Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Nat Struct Mol Biol ; 29(8): 831-840, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948768

RESUMO

Prion infections cause conformational changes of the cellular prion protein (PrPC) and lead to progressive neurological impairment. Here we show that toxic, prion-mimetic ligands induce an intramolecular R208-H140 hydrogen bond ('H-latch'), altering the flexibility of the α2-α3 and ß2-α2 loops of PrPC. Expression of a PrP2Cys mutant mimicking the H-latch was constitutively toxic, whereas a PrPR207A mutant unable to form the H-latch conferred resistance to prion infection. High-affinity ligands that prevented H-latch induction repressed prion-related neurodegeneration in organotypic cerebellar cultures. We then selected phage-displayed ligands binding wild-type PrPC, but not PrP2Cys. These binders depopulated H-latched conformers and conferred protection against prion toxicity. Finally, brain-specific expression of an antibody rationally designed to prevent H-latch formation prolonged the life of prion-infected mice despite unhampered prion propagation, confirming that the H-latch is an important reporter of prion neurotoxicity.


Assuntos
Proteínas PrPC , Príons , Animais , Anticorpos/metabolismo , Cerebelo/metabolismo , Ligantes , Camundongos , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/metabolismo , Príons/toxicidade
2.
J Mol Biol ; 433(10): 166953, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33771571

RESUMO

Aberrant aggregation and amyloid formation of tar DNA binding protein (TDP-43) and α-synuclein (αS) underlie frontotemporal dementia (FTD) and Parkinson's disease (PD), respectively. Amyloid inclusions of TDP-43 and αS are also commonly co-observed in amyotrophic lateral sclerosis (ALS), dementia with Lewy bodies (DLB) and Alzheimer disease (AD). Emerging evidence from cellular and animal models show colocalization of the TDP-43 and αS aggregates, raising the possibility of direct interactions and co-aggregation between the two proteins. In this report, we set out to answer this question by investigating the interactions between αS and prion-like pathogenic C-terminal domain of TDP-43 (TDP-43 PrLD). PrLD is an aggregation-prone fragment generated both by alternative splicing as well as aberrant proteolytic cleavage of full length TDP-43. Our results indicate that two proteins interact in a synergistic manner to augment each other's aggregation towards hybrid fibrils. While monomers, oligomers and sonicated fibrils of αS seed TDP-43 PrLD monomers, TDP-43 PrLD fibrils failed to seed αS monomers indicating selectivity in interactions. Furthermore, αS modulates liquid droplets formed by TDP-43 PrLD and RNA to promote insoluble amyloid aggregates. Importantly, the cross-seeded hybrid aggregates show greater cytotoxicity as compared to the individual homotypic aggregates suggesting that the interactions between the two proteins have a discernable impact on cellular functions. Together, these results bring forth insights into TDP-43 PrLD - αS interactions that could help explain clinical and pathological presentations in patients with co-morbidities involving the two proteins.


Assuntos
Amiloide/química , Proteínas de Ligação a DNA/química , Neurônios/efeitos dos fármacos , RNA/química , alfa-Sinucleína/química , Processamento Alternativo , Amiloide/genética , Amiloide/metabolismo , Amiloide/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/toxicidade , Humanos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Príons/química , Príons/genética , Príons/metabolismo , Príons/toxicidade , Agregados Proteicos/genética , Ligação Proteica , Domínios Proteicos , Proteólise , RNA/genética , RNA/metabolismo , Sonicação , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade
3.
Biomolecules ; 10(8)2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824215

RESUMO

A hallmark common to many age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), is that patients develop proteinaceous deposits in their central nervous system (CNS). The progressive spreading of these inclusions from initially affected sites to interconnected brain areas is reminiscent of the behavior of bona fide prions in transmissible spongiform encephalopathies (TSEs), hence the term prion-like proteins has been coined. Despite intensive research, the exact mechanisms that facilitate the spreading of protein aggregation between cells, and the associated loss of neurons, remain poorly understood. As population demographics in many countries continue to shift to higher life expectancy, the incidence of neurodegenerative diseases is also rising. This represents a major challenge for healthcare systems and patients' families, since patients require extensive support over several years and there is still no therapy to cure or stop these diseases. The model organism Caenorhabditis elegans offers unique opportunities to accelerate research and drug development due to its genetic amenability, its transparency, and the high degree of conservation of molecular pathways. Here, we will review how recent studies that utilize this soil dwelling nematode have proceeded to investigate the propagation and intercellular transmission of prions and prion-like proteins and discuss their relevance by comparing their findings to observations in other model systems and patients.


Assuntos
Caenorhabditis elegans , Doenças Neurodegenerativas/metabolismo , Príons/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Doenças Neurodegenerativas/patologia , Agregados Proteicos
4.
Biochem J ; 477(4): 833-852, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32108870

RESUMO

Prion diseases are fatal transmissible neurodegenerative conditions of humans and animals that arise through neurotoxicity induced by PrP misfolding. The cellular and molecular mechanisms of prion-induced neurotoxicity remain undefined. Understanding these processes will underpin therapeutic and control strategies for human and animal prion diseases, respectively. Prion diseases are difficult to study in their natural hosts and require the use of tractable animal models. Here we used RNA-Seq-based transcriptome analysis of prion-exposed Drosophila to probe the mechanism of prion-induced neurotoxicity. Adult Drosophila transgenic for pan neuronal expression of ovine PrP targeted to the plasma membrane exhibit a neurotoxic phenotype evidenced by decreased locomotor activity after exposure to ovine prions at the larval stage. Pathway analysis and quantitative PCR of genes differentially expressed in prion-infected Drosophila revealed up-regulation of cell cycle activity and DNA damage response, followed by down-regulation of eIF2 and mTOR signalling. Mitochondrial dysfunction was identified as the principal toxicity pathway in prion-exposed PrP transgenic Drosophila. The transcriptomic changes we observed were specific to PrP targeted to the plasma membrane since these prion-induced gene expression changes were not evident in similarly treated Drosophila transgenic for cytosolic pan neuronal PrP expression, or in non-transgenic control flies. Collectively, our data indicate that aberrant cell cycle activity, repression of protein synthesis and altered mitochondrial function are key events involved in prion-induced neurotoxicity, and correlate with those identified in mammalian hosts undergoing prion disease. These studies highlight the use of PrP transgenic Drosophila as a genetically well-defined tractable host to study mammalian prion biology.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Mitocôndrias/genética , Neurônios/metabolismo , Doenças Priônicas/patologia , Príons/toxicidade , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Ciclo Celular , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neurônios/patologia , Fenótipo , Doenças Priônicas/induzido quimicamente , Doenças Priônicas/genética , Biossíntese de Proteínas , Transcriptoma
5.
J Neurochem ; 152(1): 136-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31264722

RESUMO

The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrPSc , the aggregated and infectious isoform of the cellular prion protein (PrPC ), with largely unsuccessful results. Conversely, targeting PrPC expression, stability or cell surface localization are poorly explored strategies. We recently characterized the mode of action of chlorpromazine, an anti-psychotic drug known to inhibit prion replication and toxicity by inducing the re-localization of PrPC from the plasma membrane. Unfortunately, chlorpromazine possesses pharmacokinetic properties unsuitable for chronic use in vivo, namely low specificity and high toxicity. Here, we employed HEK293 cells stably expressing EGFP-PrP to carry out a semi-automated high content screening (HCS) of a chemical library directed at identifying non-cytotoxic molecules capable of specifically relocalizing PrPC from the plasma membrane as well as inhibiting prion replication in N2a cell cultures. We identified four candidate hits inducing a significant reduction in cell surface PrPC , one of which also inhibited prion propagation and toxicity in cell cultures in a strain-independent fashion. This study defines a new screening method and novel anti-prion compounds supporting the notion that removing PrPC from the cell surface could represent a viable therapeutic strategy for prion diseases.


Assuntos
Membrana Celular/química , Proteínas PrPC/análise , Príons/antagonistas & inibidores , Animais , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes , Expressão Gênica , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HEK293 , Harmalina/análogos & derivados , Harmalina/farmacologia , Hematoxilina/análogos & derivados , Hematoxilina/farmacologia , Humanos , Camundongos , Neuroblastoma , Proteínas PrPC/genética , Príons/biossíntese , Príons/toxicidade , Quinacrina/farmacologia , Tacrolimo/farmacologia
6.
Curr Issues Mol Biol ; 36: 1-12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486773

RESUMO

Prion diseases are a group of transmissible fatal neurodegenerative disorders. Neuropatho- logical features of prion diseases include neuroinflammation featuring the infiltration of activated microglia in affected brain areas as well as the accumulation of an abnormal isoform of the cellular prion protein and neuronal loss. Recent studies have elucidated that inflammation in the brain induced by microglia plays an important role in the pathogenesis of neurodegenerative disorders including prion disease. Thus, the regulation of neuroin- flammation is key in terms of therapeutic and preventative approaches. The functions of neuroinflammation and microglia in this disease are discussed in this article.


Assuntos
Encéfalo/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Priônicas/metabolismo , Príons/metabolismo , Animais , Encéfalo/patologia , Humanos , Inflamassomos/genética , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Microglia/citologia , Doenças Neurodegenerativas/patologia , Fagocitose , Doenças Priônicas/genética , Príons/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
7.
Anal Chim Acta ; 1087: 121-130, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31585560

RESUMO

Protein misfolding and aggregation are the common mechanisms in a variety of aggregation-dependent diseases. The compromised proteins often assemble into toxic, accumulating amyloid-like structures of various lengths and their toxicity can also be transferred both in vivo and in vitro a prion-like behavior. The characterization of protein interactions, degradation and conformational dynamics in biological systems still represents an analytical challenge in the prion-like protein comprehension. In our work, we investigated the nature of a transferable cytotoxic agent, presumably a misfolded protein, through the coupling of a multi-detector, non-destructive separation platform based on hollow-fiber flow field-flow fractionation with imaging and downstream in vitro tests. After purification with ion exchange chromatography, the transferable cytotoxic agentwas analyzed with Atomic Force Microscopy and statistical analysis, showing that the concentration of protein dimers and low n-oligomer forms was higher in the cytotoxic sample than in the control preparation. To assess whether the presence of these species was the actual toxic and/or self-propagating factor, we employed HF5 fractionation, with UV and Multi-Angle Light Scattering detection, to define proteins molar mass distribution and abundance, and fractionate the sample into size-homogeneous fractions. These fractions were then tested individually in vitro to investigate the direct correlation with cytotoxicity. Only the later-eluted fraction, which contains high-molar mass aggregates, proved to be toxic onto cell cultures. Moreover, it was observed that the selective transfer of toxicity also occurs for one lower-mass fraction, suggesting that two different mechanisms, acute and later induced toxicity, are in place. These results strongly encourage the efficacy of this platform to enable the identification of protein toxicants.


Assuntos
Proteínas Amiloidogênicas/análise , Príons/análise , Agregados Proteicos , Proteínas Amiloidogênicas/isolamento & purificação , Proteínas Amiloidogênicas/toxicidade , Linhagem Celular Tumoral , Cromatografia por Troca Iônica , Fracionamento por Campo e Fluxo , Humanos , Luz , Microscopia de Força Atômica , Tamanho da Partícula , Príons/isolamento & purificação , Príons/toxicidade , Espalhamento de Radiação
8.
Brain Pathol ; 29(2): 263-277, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30588688

RESUMO

Although the mechanisms underlying prion propagation and infectivity are now well established, the processes accounting for prion toxicity and pathogenesis have remained mysterious. These processes are of enormous clinical relevance as they hold the key to identification of new molecular targets for therapeutic intervention. In this review, we will discuss two broad areas of investigation relevant to understanding prion neurotoxicity. The first is the use of in vitro experimental systems that model key events in prion pathogenesis. In this context, we will describe a hippocampal neuronal culture system we developed that reproduces the earliest pathological alterations in synaptic morphology and function in response to PrPSc . This system has allowed us to define a core synaptotoxic signaling pathway involving the activation of NMDA and AMPA receptors, stimulation of p38 MAPK phosphorylation and collapse of the actin cytoskeleton in dendritic spines. The second area concerns a striking and unexpected phenomenon in which certain structural manipulations of the PrPC molecule itself, including introduction of N-terminal deletion mutations or binding of antibodies to C-terminal epitopes, unleash powerful toxic effects in cultured cells and transgenic mice. We will describe our studies of this phenomenon, which led to the recognition that it is related to the induction of large, abnormal ionic currents by the structurally altered PrP molecules. Our results suggest a model in which the flexible N-terminal domain of PrPC serves as a toxic effector which is regulated by intramolecular interactions with the globular C-terminal domain. Taken together, these two areas of study have provided important clues to underlying cellular and molecular mechanisms of prion neurotoxicity. Nevertheless, much remains to be done on this next frontier of prion science.


Assuntos
Doenças Priônicas/genética , Príons/genética , Príons/toxicidade , Animais , Encéfalo/patologia , Linhagem Celular , Células Cultivadas , Espinhas Dendríticas/patologia , Hipocampo/patologia , Humanos , N-Metilaspartato/metabolismo , Neurônios/patologia , Fosforilação , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Transdução de Sinais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463309

RESUMO

The [PSI⁺] nonsense-suppressor determinant of Saccharomyces cerevisiae is based on the formation of heritable amyloids of the Sup35 (eRF3) translation termination factor. [PSI⁺] amyloids have variants differing in amyloid structure and in the strength of the suppressor phenotype. The appearance of [PSI⁺], its propagation and manifestation depend primarily on chaperones. Besides chaperones, the Upf1/2/3, Siw14 and Arg82 proteins restrict [PSI⁺] formation, while Sla2 can prevent [PSI⁺] toxicity. Here, we identify two more non-chaperone proteins involved in [PSI⁺] detoxification. We show that simultaneous lack of the Pub1 and Upf1 proteins is lethal to cells harboring [PSI⁺] variants with a strong, but not with a weak, suppressor phenotype. This lethality is caused by excessive depletion of the Sup45 (eRF1) termination factor due to its sequestration into Sup35 polymers. We also show that Pub1 acts to restrict excessive Sup35 prion polymerization, while Upf1 interferes with Sup45 binding to Sup35 polymers. These data allow consideration of the Pub1 and Upf1 proteins as a novel [PSI⁺] detoxification system.


Assuntos
Proteínas de Ligação a Poli(A)/metabolismo , Príons/toxicidade , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/genética , Códon sem Sentido/genética , Deleção de Genes , Modelos Biológicos , Fatores de Terminação de Peptídeos/metabolismo , Plasmídeos/metabolismo , Polimerização , Saccharomyces cerevisiae/efeitos dos fármacos , Mutações Sintéticas Letais
10.
PLoS Pathog ; 14(10): e1007335, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273408

RESUMO

Antibodies to the prion protein, PrP, represent a promising therapeutic approach against prion diseases but the neurotoxicity of certain anti-PrP antibodies has caused concern. Here we describe scPOM-bi, a bispecific antibody designed to function as a molecular prion tweezer. scPOM-bi combines the complementarity-determining regions of the neurotoxic antibody POM1 and the neuroprotective POM2, which bind the globular domain (GD) and flexible tail (FT) respectively. We found that scPOM-bi confers protection to prion-infected organotypic cerebellar slices even when prion pathology is already conspicuous. Moreover, scPOM-bi prevents the formation of soluble oligomers that correlate with neurotoxic PrP species. Simultaneous targeting of both GD and FT was more effective than concomitant treatment with the individual molecules or targeting the tail alone, possibly by preventing the GD from entering a toxic-prone state. We conclude that simultaneous binding of the GD and flexible tail of PrP results in strong protection from prion neurotoxicity and may represent a promising strategy for anti-prion immunotherapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Cerebelo/imunologia , Imunoterapia , Doenças Priônicas/terapia , Proteínas Priônicas/imunologia , Príons/toxicidade , Animais , Anticorpos Biespecíficos/imunologia , Células Cultivadas , Regiões Determinantes de Complementaridade/imunologia , Camundongos , Camundongos Transgênicos , Doenças Priônicas/imunologia , Príons/imunologia
11.
Handb Clin Neurol ; 153: 69-84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887156

RESUMO

Prion strains occur in natural prion diseases, including prion diseases of humans. Prion strains can correspond with differences in the clinical signs and symptoms of disease and the distribution of prion infectivity in the host and are hypothesized to be encoded by strain-specific differences in the conformation of the disease-specific isoform of the host-encoded prion protein, PrPTSE. Prion strains can differ in biochemical properties of PrPTSE that can include the relative sensitivity to digestion with proteinase K and conformational stability in denaturants. These strain-specific biochemical properties of field isolates are maintained upon transmission to experimental animal models of prion disease. Experimental human models of prion disease include traditional and gene-targeted mice that express endogenous PrPC. Transgenic mice that express different polymorphs of human PrPC or mutations in human PrPC that correspond with familial forms of human prion disease have been generated that can recapitulate the clinical, pathologic, and biochemical features of disease. These models aid in understanding disease pathogenesis, evaluating zoonotic potential of animal prion diseases, and assessing human-to-human transmission of disease. Models of sporadic or familial forms of disease offer an opportunity to define mechanisms of disease, identify key neurodegenerative pathways, and assess therapeutic interventions.


Assuntos
Modelos Animais de Doenças , Doenças Priônicas/etiologia , Príons/classificação , Príons/toxicidade , Animais , Humanos , Camundongos , Camundongos Transgênicos , Doenças Priônicas/metabolismo , Príons/genética , Príons/metabolismo
12.
Int J Nanomedicine ; 12: 8143-8158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184404

RESUMO

Graphene oxide (GO) is a nanomaterial with newly developing biological applications. Autophagy is an intracellular degradation system that has been associated with the progression of neurodegenerative disorders. Although induction of autophagic flux by GO has been reported, the underlying signaling pathway in neurodegenerative disorders and how this is involved in neuroprotection remain obscure. We show that GO itself activates autophagic flux in neuronal cells and confers a neuroprotective effect against prion protein (PrP) (106-126)-mediated neurotoxicity. GO can be detected in SK-N-SH neuronal cells, where it triggers autophagic flux signaling. GO-induced autophagic flux prevented PrP (106-126)-induced neurotoxicity in SK-N-SH cells. Moreover, inactivation of autophagic flux blocked GO-induced neuroprotection against prion-mediated mitochondrial neurotoxicity. This is the first study to demonstrate that GO regulates autophagic flux in neuronal cells, and that activation of autophagic flux signals, induced by GO, plays a neuroprotective role against prion-mediated mitochondrial neurotoxicity. These results suggest that the nanomaterial GO may be used to activate autophagic flux and could be used in neuroprotective strategies for treatment of neurodegenerative disorders, including prion diseases.


Assuntos
Autofagia/efeitos dos fármacos , Grafite/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Príons/toxicidade , Linhagem Celular , Grafite/química , Humanos , Mitocôndrias/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Óxidos/química , Transdução de Sinais/efeitos dos fármacos
13.
J Am Chem Soc ; 139(47): 17098-17108, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29058422

RESUMO

The conversion of the native random coil amyloid beta (Aß) into amyloid fibers is thought to be a key event in the progression of Alzheimer's disease (AD). A significant body of evidence suggests that the highly dynamic Aß oligomers are the main causal agent associated with the onset of AD. Among many potential therapeutic approaches, one is the modulation of Aß conformation into off-pathway structures to avoid the formation of the putative neurotoxic Aß oligomers. A library of oligoquinolines was screened to identify antagonists of Aß oligomerization, amyloid formation, and cytotoxicity. A dianionic tetraquinoline, denoted as 5, was one of the most potent antagonists of Aß fibrillation. Biophysical assays including amyloid kinetics, dot blot, ELISA, and TEM show that 5 effectively inhibits both Aß oligomerization and fibrillation. The antagonist activity of 5 toward Aß aggregation diminishes with sequence and positional changes in the surface functionalities. 5 binds to the central discordant α-helical region and induces a unique α-helical conformation in Aß. Interestingly, 5 adjusts its conformation to optimize the antagonist activity against Aß. 5 effectively rescues neuroblastoma cells from Aß-mediated cytotoxicity and antagonizes fibrillation and cytotoxicity pathways of secondary nucleation induced by seeding. 5 is also equally effective in inhibiting preformed oligomer-mediated processes. Collectively, 5 induces strong secondary structure in Aß and inhibits its functions including oligomerization, fibrillation, and cytotoxicity.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Amiloide/química , Amiloide/toxicidade , Agregação Patológica de Proteínas/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Cinética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Príons/antagonistas & inibidores , Príons/química , Príons/metabolismo , Príons/toxicidade , Estrutura Secundária de Proteína/efeitos dos fármacos
14.
Neuropharmacology ; 123: 332-348, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28545972

RESUMO

Prion diseases are a group of infectious neurodegenerative diseases characterized by multiple neuropathological hallmarks, including accumulation of PrPSc, synaptic damage, and neuronal death. We previously reported that the repressor element 1-silencing transcription factor (REST), a novel neuroprotective marker in neurodegeneration, protects neurons against neurotoxic peptide (PrP106-126)-induced neurotoxicity, but fails to maintain survival following prolonged exposure to PrP106-126. Because Wnt signaling partially induces REST and is activated by lithium, we investigated the effects of lithium on REST in prion diseases. Lithium restores nuclear expression of REST, which is essential for regulating survival proteins. Lithium also mimics neuroprotective functions when REST is blocked, and these beneficial effects are additive with REST overexpression under physiological conditions. Reciprocally, under PrP106-126-stimulated pathological conditions, REST plays a critical role in the neuroprotective mechanisms of lithium treatment. Although lithium recovers Wnt signaling by inhibiting glycogen synthase kinase-3ß and stabilizing ß-catenin, restores survival associated proteins after exposure to PrP106-126 in primary cortical neurons. Knockdown of REST significantly suppresses the neuroprotective function of lithium. Conversely, overexpression of REST partially recovers its actions. Notably, lithium directly alleviates PrP106-126-induced synaptic damage and neuronal cell death by preventing changes in presynaptic and postsynaptic marker proteins and promoting survival pathways also partially via the expression of REST. Our results suggest that REST acts as a novel and important nuclear target for lithium. We hypothesize that PrP106-126-stimulated neurotoxicity induces Wnt signaling dysfunction and lithium mimics this signaling cascade, suggesting that lithium should be considered as a potential therapeutic agent against prion diseases.


Assuntos
Cloreto de Lítio/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doenças Priônicas/tratamento farmacológico , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fragmentos de Peptídeos/toxicidade , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/toxicidade , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
15.
Neurotox Res ; 32(3): 381-397, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28540665

RESUMO

Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrPSc). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca++] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca++] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca++] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca++] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE2 release from glial cells. Thus, Ca++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides induce neurotoxic signals via both direct neuron interaction and glia activation through different mechanisms responsible of calcium homeostasis disruption in neurons and potentiating each other: the activation of excitotoxic pathways via NMDA receptors and the release of radical species that establish an oxidative milieu.


Assuntos
Cerebelo/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Príons/toxicidade , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Morte Celular , Células Cultivadas , Cerebelo/metabolismo , Cerebelo/patologia , Técnicas de Cocultura , Espaço Intracelular/metabolismo , NADPH Oxidases/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos/metabolismo , Príons/metabolismo , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Ageing Res Rev ; 36: 156-164, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28450269

RESUMO

The primary causative event in the development of prion diseases is the misfolding of the normal prion protein (PrPC) into an ensemble of altered conformers (herein collectively denoted as PrPSc) that accumulate in the brain. Prominent amongst currently unresolved key aspects underpinning prion disease pathogenesis is whether transmission and toxicity are sub-served by different molecular species of PrPSc, which may directly impact on the development of effective targeted treatments. The use of murine models of prion disease has been of fundamental importance for probing the relationship between hypothesised "neurotoxic" and "transmissible" PrPSc and the associated kinetic profiles of their production during disease evolution, but unfortunately consensus has not been achieved. Recent in vivo studies have led to formulation of the "two-phase" hypothesis, which postulates that there is first an exponential increase in transmitting PrPSc species followed by an abrupt transition to propagation of neurotoxic PrPSc species. Such observations however, appear inconsistent with previous in vivo murine studies employing detailed time-course behavioural testing, wherein evidence of neurotoxicity could be detected early in disease progression. This review analyses the contributions of in vivo murine models attempting to provide insights into the relationship between transmitting and neurotoxic PrPSc species and explores possible refinements to the "two-phase hypothesis", that better accommodate the available historical and recent evidence.


Assuntos
Modelos Animais de Doenças , Doenças Priônicas/metabolismo , Doenças Priônicas/transmissão , Príons/metabolismo , Príons/toxicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Camundongos , Doenças Priônicas/patologia , Especificidade da Espécie
17.
Oncotarget ; 7(52): 85697-85708, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27911875

RESUMO

Mitochondrial quality control is a process by which mitochondria undergo successive rounds of fusion and fission with dynamic exchange of components to segregate functional and damaged elements. Removal of mitochondrion that contains damaged components is accomplished via autophagy. In this study, we investigated whether ginsenoside Rg3, an active ingredient of the herbal medicine ginseng that is used as a tonic and restorative agent, could attenuate prion peptide, PrP (106-126)-induced neurotoxicity and mitochondrial damage. To this end, western blot and GFP-LC3B puncta assay were performed to monitor autophagy flux in neuronal cells; LC3B-II protein level was found to increase after Rg3 treatment. In addition, electron microscopy analysis showed that Rg3 enhanced autophagic vacuoles in neuronal cells. By using autophagy inhibitors wortmannin and 3-methyladenine (3MA) or autophagy protein 5 (Atg5) small interfering RNA (siRNA), we demonstrated that Rg3 could protect neurons against PrP (106-126)-induced cytotoxicity via autophagy flux. We found that Rg3 could also attenuate PrP (106-126)-induced mitochondrial damage via autophagy flux. Taken together, our results suggest that Rg3 is a possible therapeutic agent in neurodegenerative disorders, including prion diseases.


Assuntos
Autofagia/efeitos dos fármacos , Ginsenosídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Príons/toxicidade , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia
18.
PLoS Genet ; 12(11): e1006431, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27828954

RESUMO

The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone balance and distribution whereby the folding of the prion protein is improved and the prion is rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that chaperone modification can block key steps of the prion life cycle and has exciting implications for potential treatment of many human protein conformational disorders.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/genética , Fatores de Terminação de Peptídeos/genética , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/biossíntese , Humanos , Chaperonas Moleculares/química , Fatores de Terminação de Peptídeos/biossíntese , Peptídeos/química , Peptídeos/genética , Príons/química , Príons/toxicidade , Agregados Proteicos/genética , Dobramento de Proteína , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Deleção de Sequência
19.
Nature ; 539(7628): 217-226, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830781

RESUMO

Prions are notorious protein-only infectious agents that cause invariably fatal brain diseases following silent incubation periods that can span a lifetime. These diseases can arise spontaneously, through infection or be inherited. Remarkably, prions are composed of self-propagating assemblies of a misfolded cellular protein that encode information, generate neurotoxicity and evolve and adapt in vivo. Although parallels have been drawn with Alzheimer's disease and other neurodegenerative conditions involving the deposition of assemblies of misfolded proteins in the brain, insights are now being provided into the usefulness and limitations of prion analogies and their aetiological and therapeutic relevance.


Assuntos
Doenças Neurodegenerativas , Príons/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/classificação , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Cinética , Mamíferos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Príons/química , Príons/genética , Príons/toxicidade , Dobramento de Proteína
20.
Nature ; 539(7628): 227-235, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830791

RESUMO

The aggregation of proteins into structures known as amyloids is observed in many neurodegenerative diseases, including Alzheimer's disease. Amyloids are composed of pairs of tightly interacting, many stranded and repetitive intermolecular ß-sheets, which form the cross-ß-sheet structure. This structure enables amyloids to grow by recruitment of the same protein and its repetition can transform a weak biological activity into a potent one through cooperativity and avidity. Amyloids therefore have the potential to self-replicate and can adapt to the environment, yielding cell-to-cell transmissibility, prion infectivity and toxicity.


Assuntos
Amiloide/química , Amiloide/metabolismo , Amiloide/biossíntese , Amiloide/toxicidade , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Animais , Humanos , Modelos Moleculares , Príons/biossíntese , Príons/química , Príons/classificação , Príons/toxicidade , Estrutura Secundária de Proteína , alfa-Sinucleína/biossíntese , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...