Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Nat Commun ; 12(1): 2385, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888701

RESUMO

Nanoparticle internalisation is crucial for the precise delivery of drug/genes to its intracellular targets. Conventional quantification strategies can provide the overall profiling of nanoparticle biodistribution, but fail to unambiguously differentiate the intracellularly bioavailable particles from those in tumour intravascular and extracellular microenvironment. Herein, we develop a binary ratiometric nanoreporter (BiRN) that can specifically convert subtle pH variations involved in the endocytic events into digitised signal output, enabling the accurately quantifying of cellular internalisation without introducing extracellular contributions. Using BiRN technology, we find only 10.7-28.2% of accumulated nanoparticles are internalised into intracellular compartments with high heterogeneity within and between different tumour types. We demonstrate the therapeutic responses of nanomedicines are successfully predicted based on intracellular nanoparticle exposure rather than the overall accumulation in tumour mass. This nonlinear optical nanotechnology offers a valuable imaging tool to evaluate the tumour targeting of new nanomedicines and stratify patients for personalised cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/análise , Imagem Molecular/métodos , Nanopartículas/análise , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Corantes Fluorescentes/química , Humanos , Microscopia Intravital , Camundongos , Sondas Moleculares/administração & dosagem , Sondas Moleculares/análise , Sondas Moleculares/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imagem Óptica/métodos , Paclitaxel/administração & dosagem , Seleção de Pacientes , Reprodutibilidade dos Testes , Nanomedicina Teranóstica/métodos , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos
2.
Curr Mol Med ; 21(9): 707-723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32933459

RESUMO

Exosomes are nano structured (50-90 nm) vesicles that originate from endosomal compartment of eukaryotic cells and are secreted into extracellular matrix. In recent years, there has been increased interest in exploring exosomes for diagnostic and therapeutic applications. Like many other diseases, e.g., neurodegenerative disorders, autoimmune diseases exosomes have a considerable significance in cancer too. Exosomes are known to prevail in large numbers and carry unique cargos in different types of cancers and thus are proving as versatile entities in understanding their biology of cancers and utilized as efficient diagnostic biomarkers in identification of cancer type. In addition to diagnostic applications, there has been an increased interest in recent years to exploit exosomes as carriers for delivery of therapeutic agents to target sites as well. This is indebted to their exceptional non-immunogenic and biomimetic properties that prompted researchers to use exosomes as carriers for delivery of therapeutic agents, e.g., drugs, genes and peptides. Exosomes also circumvent many drawbacks associated with other lipid or polymeric nanocarriers, e.g., low circulation time, lipid toxicities, long term stability, etc. However, in spite of many favorable aspects of exosome based therapy, there have been a number of challenges too. This review will focus on the current status of the exosome based drug therapy for cancer, the challenges faced and its potential for future clinical use.


Assuntos
Exossomos , Neoplasias , Comunicação Celular , Portadores de Fármacos/análise , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
3.
Nanotechnology ; 31(49): 495706, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33016261

RESUMO

Delivering specific bioactive agents with sufficient bioavailability to the targeted brain area across blood brain barrier remains a big challenge. Magnetically driven nanorobots have demonstrated their potential for controlled drug delivery. However, the dynamic transport of these nanorobots inside each individual's brain vasculature is not yet well studied. Addressing this is a critical step forward to controlled drug delivery for non-invasive brain therapeutics. In this paper, we develop an analytical model describing the personalized dynamic transport of spherical magnetic nanorobots inside the brain vasculature reconstructed from the patient's angiography images. By inverting the transporting process, we first design the patient-specific transport path based on the reconstructed vascular model, and then calculate the magnetic force required to drive these nanorobots from the analytical model. Also, a finite element model is created to simulate the inverse design process, which implies that the delivery efficiency of these magnetically driven nanorobots to the targeted brain area can be increased by 20% and almost 95% nanorobots arrive at the desired vessel walls. In the end, a simplified brain vascular model is printed using PolyJet 3D 750 to demonstrate the dynamic transport of these nanorobots toward the targeted site. The proposed theoretical modeling, numerical simulation and experimental validation lay solid foundation toward non-invasive brain therapeutics with maximal accuracy and minimal side effects.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Portadores de Fármacos/farmacocinética , Nanopartículas Magnéticas de Óxido de Ferro , Encéfalo/anatomia & histologia , Portadores de Fármacos/análise , Sistemas de Liberação de Medicamentos/métodos , Humanos , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Modelos Anatômicos , Modelos Biológicos , Nanotecnologia
4.
Sci Rep ; 10(1): 15535, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968211

RESUMO

Penetration of nanoparticles into viable tumor regions is essential for an effective response. Mass spectrometry imaging (MSI) is a novel method for evaluating the intratumoral pharmacokinetics (PK) of a drug in terms of spatial distribution. The application of MSI for analysis of nanomedicine PK remains in its infancy. In this study, we evaluated the applicability of MALDI-MSI for nanoparticle-formulated drug visualization in tumors and biopsies, with an aim toward future application in clinical nanomedicine research. We established an analytic method for the free drug (AZD2811) and then applied it to visualize nanoparticle-formulated AZD2811. MSI analysis demonstrated heterogeneous intratumoral drug distribution in three xenograft tumors. The intensity of MSI signals correlated well with total drug concentration in tumors, indicating that drug distribution can be monitored quantitatively. Analysis of tumor biopsies indicated that MSI is applicable for analyzing the distribution of nanoparticle-formulated drugs in tumor biopsies, suggesting clinical applicability.


Assuntos
Acetanilidas/análise , Antineoplásicos/análise , Nanopartículas/análise , Neoplasias/química , Quinazolinas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetanilidas/farmacocinética , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/análise , Portadores de Fármacos/farmacocinética , Masculino , Neoplasias Mamárias Experimentais/química , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias Experimentais/química , Quinazolinas/farmacocinética
5.
Nanotechnology ; 31(49): 495101, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946423

RESUMO

This paper elucidates the feasibility of magnetic drug targeting to the eye by using magnetic nanoparticles (MNPs) to which pharmaceutical drugs can be linked. Numerical simulations revealed that a magnetic field gradient of 20 T m-1 seems to be promising for dragging magnetic multicore nanoparticles of about 50 nm into the eye. Thus, a targeting magnet system made of superconducting magnets with a magnetic field gradient at the eye of about 20 T m-1 was simulated. For the proof-of-concept tissue experiments presented here the required magnetic field gradient of 20 T m-1 was realized by a permanent magnet array. MNPs with an optimized multicore structure were selected for this application by evaluating their stability against agglomeration of MNPs with different coatings in water for injections, physiological sodium chloride solution and biological media such as artificial tear fluid. From these investigations, starch turned out to be the most promising coating material because of its stability in saline fluids due to its steric stabilization mechanism. To evaluate the passage of MNPs through the sclera and cornea of the eye tissues of domestic pigs (Sus scrofa domesticus), a three-dimensionally printed setup consisting of two chambers (reservoir and target chamber) separated by the eye tissue was developed. With the permanent magnet array emulating the magnetic field gradient of the superconducting setup, experiments on magnetically driven transport of the MNPs from the reservoir chamber into the target chamber via the tissue were performed. The resulting concentration of MNPs in the target chamber was determined by means of quantitative magnetic particle spectroscopy. It was found that none of the tested particles passed the cornea, but starch-coated particles could pass the sclera at a rate of about 5 ng mm-2 within 24 h. These results open the door for future magnetic drug targeting to the eye.


Assuntos
Portadores de Fármacos/análise , Sistemas de Liberação de Medicamentos/métodos , Olho/metabolismo , Nanopartículas de Magnetita/análise , Administração Oftálmica , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Humanos , Campos Magnéticos , Magnetismo/métodos , Nanopartículas de Magnetita/administração & dosagem , Sus scrofa
6.
Nat Nanotechnol ; 15(10): 819-829, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895522

RESUMO

The delivery of medical agents to a specific diseased tissue or cell is critical for diagnosing and treating patients. Nanomaterials are promising vehicles to transport agents that include drugs, contrast agents, immunotherapies and gene editors. They can be engineered to have different physical and chemical properties that influence their interactions with their biological environments and delivery destinations. In this Review Article, we discuss nanoparticle delivery systems and how the biology of disease should inform their design. We propose developing a framework for building optimal delivery systems that uses nanoparticle-biological interaction data and computational analyses to guide future nanomaterial designs and delivery strategies.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanotecnologia/métodos , Animais , Inteligência Artificial , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Humanos , Nanopartículas/análise , Nanopartículas/metabolismo
7.
J Am Soc Mass Spectrom ; 31(12): 2488-2494, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32813518

RESUMO

Rotaxane dendrimers with hyperbranched macromolecular interlocked structures and size modulation capacity demonstrate drug binding and release ability upon external stimuli. Mass spectrometry imaging (MSI) can offer the high-throughput screening of endogenous/exogenous compounds. Herein, we reported a novel method to display the in situ spatial distribution of label-free monodispersed type III rotaxane dendrimers (RDs) G1 (first generation, size ∼1.5 nm) and G2 (second generation, size ∼5 nm) that were explored as potential drug vehicles in spleen tissue by using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-MSI). Experimental results indicated that the trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) matrix exhibited the best performance for monodispersed type III RDs G1 and G2. The optimized method was successfully applied to map the in vivo spatial distribution of type III RDs G1 and G2 in the spleen from intraperitoneally injected mice. The MALDI-MSI images revealed that RDs G1 and G2 were relatively stable in the spleen within 24 h after administration. It was found that the identified type III RDs G1 and G2 penetrated through the tunica serosa and were predominantly localized in red pulp regions of spleens. They were also mapped in a marginal zone of spleens simultaneously. There was almost no toxicity of type III RDs G1 and G2 to mice spleens from the H&E results. Furthermore, the type III RDs did not induce the expression of inflammatory cytokines from peripheral blood mononuclear cells (PBMCs) or THP-1 monocytes. The MSI analysis not only demonstrated its ability to image select rotaxane dendrimers in a rapid and efficient manner but also provided tremendous assistance on the applications of the further treatment of cancerous tissue as safe drug carriers. Furthermore, the new strategy demonstrated in this study could be applied on other label-free mechanically interlocked molecules, molecular machines, and macromolecules, which opened a new path to evaluate the toxicological and pharmacokinetic characteristics of these novel materials at the suborgan level.


Assuntos
Dendrímeros/análise , Portadores de Fármacos/análise , Rotaxanos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Dendrímeros/farmacocinética , Portadores de Fármacos/farmacocinética , Camundongos , Rotaxanos/farmacocinética , Baço/metabolismo , Distribuição Tecidual
8.
Int J Pharm ; 581: 119300, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32268185

RESUMO

The potential for inhibiting recrystallization with Eudragit® L (EUD-L), hypromellose acetate succinate (HPMC-AS), and polyvinylpyrrolidone-co-vinylacetate (PVP-VA) on amorphous felodipine (FLD) at low polymer loading was investigated in this study. The physical stabilities of the FLD/polymer amorphous solid dispersions (ASDs) were investigated through storage at 40 °C. The HPMC-AS and PVP-VA strongly inhibited FLD recrystallization, although EUD-L did not effectively inhibit the FLD recrystallization. The rotating frame 1H spin-lattice relaxation time (1H-T1ρ) measurement clarified that EUD-L was not well mixed with FLD in the ASD, which resulted in weak inhibition of recrystallization by EUD-L. In contrast, the HPMC-AS and PVP-VA were well mixed with the FLD in the ASDs. Solid-state 13C spin-lattice relaxation time (13C-T1) measurements at 40 °C showed that the molecular mobility of the FLD was strongly suppressed when mixed with polymer. The reduction in the molecular mobility of FLD was in the following order, starting with the least impact: FLD/EUD-L ASD, FLD/HPMC-AS ASD, and FLD/PVP-VA ASD. FLD mobility at the storage temperature, evaluated by 13C-T1, showed a good correlation with the physical stability of the amorphous FLD. The direct investigation of the molecular mobility of amorphous drugs at the storage temperature by solid-state NMR relaxation time measurement can be a useful tool in selecting the most effective crystallization inhibitor at low polymer loading.


Assuntos
Isótopos de Carbono/química , Química Farmacêutica/métodos , Força Compressiva , Cristalização/métodos , Felodipino/química , Polímeros/química , Antiarrítmicos/análise , Antiarrítmicos/química , Isótopos de Carbono/análise , Portadores de Fármacos/análise , Portadores de Fármacos/química , Felodipino/análise , Previsões , Polímeros/análise
9.
J Pharm Biomed Anal ; 185: 113244, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32193041

RESUMO

Currently, controllable linker cleavage at the target site will facilitate the clinical treatment of cancer. Dual-functional prodrugs in combination of carbohydrate as targeting group and pH-sensitive cleavable linker are desired in clinical development. Here, a qualified structure of N-phenylcarbamate-d-gluconhydroximo-1,5-lactam was employed and proved to be a potential candidate prodrug in the drug design. To proof this concept, the possible mechanism of Beckmann rearrangement and the degraded products were confirmed by HPLC and LC-MS under the acid condition mimic lysosome. Hence, the strategy of d-gluconhydroximo-1,5-lactam as a prodrug carrier fabricated with interested drugs will provide a great potential approach for chemotherapy.


Assuntos
Portadores de Fármacos/análise , Gluconatos/análise , Lactamas/análise , Fenilcarbamatos/análise , Pró-Fármacos/análise , Antineoplásicos/administração & dosagem , Cromatografia Líquida de Alta Pressão/métodos , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Desenho de Fármacos , Gluconatos/química , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Lactamas/química , Espectrometria de Massas/métodos , Neoplasias/tratamento farmacológico , Fenilcarbamatos/química , Pró-Fármacos/química , Estudo de Prova de Conceito
10.
J Pharmacol Exp Ther ; 373(1): 113-121, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31941718

RESUMO

Reconstituted high-density lipoprotein (HDL) containing apolipoprotein A-I (Apo A-I) mimics the structure and function of endogenous (human plasma) HDL due to its function and potential therapeutic utility in atherosclerosis, cancer, neurodegenerative diseases, and inflammatory diseases. Recently, a new class of HDL mimetics has emerged, involving peptides with amino acid sequences that simulate the the primary structure of the amphipathic alpha helices within the Apo A-I protein. The findings reported in this communication were obtained using a similar amphiphilic peptide (modified via conjugation of a myristic acid residue at the amino terminal aspartic acid) that self-assembles (by itself) into nanoparticles while retaining the key features of endogenous HDL. The studies presented here involve the macromolecular assembly of the myristic acid conjugated peptide (MYR-5A) into nanomicellar structures and its characterization via steady-state and time-resolved fluorescence spectroscopy. The structural differences between the free peptide (5A) and MYR-5A conjugate were also probed, using tryptophan fluorescence, FÓ§rster resonance energy transfer (FRET), dynamic light scattering, and gel exclusion chromatography. To our knowledge, this is the first report of a lipoprotein assembly generated from a single ingredient and without a separate lipid component. The therapeutic utility of these nanoparticles (due to their capablity to incorporate a wide range of drugs into their core region for targeted delivery) was also investigated by probing the role of the scavenger receptor type B1 in this process. SIGNIFICANCE STATEMENT: Although lipoproteins have been considered as effective drug delivery agents, none of these nanoformulations has entered clinical trials to date. A major challenge to advancing lipoprotein-based formulations to the clinic has been the availability of a cost-effective protein or peptide constituent, needed for the assembly of the drug/lipoprotein nanocomplexes. This report of a robust, spontaneously assembling drug transport system from a single component could provide the template for a superior, targeted drug delivery strategy for therapeutics of cancer and other diseases (Counsell and Pohland, 1982).


Assuntos
Materiais Biomiméticos/química , Portadores de Fármacos/química , Lipoproteínas HDL/química , Nanopartículas/química , Espectrometria de Fluorescência/métodos , Sequência de Aminoácidos , Materiais Biomiméticos/análise , Portadores de Fármacos/análise , Lipoproteínas HDL/análise , Lipoproteínas HDL/genética , Nanopartículas/análise
11.
Talanta ; 209: 120547, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892009

RESUMO

Fluorescence imaging via carbon dots (CDs) has found multifarious applications in the biomedical sciences including biosensing, cancer cell bioimaging, drug delivery and tracking therapeutic response. Presently, the latest generation of fluorescence CDs known as green-CDs has attracted ever-increasing attention due to the use of natural sources, low-cost synthesis, nanoscale size, promising biocompatibility, superior photoluminescence, and ease of functionalization for versatile applications, which in turn could have higher priority over the traditional toxic fluorescent agents. In this review, we aim to have a new insight into the engineering green-CDs and their physicochemical properties. Moreover, we discuss the possible applications of green-CDs in self and active targeting, therapeutics delivery, and finally their promising future in cancer theranostics.


Assuntos
Carbono/análise , Corantes Fluorescentes/análise , Neoplasias/diagnóstico , Neoplasias/terapia , Pontos Quânticos/análise , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Portadores de Fármacos/análise , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , Imagem Óptica/métodos
12.
Macromol Rapid Commun ; 41(4): e1900570, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31894599

RESUMO

Covalent organic frameworks (COFs) as drug delivery systems have shown great promise, but their pharmaceutical applications are often limited by complex building blocks, tedious preparations, irregular shape, and uncontrolled drug release within target cells. Herein, a facile strategy is developed to prepare PEGylated redox-responsive nanoscale COFs (denoted F68@SS-COFs) for efficiently loading and delivering doxorubicin (DOX) by use of FDA-approved Pluronic F68 and commercially available building blocks. The obtained F68@SS-COFs with controlled size, high stability, and good biocompatibility can not only achieve a very high DOX-loading content (about 21%) and very low premature leakage at physiological condition but can also rapidly respond to the tumor intracellular microenvironment and efficiently release DOX to kill tumor cells. Considering the readily available raw materials, simple preparation process, and desirable redox-responsiveness, the strategy provided here opens up a promising avenue to develop well-defined COFs-based nanomedicines for cancer therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Nanopartículas/química , Portadores de Fármacos/análise , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/ultraestrutura , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula , Polietilenoglicóis/química
13.
J Am Soc Mass Spectrom ; 31(2): 366-378, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922726

RESUMO

Gemini surfactants are a class of lipid molecules that have been successfully used in vitro and in vivo as nonviral gene delivery vectors. However, the biological fate of gemini surfactants has not been well investigated. In particular, the metabolism of gemini surfactants after they enter cells as gene delivery vehicles is unknown. In this work, we used a high-resolution quadrupole-Orbitrap mass spectrometry (Q-Exactive) instrument to detect the metabolites of three model gemini surfactants, namely, (a) unsubstituted (16-3-16), (b) with pyridinium head groups (16(Py)-S-2-S-16(Py)), and (c) substituted with a glycyl-lysine di-peptide (16-7N(GK)-16). The metabolites were characterized, and structures were proposed, based on accurate masses and characteristic product ions. The metabolism of the three gemini surfactants was very different as 16-3-16 was not metabolized in PAM 212 cells, whereas 16(Py)-S-2-S-16(Py) was metabolized primarily via phase I reactions, including oxidation and dealkylation, producing metabolites that could be linked to its observed high toxicity. The third gemini surfactant 16-7N(GK)-16 was metabolized mainly via phase II reactions, including methylation, acetylation, glucose conjugation, palmityl conjugation, and stearyl conjugation. The metabolism of gemini surfactants provides insight for future directions in the design and development of more effective gemini surfactants with lower toxicity. The reported approach can also be applied to study the metabolism of other structurally related gemini surfactants.


Assuntos
Alcenos/metabolismo , Técnicas de Transferência de Genes , Compostos de Amônio Quaternário/metabolismo , Tensoativos/metabolismo , Alcenos/análise , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Camundongos , Compostos de Amônio Quaternário/análise , Tensoativos/análise , Espectrometria de Massas em Tandem
14.
Anal Chem ; 92(2): 2011-2018, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31825199

RESUMO

Nanomaterial-based drug delivery vehicles are able to deliver therapeutics in a controlled, targeted manner. Currently, however, there are limited analytical methods that can detect both nanomaterial distributions and their biochemical effects concurrently. In this study, we demonstrate that matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) can be used together to obtain nanomaterial distributions and biochemical consequences. These studies employ nanoparticle-stabilized capsules (NPSCs) loaded with siRNA as a testbed. MALDI-MSI experiments on spleen tissues from intravenously injected mice indicate that NPSCs loaded with anti-TNF-α siRNA cause changes to the lipid composition in white pulp regions of the spleen, as anticipated, based on pathways known to be affected by TNF-α, whereas NPSCs loaded with scrambled siRNA do not cause the predicted changes. Interestingly, LA-ICP-MSI experiments reveal that the NPSCs primarily localize in the red pulp, suggesting that the observed changes in lipid composition are due to diffusive rather than localized effects on TNF-α production. Such information is only accessible by combining data from the two modalities, which we accomplish by using the heme signals from MALDI-MSI and iron signals from LA-ICP-MSI to overlay the images. Several unexpected changes in lipid composition also occur in regions where the NPSCs are found, suggesting that the NPSCs themselves can influence tissue biochemistry as well.


Assuntos
Cápsulas/análise , Nanopartículas/análise , Baço/química , Animais , Cápsulas/administração & dosagem , Cápsulas/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Injeções Intravenosas , Espectrometria de Massas , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Baço/metabolismo , Distribuição Tecidual
16.
AAPS PharmSciTech ; 20(3): 133, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30820689

RESUMO

Irinotecan (IRT), the pro-drug of SN-38, has exhibited potent cytotoxicity against various tumors. In order to enhance the anti-tumor effect of IRT, we prepared IRT-loaded PLGA nanoparticles (IRT-PLGA-NPs) by emulsion-solvent evaporation method. Firstly, IRT-PLGA-NPs were characterized through drug loading (DL), entrapment efficiency (EE), particle size, zeta potential, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). We next studied the in vitro release characteristics of IRT-PLGA-NPs. Finally, the pharmacokinetics and pharmacodynamics profiles of IRT-PLGA-NPs were investigated. The results revealed that IRT-PLGA-NPs were spherical with an average size of (169.97 ± 6.29) nm and its EE and DL were (52.22 ± 2.41)% and (4.75 ± 0.22)%, respectively. IRT-PLGA-NPs could continuously release drug for 14 days in vitro. In pharmacokinetics studies, for pro-drug IRT, the t1/2ß of IRT-PLGA-NPs was extended from 0.483 to 3.327 h compared with irinotecan solution (IRT-Sol), and for its active metabolite SN-38, the t1/2ß was extended from 1.889 to 4.811 h, which indicated that IRT-PLGA-NPs could prolong the retention times of both IRT and SN-38. The pharmacodynamics results revealed that the tumor doubling time, growth inhibition rate, and specific growth rate of IRT-PLGA-NPs were 2.13-, 1.30-, and 0.47-fold those of IRT-Sol, respectively, which demonstrated that IRT-PLGA-NPs could significantly inhibit the growth of tumor. In summary, IRT-PLGA-NPs, which exhibited excellent therapeutic effect against tumors, might be used as a potential carrier for tumor treatment in clinic.


Assuntos
Antineoplásicos/síntese química , Irinotecano/síntese química , Nanopartículas/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/síntese química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/análise , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/síntese química , Varredura Diferencial de Calorimetria/métodos , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/análise , Portadores de Fármacos/síntese química , Avaliação Pré-Clínica de Medicamentos/métodos , Irinotecano/administração & dosagem , Irinotecano/análise , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/análise , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/análise , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/análise , Inibidores da Topoisomerase I/síntese química , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia
17.
Eur J Pharm Biopharm ; 136: 231-239, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30703545

RESUMO

In this paper we determined the solubility limits of the amorphous flutamide within the two different polymeric matrixes - poly vinylpyrrolidone and poly vinylacetate. In order to achieve this goal, series of broadband dielectric spectroscopy measurements were performed. As a result we found that the maximal amount of the drug that can be successfully dissolved within the PVAc (maintaining the non-supersaturated conditions) is equal to 35 wt% of the amorphous solid dispersion system. Interestingly enough similar results, in terms of solubility limits, were achieved utilizing significantly higher amount of the pharmaceutical - 71 wt% - in the PVP matrix. Accordingly, we established the following relationship in the solubility limits of the amorphous flutamide dispersed within examined polymer matrixes: PVP > PVAc. It is worth highlighting that in order to preserve the thermodynamic stability - one of the two contributors to the physical stability - drug loading in the amorphous solid dispersion system should not exceed its solubility limits. Hence, choosing appropriate amount of the polymer addition will determine if obtained system remains physically stable. Subsequently, we presented the "stability maps" for all investigated FL-based ASD systems from which one might predict the stabilization effect exerted by certain amount of polymer.


Assuntos
Calorimetria/métodos , Espectroscopia Dielétrica/métodos , Portadores de Fármacos/química , Flutamida/química , Polímeros/química , Antagonistas de Androgênios/análise , Antagonistas de Androgênios/química , Portadores de Fármacos/análise , Flutamida/análise , Polímeros/análise , Solubilidade
18.
Nanomedicine ; 17: 47-61, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664946

RESUMO

Nanometals are widely being used for diagnosis, treatment and monitoring of medical conditions. Majorly, nanometals are used to facilitate the delivery of drug to targeted site, minimize drug's penetration to healthy tissues, increase drug's bioavailability, and inhibit its uptake and elimination from the blood by reticuloendothelial process. Despite several benefits, use of nanoparticles as drug carriers is also associated with many problems including instability in blood during circulation, undesirable biodistribution, and toxicity. Research has shown that modification in physicochemical properties including shape, size, and surface can develop a nanometal with desired properties but devoid of associated problems. This review introduces the clinical impact of important physicochemical properties of nanometals such as surface modification, shape, and size. Further, the review focuses on evidence reporting the impact of these properties on pharmacokinetics of nanometals with focus on gold, silver, and iron oxide due to their wide use in the medical field.


Assuntos
Portadores de Fármacos/farmacocinética , Metais/farmacocinética , Animais , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Compostos Férricos/análise , Compostos Férricos/metabolismo , Compostos Férricos/farmacocinética , Ouro/análise , Ouro/metabolismo , Ouro/farmacocinética , Humanos , Metais/análise , Metais/metabolismo , Nanoestruturas/análise , Prata/análise , Prata/metabolismo , Prata/farmacocinética , Distribuição Tecidual
19.
J Control Release ; 291: 65-79, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308255

RESUMO

Drug delivery to the central nervous system is restricted by the blood-brain barrier (BBB). However, with the onset of stroke, the BBB becomes leaky, providing a window of opportunity to passively target the brain. Here, cationic poly(amido amine) (PAMAM) dendrimers of different generations were functionalized with poly(ethylene glycol) (PEG) to reduce cytotoxicity and prolong blood circulation half-life, aiming for a safe in vivo drug delivery system in a stroke scenario. Rhodamine B isothiocyanate (RITC) was covalently tethered to the dendrimer backbone and used as a small surrogate drug as well as for tracking purposes. The biocompatibility of PAMAM was markedly increased by PEGylation as a function of dendrimer generation and degree of functionalization. The PEGylated RITC-modified dendrimers did not affect the integrity of an in vitro BBB model. Additionally, the functionalized dendrimers remained safe when in contact with the bEnd.3 cells and rat primary astrocytes composing the in vitro BBB model after hypoxia induced by oxygen-glucose deprivation. Modification with PEG also decreased the interaction and uptake by endothelial cells of PAMAM, indicating that the transport across a leaky BBB due to focal brain ischemia would be facilitated. Next, the functionalized dendrimers were tested in contact with red blood cells showing no haemolysis for the PEGylated PAMAM, in contrast to the unmodified dendrimer. Interestingly, the PEG-modified dendrimers reduced blood clotting, which may be an added beneficial function in the context of stroke. The optimized PAMAM formulation was intravenously administered in mice after inducing permanent focal brain ischemia. Twenty-four hours after administration, dendrimers could be detected in the brain, including in neurons of the ischemic cortex. Our results suggest that the proposed formulation has the potential for becoming a successful delivery vector for therapeutic application to the injured brain after stroke reaching the ischemic neurons.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Dendrímeros/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/farmacocinética , Animais , Astrócitos/metabolismo , Transporte Biológico , Isquemia Encefálica/metabolismo , Linhagem Celular , Células Cultivadas , Dendrímeros/análise , Dendrímeros/metabolismo , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Polietilenoglicóis/análise , Polietilenoglicóis/metabolismo , Ratos Wistar
20.
AAPS PharmSciTech ; 19(7): 3048-3056, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30088151

RESUMO

The aim of the current study was to evaluate the physicochemical properties of a solid dispersion of coenzyme Q10 (CoQ10)/cyclodextrin metal organic frameworks-1 (CD-MOF-1). As a result of the powder X-ray diffraction (PXRD), it was confirmed that the CD-MOF-1 was changed from the α form to the ß form by evaporation (EVP). A diffraction peak due to melting of CoQ10 disappeared the EVP (CoQ10/CD-MOF-1 = 1/2). The structure of this complex is presumed to be similar to the ß form of CD-MOF-1. As a result of the differential scanning calorimetry (DSC), the endothermic peak due to the melting of CoQ10 disappeared the EVP (CoQ10/CD-MOF-1 = 1/2). As a result of the near-infrared (NIR) absorption spectroscopy, findings suggested the hydrogen bond in formation between the CH group in the isoprene side chains of CoQ10 and the OH group of CD-MOF-1. Therefore, the formation of crystal solid dispersion in CoQ10/CD-MOF-1 was suggested. As a result of the dissolution test in distilled water, the EVP (CoQ10/CD-MOF-1 = 1/2) had better dissolution in comparison to CoQ10 alone. Furthermore, also in fasted state simulated intestinal fluid (FaSSIF) in vivo, the EVP (CoQ10/CD-MOF-1 = 1/2) had better dissolution in the human body than CoQ10 alone. From the results of 2D-nuclear overhauser effect spectroscopy (NOESY) NMR spectroscopy, CD-MOF-1 could not include the benzoquinone ring of CoQ10. It was confirmed that the isoprene side chain was included. Therefore, it was suggested that CD-MOF-1 useful as a novel drug carrier for CoQ10.


Assuntos
Ciclodextrinas/síntese química , Portadores de Fármacos/síntese química , Solventes/síntese química , Ubiquinona/análogos & derivados , Varredura Diferencial de Calorimetria/métodos , Ciclodextrinas/análise , Ciclodextrinas/metabolismo , Portadores de Fármacos/análise , Portadores de Fármacos/metabolismo , Solubilidade , Solventes/análise , Solventes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ubiquinona/análise , Ubiquinona/síntese química , Ubiquinona/metabolismo , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...