels. This approach was also compared with models attained by multiple linear regression. The results showed that the urinary concentration of OH-PAHs was highly correlated between the mothers and their infants. Multiple linear regression did not show a statistically significant association between the contaminants and urinary 8OHdG levels. Machine learning models indicated that all investigated variables did not present predictive performance on 8-OHdG concentrations. In conclusion, PAHs and toxic metals were not associated with 8-OHdG levels in Brazilian lactating women and their infants. These novelty and originality results were achieved even after applying sophisticated statistical models to capture non-linear relationships. However, these findings should be interpreted cautiously because the exposure to the studied contaminants was considerably low, which may not reflect other populations at risk.
Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Feminino , Lactente , Hidrocarbonetos Policíclicos Aromáticos/análise , Estudos Transversais , Brasil , Lactação , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina , 8-Hidroxi-2'-Desoxiguanosina/urina , Dano ao DNA , Biomarcadores/metabolismo , Estresse OxidativoRESUMO
Due to environmental contamination, the environment constantly receives pollutants from various anthropic actions. These pollutants put ecological health at risk due to contamination and accumulation in living organisms, including wild animals and humans. Exposure can cause physiological, morphological, and behavioral changes in living beings. In this context, laboratory studies have frequently investigated how environmental contaminants affect the male reproductive system and gametes. However, few studies have examined how these contaminants affect male reproduction in naturally exposed animals. To better understand this topic, we conducted a systematic review of the effects of exposing male vertebrate animals to polluted environments on their reproductive functions. After an extensive search using the PubMed/MEDLINE, Scopus, and Web of Science databases, 39 studies met our inclusion criteria and were eligible for this review. This study showed that reproductive damages were frequent in fishes, amphibians, reptiles, birds, and mammals exposed to contaminated environments. Wild animals are exposed mainly to endocrine-disrupting compounds (EDCs), toxic metals, and radiation. Exposure to pollutants causes a reduction in androgen levels, impaired spermatogenesis, morphological damage to reproductive organs, and decreased sperm quality, leading to reduced fertility and population decline. Although several species have been studied, the number of studies is limited for some groups of vertebrates. Wildlife has proven valuable to our understanding of the potential effects of environmental contaminants on human and ecosystem health. Thus, some recommendations for future investigations are provided. This review also creates a baseline for the understanding state of the art in reproductive toxicology studies.
Assuntos
Ecossistema , Poluentes Ambientais , Animais , Masculino , Humanos , Sêmen , Vertebrados , Animais Selvagens , Poluentes Ambientais/toxicidade , Poluição Ambiental , Mamíferos , Genitália Masculina , ReproduçãoRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Corpo Humano , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , CarcinógenosRESUMO
This review covers key information related to the effects of pesticides on fetal and child health. All humans are exposed to environmental toxicants, however child's health, due to their high vulnerability, should be of special concern. They are continuously exposed to environmental xenobiotics including a wide variety of pesticides, and other pollutants. These compounds can enter the child's body through various routes, both during fetal life, in the first days of life with breast milk, as well as during environmental exposure in later years of life. Consequently, in the body, some of them are metabolized and excreted with urine or faces, while others accumulate in tissues causing toxic effects. This review will provide information on the types of pesticides, their pathways of uptake and metabolism in children's bodies. Determination of the impact of them on children's organism performance is possible through effective identification of these compounds and their metabolites in children's tissues and biofluids. Therefore, the main procedures for the determination of pesticides are reviewed and future trends in this field are indicated. We believe that this comprehensive review can be a good starting place for the future readers interested in the impact of environmental xenobiotics on the health of children as well as the aspects relates with the analytical methods that can be used for analysis and monitoring of these pollutants in children's tissues and biofluids.
Assuntos
Poluentes Ambientais , Praguicidas , Criança , Recém-Nascido , Feminino , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Xenobióticos/toxicidade , Exposição Ambiental/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Leite Humano/químicaRESUMO
In recent years, the background level of environmental pollutants, including metals, has increased. Pollutant exposure during the earliest stages of life may determine chronic disease susceptibility in adulthood because of genetic or epigenetic changes. The objective of this review was to identify the association between prenatal and early postnatal exposure to potentially toxic metals (PTMs) and their adverse effects on the genetic material of offspring. A systematic review was carried out following the Cochrane methodology in four databases: PubMed, Scopus, Web of Science, and the Cochrane Library. Eligible papers were those conducted in humans and published in English between 2010/01/01 and 2021/04/30. A total of 57 articles were included, most of which evaluated prenatal exposure. Most commonly evaluated PTMs were As, Cd, and Pb. Main adverse effects on the genetic material of newborns associated with PTM prenatal exposure were alterations in telomere length, gene or protein expression, mitochondrial DNA content, metabolomics, DNA damage, and epigenetic modifications. Many of these effects were sex-specific, being predominant in boys. One article reported a synergistic interaction between As and Hg, and two articles observed antagonistic interactions between PTMs and essential metals, such as Cu, Se, and Zn. The findings in this review highlight that the problem of PTM exposure persists, affecting the most susceptible populations, such as newborns. Some of these associations were observed at low concentrations of PTMs. Most of the studies have focused on single exposures; however, three interactions between essential and nonessential metals were observed, highlighting that metal mixtures need more attention.
Assuntos
Poluentes Ambientais , Mercúrio , Metais Pesados , Efeitos Tardios da Exposição Pré-Natal , Masculino , Gravidez , Feminino , Recém-Nascido , Humanos , Efeitos Tardios da Exposição Pré-Natal/genética , Metais/toxicidade , Intoxicação por Metais Pesados , Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Metais Pesados/metabolismoRESUMO
Environmental pollution is a global threat and represents a strong risk factor for human health. It is estimated that pollution causes about 9 million premature deaths every year. Pollutants that can cross the blood-brain barrier and reach the central nervous system are of special concern, because of their potential to cause neurological and development disorders. Arsenic, lead and mercury are usually ranked as the top three in priority lists of regulatory agencies. Against xenobiotics, astrocytes are recognised as the first line of defence in the CNS, being involved in virtually all brain functions, contributing to homeostasis maintenance. Here, we discuss the current knowledge on the astroglial involvement in the neurotoxicity induced by these pollutants. Beginning by the main toxicokinetic characteristics, this review also highlights the several astrocytic mechanisms affected by these pollutants, involving redox system, neurotransmitter and glucose metabolism, and cytokine production/release, among others. Understanding how these alterations lead to neurological disturbances (including impaired memory, deficits in executive functions, and motor and visual disfunctions), by revisiting the current knowledge is essential for future research and development of therapies and prevention strategies.
Assuntos
Arsênio , Poluentes Ambientais , Mercúrio , Síndromes Neurotóxicas , Humanos , Arsênio/toxicidade , Astrócitos/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Mercúrio/toxicidade , Síndromes Neurotóxicas/metabolismoRESUMO
The continuous release of toxic chemicals and pollutants into the atmosphere and natural waters threatens, directly and indirectly, human health, the sustainability of the planet, and the future of society. Materials capable of capturing or chemically inactivating hazardous substances, which are harmful to humans and the environment, are critical in the modern age. Metal-organic cages (MOCs) show great promise as materials against harmful agents both in solution and in solid state. This Highlight features examples of MOCs that selectively encapsulate, adsorb, or remove from a medium noxious gases, toxic organophosphorus compounds, water pollutant oxoanions, and some emerging organic contaminants. Remarkably, the toxicity of interacting contaminants may be lowered by MOCs as well. Specific cases pertaining to the use of these cages for the chemical degradation of some harmful substances are presented. This Highlight thus aims to provide an overview of the possibilities of MOCs in this area and new methodological insights into their operation for enhancing their activity and the engineering of further remediation applications.
Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Gerenciamento de Resíduos , Poluentes Químicos da Água , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Gases , Humanos , Metais , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidadeRESUMO
BACKGROUND: Phthalates are endocrine disrupting chemicals that may influence weight status; however, few studies have considered weight gain during pregnancy and subsequent long-term weight changes in women. OBJECTIVE: To determine associations of prenatal phthalate exposure with maternal weight during pregnancy and through up to seven years post-delivery. METHODS: We analyzed 15 urinary phthalate biomarker concentrations during the 2nd and 3rd trimesters among 874 pregnant women enrolled in the Programming Research in Obesity, Growth Environment and Social Stress Study in Mexico City. We examined three time-specific maternal weight outcomes: gestational weight gain (between 2nd and 3rd trimesters), short-term weight (between 3rd trimester and 12 months post-delivery), and long-term weight (between 18 months and 6-7 years post-delivery). We used Bayesian Kernel Machine Regression (BKMR) to estimate associations for the total phthalate mixture, as well as multivariable linear mixed models for individual phthalate biomarkers. RESULTS: As a mixture, 2nd trimester urinary phthalate biomarker concentrations were associated with somewhat lower gestational weight gain between the 2nd and 3rd trimesters (interquartile range, IQR, difference: -0.07 standard deviations, SD; 95% credible interval, CrI: -0.20, 0.06); multivariable regression and BKMR models indicated that this inverse association was primarily driven by mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP). Prenatal (2nd and 3rd trimesters) urinary phthalate mixture concentrations were positively associated with maternal weight change through 12 months postpartum (IQR difference: 0.11 SD; 95% CrI: 0.00, 0.23); these associations persisted from 18 months to 6-7 years follow-up (IQR difference: 0.07 SD; 95% CrI: 0.04, 0.10). Postpartum weight changes were associated with mono-3-carboxypropyl phthalate (MCPP) and MECPTP. CONCLUSIONS: Prenatal phthalate exposure was inversely associated with gestational weight gain and positively associated with long-term changes in maternal weight. Further investigation is required to understand how phthalates may influence body composition and whether they contribute to the development of obesity and other cardiometabolic diseases in women.
Assuntos
Poluentes Ambientais , Ganho de Peso na Gestação , Ácidos Ftálicos , Teorema de Bayes , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Feminino , Humanos , México , Ácidos Ftálicos/toxicidade , GravidezRESUMO
The ubiquitous occurrence, toxicological influence, and bioaccumulation of toxic entities, e.g., pesticides and toxic elements in the environment, biota, and humans, directly or indirectly, are posing severe social, ecological, and human health concerns. Much attention has been given to the rising bioaccumulation of toxins and their adverse impact on various environmental matrices. For example, the inappropriate and exacerbated use of xenobiotics and related hazardous substances have caused the deterioration of the agricultural environment, e.g., fertile soils where plants are grown. Moreover, the harmful toxins have negatively impacted human health through the trophic chains. However, the analytical and regulatory considerations to effectively monitor and mitigate any or many pesticides and toxic elements from environmental matrices are still lacking in the existing literature. For decades, the scientific community has overseen the consequences caused by pollutants, however, the improvement of analytical detection methods and regulatory considerations are not yet fully covered. This review covers the notable literature gap by stressing the development and deployment of robust analytical and regulatory considerations for an efficient abatement of hazardous substances. Following detailed information on occurrence, toxicological influence, and bioaccumulation of pesticides and toxic elements, the most relevant analytical detection tools and regulatory measures are given herein, with suitable examples, to mitigate or reduce the damage caused by these pollutants.
Assuntos
Poluentes Ambientais , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Humanos , Praguicidas/toxicidade , Poluentes Químicos da Água/análiseRESUMO
Mercury (Hg) is one of the most toxic environmental pollutants, especially when methylated, forming methylmercury (MeHg). MeHg affects DNA repair, increases oxidative stress, and predisposes to cancer. MeHg neurotoxicity is well-known, but recently MeHg-associated cardiovascular effects were recognized. This study evaluated circulating lipids, oxidative stress, and genotoxicity after MeHg-chronic exposure (20 mg/L in drinking water) in C57BL/6J wild-type and APOE knockout (ko) mice, the latter, being spontaneously dyslipidemic. Experimental mice were assigned to four groups: non-intoxicated and MeHg-intoxicated wild-type mice and non-intoxicated and MeHg-intoxicated APOE ko mice. Plasma levels of triglycerides, total cholesterol (TC), HDL, and LDL were analyzed. Liver lipid peroxidation and splenic gene expression of xeroderma pigmentosum complementation groups A, C, D, and G (XPA, XPC, XPD, and XPG), X-ray repair cross-complementing protein 1 (XRCC1), and telomerase reverse transcriptase (TERT) were measured. Fur Hg levels confirmed chronic MeHg intoxication. MeHg exposure raises TC levels both in wild-type and APOE ko mice. HDL and LDL-cholesterol levels were increased only in the MeHg-challenged APOE ko mice. MeHg increased liver lipid peroxidation, regardless of the genetic background. Unintoxicated APOE ko mice showed higher expression of TERT than all other groups. APOE deficiency increases XPA expression, regardless of MeHg intoxication. Furthermore, MeHg-intoxicated mice had more cytogenetic abnormalities, effect which was independent of APOE deficiency. More studies are needed to dissect the interactions between circulating lipids, MeHg intoxication, and DNA-repair pathways even at young age, interactions that likely play critical roles in cell senescence and the risk for chronic disorders later in life.
Assuntos
Aberrações Cromossômicas/induzido quimicamente , Reparo do DNA/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Dislipidemias/metabolismo , Poluentes Ambientais/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoERESUMO
Human exposure to methylmercury (MeHg) is currently high in regions such as the Amazon. Understanding the molecular changes associated with MeHg-induced neurotoxicity and the crosstalk with the periphery is essential to support early diagnoses. This work aimed to evaluate cellular and molecular changes associated with behavioral alterations in MeHg acute exposure and the possible changes in extracellular vesicles (EVs) number and S100ß content. Adults male Wistar rats were orally treated with 5 mg/kg for four days. Behavioral performance, molecular and histological changes in the cerebellum, and plasma EVs were assessed. MeHg-intoxicated animals performed significantly worse in behavioral tests. MeHg increased the number of GFAP+ cells and GFAP and S100ß mRNA expression in the cerebellum but no change in NeuN+ or IBA-1+ cells number was detected. The number of exosomes isolated from plasma were decreased by the metal. S100B mRNA was detected in circulating plasma EVs cargo in MeHg exposure. Though preliminary, our results suggest astrocytic reactivity is displaying a protective role once there was no neuronal death. Interestingly, the reduction in exosomes number could be a new mechanism associated with MeHg-induced neurotoxicity and plasma EVs could represent a source of future biomarkers in MeHg intoxication.
Assuntos
Encéfalo/patologia , Cerebelo/patologia , Poluentes Ambientais/toxicidade , Vesículas Extracelulares/patologia , Compostos de Metilmercúrio/toxicidade , Síndromes Neurotóxicas/patologia , Animais , Encéfalo/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Masculino , Síndromes Neurotóxicas/etiologia , Ratos , Ratos WistarRESUMO
Phthalates metabolites have been detected in the urine of pregnant and breastfeeding women. Thus, this study evaluated the adverse effects of maternal exposure to a mixture of six phthalates (Pth mix) on the mammary gland development and carcinogenesis in F1 female offspring. Pregnant female Sprague-Dawley rats were exposed daily to vehicle or Pth mix (35.22% diethyl-phthalate, 21.03% di-(2-ethylhexyl)-phthalate, 14.91% dibutyl-phthalate, 15.10% diisononyl-phthalate, 8.61% diisobutyl-phthalate, and 5.13% benzylbutyl-phthalate) by gavage at 20 µg/kg, 200 µg/kg or 200 mg/kg during gestational day 10 (GD 10) to postnatal day 21 (PND 21). After weaning (PND 22), some female offspring were euthanized for mammary gland analyses while other females received a single dose of N-methyl-N-nitrosourea (MNU, 50 mg/kg) or vehicle and then tumor incidence and multiplicity were recorded until PND 180. Maternal Pth mix exposure increased the number of Ki-67 and progesterone receptor-positive epithelial cells in the mammary gland from Pth mix 200 at µg/kg and 200 mg/kg groups. In addition, tumor incidence and mean number were higher only in Pth mix at 200 mg/kg when compared to the vehicle-treated group, and percentage of tumor-free animals was lower in Pth mix at 200 µg/kg and 200 mg/kg groups. The findings indicate that perinatal Pth mixture exposure increased susceptibility to MNU-induced mammary carcinogenesis in adult F1 female offspring.