Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2198: 255-268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822037

RESUMO

Male infertility is associated with several causes affecting the paternal nucleus such as DNA lesions (breaks, deletions, mutations, ...) or numerical chromosome anomalies. More recently, male infertility has also been associated with changes in the sperm epigenome, including modification in the topology of chromatin (Olszewska et al., Chromosome Research 16:875-890, 2008; Alladin et al., Syst Biol Reprod Med 59: 146-152, 2013) ref with number 1, 2. Indeed, the positioning of chromosomes in the sperm nucleus is nonrandom and defines chromosome territories (Champroux et al., Genes (Basel) 9:501, 2018) ref with number 3 whose optimal organization determines the success of embryonic development. In this context, the study of the spatial distribution of chromosomes in sperm cells could be relevant for clinical diagnosis. We describe here a in situ fluorescence hybridization (FISH) strategy coupled with a fluorescent immunocytochemistry approach followed by confocal analysis and reconstruction (2D/3D) as a powerful tool to analyze the location of chromosomes in the sperm nucleus using the mouse sperm as a model. Already, the two-dimensional (2D) analysis of FISH and immunofluorescence data reveal the location of chromosomes as well as the different markings on the spermatic nucleus. In addition, a good 3D rendering after Imaris software processing was obtained when Z-stacks of images were acquired over a defined volume (10 µm × 13 µm × 15 µm) with a sequential scanning mode to minimize bleed-through effects and avoid overlapping wavelengths.


Assuntos
Posicionamento Cromossômico/imunologia , Microscopia Confocal/métodos , Espermatozoides/imunologia , Aneuploidia , Animais , Núcleo Celular/imunologia , Cromatina , Aberrações Cromossômicas , Posicionamento Cromossômico/genética , Cromossomos/imunologia , Modelos Animais de Doenças , Imunofluorescência/métodos , Hibridização in Situ Fluorescente/métodos , Infertilidade Masculina/imunologia , Masculino , Camundongos , Espermatozoides/citologia
2.
PLoS Genet ; 16(9): e1009001, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886661

RESUMO

During meiosis, diploid organisms reduce their chromosome number by half to generate haploid gametes. This process depends on the repair of double strand DNA breaks as crossover recombination events between homologous chromosomes, which hold homologs together to ensure their proper segregation to opposite spindle poles during the first meiotic division. Although most organisms are limited in the number of crossovers between homologs by a phenomenon called crossover interference, the consequences of excess interfering crossovers on meiotic chromosome segregation are not well known. Here we show that extra interfering crossovers lead to a range of meiotic defects and we uncover mechanisms that counteract these errors. Using chromosomes that exhibit a high frequency of supernumerary crossovers in Caenorhabditis elegans, we find that essential chromosomal structures are mispatterned in the presence of multiple crossovers, subjecting chromosomes to improper spindle forces and leading to defects in metaphase alignment. Additionally, the chromosomes with extra interfering crossovers often exhibited segregation defects in anaphase I, with a high incidence of chromatin bridges that sometimes created a tether between the chromosome and the first polar body. However, these anaphase I bridges were often able to resolve in a LEM-3 nuclease dependent manner, and chromosome tethers that persisted were frequently resolved during Meiosis II by a second mechanism that preferentially segregates the tethered sister chromatid into the polar body. Altogether these findings demonstrate that excess interfering crossovers can severely impact chromosome patterning and segregation, highlighting the importance of limiting the number of recombination events between homologous chromosomes for the proper execution of meiosis.


Assuntos
Segregação de Cromossomos/genética , Troca Genética/genética , Meiose/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cromátides/genética , Cromatina/genética , Posicionamento Cromossômico/genética , Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Recombinação Genética
3.
Nucleus ; 11(1): 99-110, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32453974

RESUMO

Nuclear lamins form an elastic meshwork underlying the inner nuclear membrane and provide mechanical rigidity to the nucleus and maintain shape. Lamins also maintain chromosome positioning and play important roles in several nuclear processes like replication, DNA damage repair, transcription, and epigenetic modifications. LMNA mutations affect cardiac tissue, muscle tissues, adipose tissues to precipitate several diseases collectively termed as laminopathies. However, the rationale behind LMNA mutations and laminopathies continues to elude scientists. During interphase, several chromosomes form inter/intrachromosomal contacts inside nucleoplasm and several chromosomal loops also stretch out to make a 'loop-cluster' which are key players to regulate gene expressions. In this perspective, we have proposed that the lamin network in tandem with nuclear actin and myosin provide mechanical rigidity to the chromosomal contacts and facilitate loop-clusters movements. LMNA mutations thus might perturb the landscape of chromosomal contacts or loop-clusters positioning which can impair gene expression profile.


Assuntos
Núcleo Celular/genética , Posicionamento Cromossômico , Regulação da Expressão Gênica , Lamina Tipo A/metabolismo , Lâmina Nuclear/metabolismo , Animais , Núcleo Celular/metabolismo , Posicionamento Cromossômico/genética , Humanos , Mutação
4.
BMC Mol Cell Biol ; 20(1): 11, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117946

RESUMO

BACKGROUND: Nuclear lamins are type V intermediate filament proteins that maintain nuclear structure and function. Furthermore, Emerin - an interactor of Lamin A/C, facilitates crosstalk between the cytoskeleton and the nucleus as it also interacts with actin and Nuclear Myosin 1 (NM1). RESULTS: Here we show that the depletion of Lamin A/C or Emerin, alters the localization of the nuclear motor protein - Nuclear Myosin 1 (NM1) that manifests as an increase in NM1 foci in the nucleus and are rescued to basal levels upon the combined knockdown of Lamin A/C and Emerin. Furthermore, Lamin A/C-Emerin co-depletion destabilizes cytoskeletal organization as it increases actin stress fibers. This further impinges on nuclear organization, as it enhances chromatin mobility more toward the nuclear interior in Lamin A/C-Emerin co-depleted cells. This enhanced chromatin mobility was restored to basal levels either upon inhibition of Nuclear Myosin 1 (NM1) activity or actin depolymerization. In addition, the combined loss of Lamin A/C and Emerin alters the otherwise highly conserved spatial positions of chromosome territories. Furthermore, knockdown of Lamin A/C or Lamin A/C-Emerin combined, deregulates expression levels of a candidate subset of genes. Amongst these genes, both KLK10 (Chr.19, Lamina Associated Domain (LAD+)) and MADH2 (Chr.18, LAD-) were significantly repressed, while BCL2L12 (Chr.19, LAD-) is de-repressed. These genes differentially reposition with respect to the nuclear envelope. CONCLUSIONS: Taken together, these studies underscore a remarkable interplay between Lamin A/C and Emerin in modulating cytoskeletal organization of actin and NM1 that impinges on chromatin dynamics and function in the interphase nucleus.


Assuntos
Núcleo Celular/genética , Cromatina/metabolismo , Técnicas de Silenciamento de Genes , Interfase/genética , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Actinas/metabolismo , Linhagem Celular Tumoral , Posicionamento Cromossômico/genética , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 19/genética , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , Loci Gênicos , Humanos , Calicreínas/genética , Proteínas Musculares/genética , Miosina Tipo I/metabolismo , Membrana Nuclear/genética , Polimerização , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/genética , Proteína Smad2/genética , Transfecção
5.
Nature ; 565(7740): 448-453, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626972

RESUMO

The genome is partitioned into topologically associated domains and genomic compartments with shared chromatin valence. This architecture is constrained by the DNA polymer, which precludes interactions between genes on different chromosomes. Here we report a marked divergence from this pattern of nuclear organization that occurs in mouse olfactory sensory neurons. Chromatin conformation capture using in situ Hi-C on fluorescence-activated cell-sorted olfactory sensory neurons and their progenitors shows that olfactory receptor gene clusters from 18 chromosomes make specific and robust interchromosomal contacts that increase with differentiation of the cells. These contacts are orchestrated by intergenic olfactory receptor enhancers, the 'Greek islands', which first contribute to the formation of olfactory receptor compartments and then form a multi-chromosomal super-enhancer that associates with the single active olfactory receptor gene. The Greek-island-bound transcription factor LHX2 and adaptor protein LDB1 regulate the assembly and maintenance of olfactory receptor compartments, Greek island hubs and olfactory receptor transcription, providing mechanistic insights into and functional support for the role of trans interactions in gene expression.


Assuntos
Cromossomos de Mamíferos/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Receptores Odorantes/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Posicionamento Cromossômico/genética , Cromossomos de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Família Multigênica/genética , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo
6.
Dev Cell ; 41(6): 605-622.e7, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28633016

RESUMO

Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer.


Assuntos
Segregação de Cromossomos/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Cinesinas/metabolismo , Mitose/fisiologia , Fuso Acromático/metabolismo , Posicionamento Cromossômico/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Ligação Proteica
7.
J Cell Sci ; 130(9): 1501-1508, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404786

RESUMO

The eukaryotic genome is organized in a manner that allows folding of the genetic material in the confined space of the cell nucleus, while at the same time enabling its physiological function. A major principle of spatial genome organization is the non-random position of genomic loci relative to other loci and to nuclear bodies. The mechanisms that determine the spatial position of a locus, and how position affects function, are just beginning to be characterized. Initial results suggest that there are multiple, gene-specific mechanisms and the involvement of a wide range of cellular machineries. In this Commentary, we review recent findings from candidate approaches and unbiased screening methods that provide initial insight into the cellular mechanisms of positioning and their functional consequences. We highlight several specific mechanisms, including tethering of genome regions to the nuclear periphery, passage through S-phase and histone modifications, that contribute to gene positioning in yeast, plants and mammals.


Assuntos
Núcleo Celular/genética , Posicionamento Cromossômico/genética , Animais , Replicação do DNA/genética , Genoma , Humanos , Modelos Biológicos
8.
Cell Rep ; 16(10): 2651-2665, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27568571

RESUMO

Chromatin is thought to carry epigenetic information from one generation to the next, although it is unclear how such information survives the disruptions of nucleosomal architecture occurring during genomic replication. Here, we measure a key aspect of chromatin structure dynamics during replication-how rapidly nucleosome positions are established on the newly replicated daughter genomes. By isolating newly synthesized DNA marked with 5-ethynyl-2'-deoxyuridine (EdU), we characterize nucleosome positions on both daughter genomes of S. cerevisiae during chromatin maturation. We find that nucleosomes rapidly adopt their mid-log positions at highly transcribed genes, which is consistent with a role for transcription in positioning nucleosomes in vivo. Additionally, experiments in hir1Δ mutants reveal a role for HIR in nucleosome spacing. We also characterized nucleosome positions on the leading and lagging strands, uncovering differences in chromatin maturation dynamics at hundreds of genes. Our data define the maturation dynamics of newly replicated chromatin and support a role for transcription in sculpting the chromatin template.


Assuntos
Posicionamento Cromossômico/genética , Replicação do DNA/genética , Genoma Fúngico , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Modelos Biológicos , Mutação/genética , Fases de Leitura Aberta/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
PLoS One ; 11(3): e0151377, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999432

RESUMO

The pugilist-Dominant mutation results from fusion of a portion of the gene encoding the tri-functional Methylene Tetrahydrofolate Dehydrogenase (E.C.1.5.1.5, E.C.3.5.4.9, E.C.6.3.4.3) to approximately one kb of a heterochromatic satellite repeat. Expression of this fusion gene results in an unusual ring pattern of pigmentation around the eye. We carried out experiments to determine the mechanism for this pattern. By using FLP-mediated DNA mobilization to place different pugD transgenes at pre-selected sites we found that variation in repeat length makes a strong contribution to variability of the pug phenotype. This variation is manifest primarily as differences in the thickness of the pigmented ring. We show that similar phenotypic variation can also be achieved by changing gene copy number. We found that the pugD pattern is not controlled by wingless, which is normally expressed in a similar ring pattern. Finally, we found that physical injury to a pugD eye can lead to pigment deposition in parts of the eye that would not have been pigmented in the absence of injury. Our results are consistent with a model in which a metabolite vital for pigment formation is imported from the periphery of the eye, and pugD limits the extent of its transport towards the center of the eye, thus revealing the existence of a hitherto unknown mechanism of localized transport in the eye.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Olho/metabolismo , Genes Dominantes , Genes de Insetos , Proteínas de Membrana Transportadoras/metabolismo , Repetições de Microssatélites/genética , Mutação/genética , Animais , Baculoviridae/metabolismo , Sequência de Bases , Posicionamento Cromossômico/genética , DNA Nucleotidiltransferases/metabolismo , Elementos de DNA Transponíveis/genética , Dosagem de Genes , Vetores Genéticos/metabolismo , Injeções , Dados de Sequência Molecular , Fenótipo , Pigmentação , Transporte Proteico , Pteridinas/metabolismo , Pupa/metabolismo , Transgenes , Proteína Wnt1/metabolismo
10.
Nature ; 521(7551): 227-31, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25731161

RESUMO

Long-standing evidence indicates that human immunodeficiency virus type 1 (HIV-1) preferentially integrates into a subset of transcriptionally active genes of the host cell genome. However, the reason why the virus selects only certain genes among all transcriptionally active regions in a target cell remains largely unknown. Here we show that HIV-1 integration occurs in the outer shell of the nucleus in close correspondence with the nuclear pore. This region contains a series of cellular genes, which are preferentially targeted by the virus, and characterized by the presence of active transcription chromatin marks before viral infection. In contrast, the virus strongly disfavours the heterochromatic regions in the nuclear lamin-associated domains and other transcriptionally active regions located centrally in the nucleus. Functional viral integrase and the presence of the cellular Nup153 and LEDGF/p75 integration cofactors are indispensable for the peripheral integration of the virus. Once integrated at the nuclear pore, the HIV-1 DNA makes contact with various nucleoporins; this association takes part in the transcriptional regulation of the viral genome. These results indicate that nuclear topography is an essential determinant of the HIV-1 life cycle.


Assuntos
Núcleo Celular/genética , Núcleo Celular/metabolismo , Posicionamento Cromossômico/genética , Loci Gênicos/genética , HIV-1/genética , HIV-1/fisiologia , Integração Viral/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Integrase de HIV/metabolismo , Meia-Vida , Humanos , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
12.
BMC Plant Biol ; 15: 13, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25604550

RESUMO

BACKGROUND: The nucleosome positioning regulates the gene expression and many other DNA-related processes in eukaryotes. Genome-wide mapping of nucleosome positions and correlation of genome-wide nucleosomal remodeling with the changes in the gene expression can help us understanding gene regulation on genome level. RESULTS: In the present study, we correlate the gene expression and the genomic nucleosomal remodeling in response to salicylic acid (SA) treatment in A. thaliana. We have mapped genome-wide nucleosomes by performing tiling microarray using 146 bp mononucleosomal template DNA. The average nucleosomal coverage is approximately 346 bp per nucleosome both under the control and the SA-treated conditions. The nucleosomal coverage is more in the coding region than in the 5' regulatory regions. We observe approximately 50% nucleosomal remodeling on SA treatment where significant nucleosomal depletion and nucleosomal enrichment around the transcription start site (TSS) occur in SA induced genes and SA repressed genes respectively in response to SA treatment. Especially in the case of the SA-induced group, the nucleosomal remodeling over the minimal promoter in response to SA is especially significant in the Non-expresser of PR1 (NPR1)-dependent genes. A detailed investigation of npr1-1 mutant confirms a distinct role of NPR1 in the nucleosome remodeling over the core promoter. We have also identified several motifs for various hormonal responses; including ABRE elements in the remodeled nucleosomal regions around the promoter region in the SA regulated genes. We have further identified that the W-box and TGACG/C motif, reported to play an important role in SA-mediated induction, are enriched in nucleosome free regions (NFRs) of the promoter region of the SA induced genes. CONCLUSIONS: This is the first study reporting genome-wide effects of SA treatment on the chromatin architecture of A. thaliana. It also reports significant role of NPR1 in genome-wide nucleosomal remodeling in response to SA.


Assuntos
Arabidopsis/genética , Posicionamento Cromossômico/genética , Nucleossomos/metabolismo , Ácido Salicílico/metabolismo , Transcrição Gênica , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Pareamento de Bases/genética , Sequência de Bases , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Loci Gênicos , Dados de Sequência Molecular , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição
13.
PLoS Genet ; 10(6): e1004411, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945276

RESUMO

Correct chromosome segregation is essential in order to prevent aneuploidy. To segregate sister chromatids equally to daughter cells, the sisters must attach to microtubules emanating from opposite spindle poles. This so-called biorientation manifests itself by increased tension and conformational changes across kinetochores and pericentric chromatin. Tensionless attachments are dissolved by the activity of the conserved mitotic kinase Aurora B/Ipl1, thereby promoting the formation of correctly attached chromosomes. Recruitment of the conserved centromeric protein shugoshin is essential for biorientation, but its exact role has been enigmatic. Here, we identify a novel function of shugoshin (Sgo1 in budding yeast) that together with the protein phosphatase PP2A-Rts1 ensures localization of condensin to the centromeric chromatin in yeast Saccharomyces cerevisiae. Failure to recruit condensin results in an abnormal conformation of the pericentric region and impairs the correction of tensionless chromosome attachments. Moreover, we found that shugoshin is required for maintaining Aurora B/Ipl1 localization on kinetochores during metaphase. Thus, shugoshin has a dual function in promoting biorientation in budding yeast: first, by its ability to facilitate condensin recruitment it modulates the conformation of the pericentric chromatin. Second, shugoshin contributes to the maintenance of Aurora B/Ipl1 at the kinetochore during gradual establishment of bipolarity in budding yeast mitosis. Our findings identify shugoshin as a versatile molecular adaptor that governs chromosome biorientation.


Assuntos
Adenosina Trifosfatases/metabolismo , Aurora Quinases/genética , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Centrômero/metabolismo , Posicionamento Cromossômico/genética , Cromossomos Fúngicos/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fuso Acromático
14.
PLoS One ; 8(10): e78005, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205066

RESUMO

In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.


Assuntos
Espermatozoides/metabolismo , Translocação Genética/genética , Animais , Posicionamento Cromossômico/genética , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Masculino , Meiose/genética , Suínos
15.
PLoS One ; 8(4): e60238, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565206

RESUMO

Chromosome territories constitute the most conspicuous feature of nuclear architecture, and they exhibit non-random distribution patterns in the interphase nucleus. We observed that in cell nuclei from humans with Down Syndrome two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. To systematically investigate whether the proximally positioned chromosomes were always the same in all cells, we developed an approach consisting of sequential FISH and CISH combined with laser-microdissection of chromosomes from the interphase nucleus and followed by subsequent chromosome identification by microsatellite allele genotyping. This approach identified proximally positioned chromosomes from cultured cells, and the analysis showed that the identity of the chromosomes proximally positioned varies. However, the data suggest that there may be a tendency of the same chromosomes to be positioned close to each other in the interphase nucleus of trisomic cells. The protocol described here represents a powerful new method for genome analysis.


Assuntos
Mapeamento Cromossômico , Hibridização in Situ Fluorescente , Interfase/genética , Microdissecção , Alelos , Linhagem Celular , Mapeamento Cromossômico/métodos , Posicionamento Cromossômico/genética , Cromossomos Humanos Par 21 , Síndrome de Down/genética , Genótipo , Humanos , Hibridização in Situ Fluorescente/métodos , Microdissecção/métodos , Repetições de Microssatélites , Técnicas de Amplificação de Ácido Nucleico
16.
Mar Biotechnol (NY) ; 15(1): 1-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22538933

RESUMO

Centromere mapping is a powerful tool for improving linkage maps, investigating crossover events, and understanding chiasma interference during meiosis. Ninety microsatellite markers selected across all linkage groups (LGs) from a previous Chlamys farreri genetic map were studied in three artificially induced meiogynogenetic families for centromere mapping by half-tetrad analysis. Inheritance analyses showed that all 90 microsatellite loci conformed to Mendelian inheritance in the control crosses, while 4.4 % of the microsatellite loci showed segregation departures from an expected 1:1 ratio of two homozygote classes in meiogynogenetic progeny. The second division segregation frequency (y) of the microsatellites ranged from 0.033 to 0.778 with a mean of 0.332, confirming the occurrence of partial chiasma interference in this species. Heterogeneity of y is observed in one of 42 cases in which markers were typed in more than one family, suggesting variation in gene-centromere recombination among families. Centromere location was mostly in accordance with the C. farreri karyotype, but differences in marker order between linkage and centromere maps occurred. Overall, this study makes the genetic linkage map a more complete and informative tool for genomic studies and it will also facilitate future research of the structure and function of the scallop centromeres.


Assuntos
Centrômero/genética , Posicionamento Cromossômico/genética , Partenogênese/genética , Pectinidae/genética , Animais , China , Mapeamento Cromossômico , Cruzamentos Genéticos , Padrões de Herança/genética , Cariótipo , Repetições de Microssatélites/genética
17.
Curr Opin Cell Biol ; 24(6): 793-801, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23199754

RESUMO

Cells face the challenge of storing two meters of DNA in the three-dimensional (3D) space of the nucleus that spans only a few microns. The nuclear organization that is required to overcome this challenge must allow for the accessibility of the gene regulatory machinery to the DNA and, in the case of embryonic stem cells (ESCs), for the transcriptional and epigenetic changes that accompany differentiation. Recent technological advances have allowed for the mapping of genome organization at an unprecedented resolution and scale. These breakthroughs have led to a deluge of new data, and a sophisticated understanding of the relationship between gene regulation and 3D genome organization is beginning to form. In this review we summarize some of the recent findings illuminating the 3D structure of the eukaryotic genome, as well as the relationship between genome topology and function from the level of whole chromosomes to enhancer-promoter loops with a focus on features affecting genome organization in ESCs and changes in nuclear organization during differentiation.


Assuntos
Posicionamento Cromossômico , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genoma/genética , Genoma/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina/genética , Posicionamento Cromossômico/genética , Epigênese Genética , Humanos
18.
PLoS One ; 7(10): e46628, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049710

RESUMO

Genomes are spatially assembled into chromosome territories (CT) within the nucleus of living cells. Recent evidences have suggested associations between three-dimensional organization of CTs and the active gene clusters within neighboring CTs. These gene clusters are part of signaling networks sharing similar transcription factor or other downstream transcription machineries. Hence, presence of such gene clusters of active signaling networks in a cell type may regulate the spatial organization of chromosomes in the nucleus. However, given the probabilistic nature of chromosome positions and complex transcription factor networks (TFNs), quantitative methods to establish their correlation is lacking. In this paper, we use chromosome positions and gene expression profiles in interphase fibroblasts and describe methods to capture the correspondence between their spatial position and expression. In addition, numerical simulations designed to incorporate the interacting TFNs, reveal that the chromosome positions are also optimized for the activity of these networks. These methods were validated for specific chromosome pairs mapped in two distinct transcriptional states of T-Cells (naïve and activated). Taken together, our methods highlight the functional coupling between topology of chromosomes and their respective gene expression patterns.


Assuntos
Posicionamento Cromossômico/fisiologia , Espaço Intranuclear/fisiologia , Modelos Genéticos , Família Multigênica/genética , Linfócitos T/citologia , Transcrição Gênica/fisiologia , Posicionamento Cromossômico/genética , Humanos , Transdução de Sinais/genética , Linfócitos T/fisiologia , Transcrição Gênica/genética , Transcriptoma
19.
PLoS One ; 7(4): e35928, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558275

RESUMO

BACKGROUND: The exact relationship between nucleosome positioning and methylation of CpG islands in human pathogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the nucleosome position within the p16 CpG island and established a seeding methylation-specific PCR (sMSP) assay based on bisulfite modification to enrich the p16 alleles containing methylated-CpG at the methylation "seeding" sites within its intron-1 in gastric carcinogenesis. The sMSP-positive rate in primary gastric carcinoma (GC) samples (36/40) was significantly higher than that observed in gastritis (19/45) or normal samples (7/13) (P<0.01). Extensive clone sequencing of these sMSP products showed that the density of methylated-CpGs in p16 CpG islands increased gradually along with the severity of pathological changes in gastric tissues. In gastritis lesions the methylation was frequently observed in the region corresponding to the exon-1 coding-nucleosome and the 5'UTR-nucleosome; the methylation was further extended to the region corresponding to the promoter-nucleosome in GC samples. Only few methylated-CpG sites were randomly detected within p16 CpG islands in normal tissues. The significantly inversed relationship between the p16 exon-1 methylation and its transcription was observed in GC samples. An exact p16 promoter-specific 83 bp-MSP assay confirms the result of sMSP (33/55 vs. 1/6, P<0.01). In addition, p16 methylation in chronic gastritis lesions significantly correlated with H. pylori infection; however, such correlation was not observed in GC specimens. CONCLUSIONS/SIGNIFICANCE: It was determined that de novo methylation was initiated in the coding region of p16 exon-1 in gastritis, then progressed to its 5'UTR, and ultimately to the proximal promoter in GCs. Nucleosomes may function as the basic extension/progression unit of de novo methylation of p16 CpG islands in vivo.


Assuntos
Transformação Celular Neoplásica/genética , Ilhas de CpG/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Metilação de DNA/genética , Progressão da Doença , Nucleossomos/metabolismo , Neoplasias Gástricas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Pareamento de Bases/genética , Biópsia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Posicionamento Cromossômico/genética , Feminino , Gastrite/genética , Gastrite/microbiologia , Helicobacter pylori/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Sulfitos
20.
Curr Issues Mol Biol ; 14(1): 27-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21795760

RESUMO

There is accumulating evidence that the nuclear periphery is a transcriptionally repressive compartment. A surprisingly large fraction of the genome is either in transient or permanent contact with nuclear envelope, where the majority of genes are maintained in a silent state, waiting to be awakened during cell differentiation. The integrity of the nuclear lamina and the histone deacetylase activity appear to be essential for gene repression at the nuclear periphery. However, the molecular mechanisms of silencing, as well as the events that lead to the activation of lamina-tethered genes, require further elucidation. This review summarizes recent advances in understanding of the mechanisms that link nuclear architecture, local chromatin structure, and gene regulation.


Assuntos
Inativação Gênica , Lâmina Nuclear/genética , Animais , Posicionamento Cromossômico/genética , Cromossomos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...