Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 13(1): 1-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26267301

RESUMO

Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a » in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this study can substantially reduce fume, Cr(6+), manganese and costs relative to SMAW, the most commonly used welding process, and several have exceptional capabilities for reducing emissions.


Assuntos
Poluentes Ocupacionais do Ar/análise , Cromo/análise , Exposição Ocupacional/análise , Aço Inoxidável , Soldagem/métodos , Local de Trabalho , Poluentes Ocupacionais do Ar/economia , Gases/análise , Metais/análise , Exposição Ocupacional/prevenção & controle , Soldagem/economia
2.
Ann Occup Hyg ; 58(4): 403-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24515891

RESUMO

To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides information to aid in those choices. Suggestions for overcoming barriers to utilizing new and less hazardous welding processes are also discussed.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/economia , Exposição Ocupacional/análise , Soldagem/economia , Local de Trabalho , Monitoramento Ambiental/estatística & dados numéricos , Gases/química , Humanos , Metais/análise , Tamanho da Partícula , Aço/análise , Soldagem/métodos
3.
Ann Occup Hyg ; 58(4): 413-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24515892

RESUMO

Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments.


Assuntos
Poluentes Ocupacionais do Ar/análise , Microfluídica/métodos , Exposição Ocupacional/análise , Soldagem , Poluentes Ocupacionais do Ar/economia , Cromo/análise , Monitoramento Ambiental/instrumentação , Humanos , Microfluídica/economia , Níquel/análise , Material Particulado/análise , Medição de Risco , Aço Inoxidável/química
4.
J Air Waste Manag Assoc ; 60(5): 523-31, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20480851

RESUMO

Generators installed for backup power during blackouts could help satisfy peak electricity demand; however, many are diesel generators with nonnegligible air emissions that may damage air quality and human health. The full (private and social) cost of using diesel generators with and without emission control retrofits for fine particulate matter (PM2.5) and nitrogen oxides (NOx) were compared with a new natural gas turbine peaking plant. Lower private costs were found for the backup generators because the capital costs are mostly ascribed to reliability. To estimate the social costs from air quality, the changes in ambient concentrations of ozone (O3) and PM2.5 were modeled using the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) chemical transport model. These air quality changes were translated to their equivalent human health effects using concentration-response functions and then into dollars using estimates of "willingness-to-pay" to avoid ill health. As a case study, 1000 MW of backup generation operating for 12 hr/day for 6 days in each of four eastern U.S. cities (Atlanta, Chicago, Dallas, and New York) was modeled. In all cities, modeled PM2.5 concentrations increased (up to 5 microg/m3) due mainly to primary emissions. Smaller increases and decreases were observed for secondary PM2.5 with more variation between cities. Increases in NOx, emissions resulted in significant nitrate formation (up to 1 microg/m3) in Atlanta and Chicago. The NOx emissions also caused O3 decreases in the urban centers and increases in the surrounding areas. For PM2.5, a social cost of approximately $2/kWh was calculated for uncontrolled diesel generators in highly populated cities but was under 10 cent/kWh with PM2.5 and NOx controls. On a full cost basis, it was found that properly controlled diesel generators are cost-effective for meeting peak electricity demand. The authors recommend NOx and PM2.5 controls.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/economia , Centrais Elétricas , Poluentes Ocupacionais do Ar/análise , Determinação de Ponto Final , Monitoramento Ambiental , Gasolina , Humanos , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/economia , Saúde Pública
5.
Am J Public Health ; 92(9): 1430-40, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12197969

RESUMO

Indoor nonindustrial work environments were designated a priority research area through the nationwide stakeholder process that created the National Occupational Research Agenda. A multidisciplinary research team used member consensus and quantitative estimates, with extensive external review, to develop a specific research agenda. The team outlined the following priority research topics: building-influenced communicable respiratory infections, building-related asthma/allergic diseases, and nonspecific building-related symptoms; indoor environmental science; and methods for increasing implementation of healthful building practices. Available data suggest that improving building environments may result in health benefits for more than 15 million of the 89 million US indoor workers, with estimated economic benefits of $5 to $75 billion annually. Research on these topics, requiring new collaborations and resources, offers enormous potential health and economic returns.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Prioridades em Saúde , Pesquisa sobre Serviços de Saúde , Doenças Profissionais/economia , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Poluentes Ocupacionais do Ar/economia , Poluição do Ar em Ambientes Fechados/economia , Efeitos Psicossociais da Doença , Eficiência , Custos de Saúde para o Empregador , Humanos , Exposição por Inalação/efeitos adversos , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/economia , Saúde Ocupacional , Transtornos Respiratórios/economia , Transtornos Respiratórios/etiologia , Estados Unidos , Local de Trabalho
6.
ScientificWorldJournal ; 1 Suppl 2: 958-67, 2001 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12805893

RESUMO

Emission trading is a new instrument in environmental policy. It is an alien notion in most European countries and it is often viewed with hesitation. The paper discusses the economic, legal, and perhaps more importantly, the cultural aspects to consider when one tries to explore the prospects for trading emissions of NOx and other substances in Europe. Issues to be addressed are the present legal framework in Europe in relation to the national emission ceilings on NOx and other substances on the basis of relevant EU directives and UNECE protocols. The paper will discuss the extent to which the legal framework within the EU imposes constraints on the design of a national emission trading scheme, and what options are available to fit emission trading into that legislative structure. The NOx emission trading programme developed in the Netherlands will be used to demonstrate the various aspects in a European context.


Assuntos
Poluentes Ocupacionais do Ar/economia , Comércio/economia , Comércio/legislação & jurisprudência , Cultura , Óxidos de Nitrogênio/economia , Óxidos de Nitrogênio/metabolismo , Poluição do Ar/legislação & jurisprudência , Poluição do Ar/prevenção & controle , União Europeia/economia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA