Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 123(5): 694-706, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31142814

RESUMO

Tristyly is a genetic polymorphism in which populations are comprised of three floral morphs (mating types) differing reciprocally in sex-organ height. Intermorph (disassortative) mating governed by a trimorphic incompatibility system should result in 1:1:1 morph ratios at equilibrium, but both deterministic and stochastic processes can cause skewed morph ratios in tristylous populations. Here, we investigate mechanisms causing morph-ratio bias in Pontederia parviflora, an emergent aquatic native to tropical America. We compared reproductive traits among morphs and surveyed 71 populations to determine patterns of morph-ratio bias. We then used simulation models of morph-frequency dynamics to test the hypothesis that morph-specific differences in pollen production and their influence on male fertility can explain patterns of morph-ratio bias. Ninety-seven percent of populations that we sampled were tristylous, but with a significant excess of the short-styled morph and a deficiency of the long-styled morph. Atypically for a tristylous species, mid-level anthers of the short-styled morph produced over twice as much pollen compared with the corresponding anthers of the long-styled morph. Our computer models incorporating this difference in male fertility resulted in morph ratios not significantly different from the average frequencies from our survey suggesting that the short-styled morph is more successful than the long-styled morph in siring ovules of the mid-styled morph. We propose that the difference in male fertility between morphs may be a non-adaptive consequence of a developmental constraint caused by the architecture of tristyly in Pontederiaceae.


Assuntos
Pólen/genética , Polimorfismo Genético , Pontederiaceae/genética , Fertilidade , Pontederiaceae/crescimento & desenvolvimento
2.
Mol Biol Evol ; 28(11): 3009-18, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21633114

RESUMO

Most plant phylogenetic inference has used DNA sequence data from the plastid genome. This genome represents a single genealogical sample with no recombination among genes, potentially limiting the resolution of evolutionary relationships in some contexts. In contrast, nuclear DNA is inherently more difficult to employ for phylogeny reconstruction because major mutational events in the genome, including polyploidization, gene duplication, and gene extinction can result in homologous gene copies that are difficult to identify as orthologs or paralogs. Gene tree parsimony (GTP) can be used to infer the rooted species tree by fitting gene genealogies to species trees while simultaneously minimizing the estimated number of duplications needed to reconcile conflicts among them. Here, we use GTP for five nuclear gene families and a previously published plastid data set to reconstruct the phylogenetic backbone of the aquatic plant family Pontederiaceae. Plastid-based phylogenetic studies strongly supported extensive paraphyly of Eichhornia (one of the four major genera) but also depicted considerable ambiguity concerning the true root placement for the family. Our results indicate that species trees inferred from the nuclear genes (alone and in combination with the plastid data) are highly congruent with gene trees inferred from plastid data alone. Consideration of optimal and suboptimal gene tree reconciliations place the root of the family at (or near) a branch leading to the rare and locally restricted E. meyeri. We also explore methods to incorporate uncertainty in individual gene trees during reconciliation by considering their individual bootstrap profiles and relate inferred excesses of gene duplication events on individual branches to whole-genome duplication events inferred for the same branches. Our study improves understanding of the phylogenetic history of Pontederiaceae and also demonstrates the utility of GTP for phylogenetic analysis.


Assuntos
Duplicação Gênica/genética , Genoma de Planta/genética , Filogenia , Pontederiaceae/genética , Sequência de Bases , Núcleo Celular/genética , Classificação/métodos , Primers do DNA/genética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica/genética , Análise de Sequência de DNA
3.
J Hered ; 99(5): 558-63, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18499647

RESUMO

Pickerelweed (Pontederia cordata L.) is a diploid (2n = 2x = 16) tristylous aquatic perennial. Populations usually contain 3 floral morphs that differ reciprocally in style length and anther height (referred to as the long-, mid-, and short-styled morphs, hereafter L-, M-, and S-morphs). The floral polymorphism promotes disassortative mating among the 3 floral morphs and is maintained in populations by negative frequency-dependent selection. The objective of this study was to determine the number of loci, number of alleles, and gene action controlling floral morph in pickerelweed. Three parental lines (one each of the L-, M-, and S-morph) were used to create S1 and F1 populations. F2 populations were produced through self-pollination of F1 plants. Progeny ratios of S1, F1, and F2 generations revealed that tristyly is controlled by 2 diallelic loci (S and M) with dominant gene action. The S locus is epistatic to the M locus, with the S-morph produced by plants with the dominant S allele (genotype S _ _ _). Plants with recessive alleles at the S locus were either L-morph (ssmm) or M-morph (ssM_). The results of this experiment demonstrate that the inheritance of tristyly in pickerelweed is the same as previously reported for several tristylous species in the Lythraceae and Oxalidaceae.


Assuntos
Flores/genética , Pontederiaceae/genética , Flores/anatomia & histologia , Genes de Plantas , Pontederiaceae/anatomia & histologia , Reprodução
4.
J Hered ; 98(6): 629-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17709555

RESUMO

Pickerelweed (Pontederia cordata L.) is a diploid (2n = 2x = 16), erect, emergent, herbaceous aquatic perennial. The showy inflorescences of pickerelweed make this species a prime candidate for inclusion in water gardens and aquascapes. The objective of this experiment was to determine the number of loci, number of alleles, and gene action controlling flower color (blue vs. white) in pickerelweed. Two blue-flowered and one white-flowered parental lines were used in this experiment to create S(1) and F(1) populations. F(2) populations were produced through self-pollination of F(1) plants. Evaluation of S(1), F(1), and F(2) generations revealed that flower color in these populations was controlled by 2 alleles at one locus with blue flower color completely dominant to white. We propose that this locus be named white flower with alleles W and w.


Assuntos
Flores/genética , Pontederiaceae/genética , Cor , Cruzamentos Genéticos , Diploide , Genótipo
5.
New Phytol ; 175(3): 588-595, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17635233

RESUMO

Although theoretical models predict low allocation to attractive structures with increased selfing in animal-pollinated plants, empirical measurement of the reproductive costs and benefits is complicated. Here, floral sex allocation was compared in two nectarless heterandrous species with different mating systems: Monochoria korsakowii (Pontederiaceae), which has moderate outcrossing rates, and Monochoria vaginalis, a predominant selfer. In both species, mirror-image flowers have one large dark-purple anther and five small yellow anthers. Experimental evidence is provided for functional differences between the two sets of anthers using data on pollinator visitation, pollen removal and deposition, and seed set after hand pollinations. Flower manipulations in bee-pollinated M. korsakowii demonstrated different functions of the two sets of anthers: the yellow (feeding) anthers function to attract pollinators, but have similar pollen performance to the purple (pollinating) anthers. Furthermore, a disproportional reduction in pollen production of the feeding anthers in the selfing species was found. This differential allocation between feeding and pollinating anthers in heterandrous species has not been recognized before. The finding of reduced allocation to attractive structures with an increase in the rate of self-fertilization supports the theory of sex allocation.


Assuntos
Pólen , Pontederiaceae/genética , Animais , Cruzamentos Genéticos , Flores , Fenótipo
6.
J Hered ; 98(4): 356-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17602179

RESUMO

Pickerelweed (Pontederia cordata L.) is a diploid (2n = 2x = 16) perennial aquaphyte. Preliminary studies revealed that a group of nonalbino pickerelweed plants maintained for breeding and inheritance studies regularly produced albino seedlings. The objective of this experiment was to determine the number of loci, number of alleles, and gene action controlling albinism in pickerelweed. Five nonalbino parental lines were used in this experiment to create S(1) and F(1) populations. F(2) populations were produced through self-pollination of F(1) plants. Evaluation of S(1), F(1), and F(2) generations allowed us to identify a single diallelic locus controlling albinism in these populations of pickerelweed, with albinism completely recessive to normal green leaf production. We propose that this locus be named albino with alleles A and a.


Assuntos
Regulação da Expressão Gênica , Pigmentação/genética , Pontederiaceae/genética , Cruzamentos Genéticos , Ligação Genética , Genótipo , Plantas Geneticamente Modificadas
7.
Genes Genet Syst ; 82(3): 207-15, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17660691

RESUMO

Some point mutations in acetolactate synthase (ALS) confer resistance to ALS-inhibiting herbicides in weeds. To clarify the evolution of the herbicide resistance of Monochoria vaginalis, a weed in rice fields in Japan, the nucleotide sequences of four genes encoding ALS were surveyed in five sulfonylurea-resistant (SU-R) and five sulfonylurea-susceptible (SU-S) biotypes. In the ALS1 gene, two SU-R biotypes showed nucleotide substitutions changing Pro197 to Ser and Leu, respectively. In a different gene, ALS3, three other SU-R biotypes showed either of the two nonsynonymous nucleotide substitutions seen in ALS1. Only two biotypes geographically located distantly from each other shared the same mutation conferring SU resistance in the same gene. These patterns of nucleotide substitutions indicate that the SU-R phenotype was acquired independently by different biotypes. Nucleotide diversity values of the genes showing SU-R mutations were higher than those of ALS2 lacking any SU-R mutation and of a putative pseudogene, ALS4. This result suggests that the maintenance of nucleotide variability within target genes provides an opportunity for the evolution of SU-R phenotypes by herbicide-driven selection for mutations conferring resistance.


Assuntos
Acetolactato Sintase/genética , Resistência a Medicamentos/genética , Mutação Puntual , Pontederiaceae/enzimologia , Pontederiaceae/genética , Acetolactato Sintase/antagonistas & inibidores , Pontederiaceae/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia
8.
Ann Bot ; 92(4): 571-80, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14507742

RESUMO

This paper presents the first record of silica deposits in tissues of Haemodoraceae and adds new records of tapetal raphides in this family. Within the order Commelinales, silica is present in leaves of three families (Hanguanacaeae, Haemodoraceae and Commelinaceae), but entirely absent from the other two (Pontederiaceae and Philydraceae). Presence or absence of characteristic cell inclusions may have systematic potential in commelinid monocotyledons, although the existing topology indicates de novo gains and losses in individual families. Silica sand was observed in leaves of five out of nine genera examined of Haemodoraceae, predominantly in vascular bundle sheath cells and epidermal cells. Within Haemodoraceae, silica is limited to subfamily Conostylidoideae. The occurrence of silica in Phlebocarya supports an earlier transfer of this genus from Haemodoroideae to Conostylidoideae. The presence of raphides (calcium oxalate crystals) in the anther tapetum represents a rare character, only reported in a few monocot families of the order Commelinales, and possibly representing a mechanism for regulation of cytoplasmic free calcium levels. Tapetal raphides were observed here in Anigozanthus and Conostylis (both Haemodoraceae), and Tradescantia (Commelinaceae), thus supplementing two earlier records in Haemodoraceae, Philydraceae and Commelinaceae.


Assuntos
Oxalato de Cálcio/metabolismo , Flores/metabolismo , Magnoliopsida/metabolismo , Folhas de Planta/metabolismo , Dióxido de Silício/metabolismo , Oxalato de Cálcio/química , Commelinaceae/genética , Commelinaceae/metabolismo , Cristalização , Flores/ultraestrutura , Magnoliopsida/genética , Microscopia Eletrônica , Filogenia , Folhas de Planta/ultraestrutura , Pontederiaceae/genética , Pontederiaceae/metabolismo , Zingiberales/genética
9.
Syst Biol ; 52(2): 131-58, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12746144

RESUMO

Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing of the transformations to be identified. The parsimony method is the only method available for mapping morphological characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a character, it has a number of limitations. These limitations include the inability to consider more than a single change along a branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.


Assuntos
Fenótipo , Filogenia , Animais , Afídeos/classificação , Afídeos/genética , Teorema de Bayes , Modelos Genéticos , Método de Monte Carlo , Pontederiaceae/classificação , Pontederiaceae/genética , Estrelas-do-Mar/classificação , Estrelas-do-Mar/genética , Processos Estocásticos
10.
Mol Biol Evol ; 19(10): 1769-81, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12270903

RESUMO

Phylogenetic rooting experiments demonstrate that two chloroplast genes from commelinoid monocot taxa that represent the closest living relatives of the pickerelweed family, Pontederiaceae, retain measurable signals regarding the position of that family's root. The rooting preferences of the chloroplast sequences were compared with those for artificial sequences that correspond to outgroups so divergent that their signal has been lost completely. These random sequences prefer the three longest branches in the unrooted ingroup topology and do not preferentially root on the branches favored by real outgroup sequences. However, the rooting behavior of the artificial sequences is not a simple function of branch length. The random outgroups preferentially root on long terminal ingroup branches, but many ingroup branches comparable in length to those favored by random sequences attract no or few hits. Nonterminal ingroup branches are generally avoided, regardless of their length. Comparisons of the ease of forcing sequences onto suboptimal roots indicate that real outgroups require a substantially greater rooting penalty than random outgroups for around half of the least-parsimonious candidate roots. Although this supports the existence of nonrandomized signal in the real outgroups, it also indicates that there is little power to choose among the optimal and nearly optimal rooting possibilities. A likelihood-based test rejects the hypothesis that all rootings of the subtree using real outgroup sequences are equally good explanations of the data and also eliminates around half of the least optimal candidate roots. Adding genes or outgroups can improve the ability to discriminate among different root locations. Rooting discriminatory power is shown to be stronger, in general, for more closely related outgroups and is highly correlated among different real outgroups, genes, and optimality criteria.


Assuntos
Filogenia , Pontederiaceae/classificação , Pontederiaceae/genética , DNA de Cloroplastos/genética , Evolução Molecular , Genes de Plantas , Magnoliopsida/classificação , Magnoliopsida/genética , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...