RESUMO
MicroRNAs (miRNAs) are essential regulators of gene expression, defined by their unique biogenesis, which requires the precise excision of the small RNA from an imperfect fold-back precursor. Unlike their animal counterparts, plant miRNA precursors exhibit variations in sizes and shapes. Plant MIRNAs can undergo processing in a base-to-loop or loop-to-base direction, with DICER-LIKE1 (DCL1) releasing the miRNA after two cuts (two-step MIRNAs) or more (sequential MIRNAs). In this study, we demonstrate the critical role of the miRNA/miRNA* duplex region in the processing of miRNA precursors. We observed that endogenous MIRNAs frequently experience suboptimal processing in vivo due to mismatches in the miRNA/miRNA* duplex, a key region that fine-tunes miRNA levels. Enhancing the interaction energy of the miRNA/miRNA* duplex in two-step MIRNAs results in a substantial increase in miRNA levels. Conversely, sequential MIRNAs display distinct and specific requirements for the miRNA/miRNA* duplexes along their foldback structure. Our work establishes a connection between the miRNA/miRNA* structure and precursor processing mechanisms. Furthermore, we reveal a link between the biological function of miRNAs and the processing mechanism of their precursors with the evolution of plant miRNA/miRNA* duplex structures.
Assuntos
MicroRNAs , Processamento Pós-Transcricional do RNA , RNA de Plantas , Ribonuclease III , MicroRNAs/genética , MicroRNAs/metabolismo , RNA de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/química , Ribonuclease III/metabolismo , Ribonuclease III/genética , Precursores de RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/química , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Conformação de Ácido Nucleico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo CelularRESUMO
Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.
Assuntos
Citrus sinensis , MicroRNAs , Doenças das Plantas , Proteínas Virais , MicroRNAs/metabolismo , MicroRNAs/genética , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Citrus sinensis/virologia , Citrus sinensis/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Processamento Pós-Transcricional do RNA , Citrus/virologia , Citrus/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genéticaRESUMO
The slow-growing, nontuberculous mycobacterium Mycobacterium kumamotonense possesses two rRNA operons, rrnA and rrnB, located downstream from the murA and tyrS genes, respectively. Here, we report the sequence and organization of the promoter regions of these two rrn operons. In the rrnA operon, transcription can be initiated from the two promoters, named P1 rrnA and PCL1, while in rrnB, transcription can only start from one, called P1 rrnB. Both rrn operons show a similar organization to the one described in Mycobacterium celatum and Mycobacterium smegmatis. Furthermore, by qRT-PCR analyses of the products generated from each promoter, we report that stress conditions such as starvation, hypoxia, and cellular infection affect the contribution of each operon to the synthesis of pre-rRNA. It was found that the products from the PCL1 promoter of rrnA play a pivotal role in rRNA synthesis during all stress conditions. Interestingly, the main participation of the products of transcription from the P1 promoter of rrnB was found during hypoxic conditions at the NRP1 phase. These results provide novel insights into pre-rRNA synthesis in mycobacteria, as well as the potential ability of M. kumamotonense to produce latent infections.
Assuntos
Precursores de RNA , Óperon de RNAr , Óperon de RNAr/genética , Sequência de Bases , Regiões Promotoras Genéticas , RNA Ribossômico/genéticaRESUMO
Splicing is one of the most important post-transcriptional processing systems and is responsible for the generation of transcriptome diversity in all living eukaryotes. Splicing is regulated by the spliceosome machinery, which is responsible for each step of primary RNA processing. However, current molecules and stages involved in RNA splicing are still spread over different studies. Thus, a curated atlas of spliceosome-related molecules and all involved stages during RNA processing can provide all researchers with a reliable resource to better investigate this important mechanism. Here, we present IARA (website access: https://pucpr-bioinformatics.github.io/atlas/), an extensively curated and constantly updated catalog of molecules involved in spliceosome machinery. IARA has a map of the steps involved in the human splicing mechanism, and it allows a detailed overview of the molecules involved throughout the distinct steps of splicing.
Assuntos
Precursores de RNA , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Precursores de RNA/genética , Splicing de RNA/genéticaRESUMO
Pre-mRNA splicing factors are crucial in regulating transcript diversity, by removing introns from eukaryotic transcripts, an essential step in gene expression. Splicing of pre-mRNA is catalyzed by spliceosomes. CWC27 is a cyclophilin associated with spliceosome, in which genetic defects of its components have been linked to spliceosomopathies with clinical phenotypes including skeletal developmental defects, retinitis pigmentosa (RP), short stature, skeletal anomalies, and neurological disorders. We report two siblings (male and female) of Mexican descent with a novel homozygous frameshift variant in CWC27 and aim to highlight the cardinal features among the previously described 12 cases as well as expand the currently recognized phenotypic spectrum. Both siblings presented with a range of ocular and extraocular manifestations including novel features such as solitary kidney and tarsal coalition in the male sibling, together with gait abnormalities, and Hashimoto's thyroiditis in the female sibling. Finally, we highlight ectodermal involvement including sparse scalp hair, eyebrows and lashes, pigmentary differences, nail dysplasia, and dental anomalies as a core phenotype associated with the CWC27 spliceosomopathy.
Assuntos
Precursores de RNA , Retinose Pigmentar , Feminino , Humanos , Masculino , Ciclofilinas/genética , Ciclofilinas/metabolismo , Peptidilprolil Isomerase/genética , Retinose Pigmentar/genética , Precursores de RNA/genética , Splicing de RNA/genética , Spliceossomos/genética , México/etnologiaRESUMO
Trypanosoma brucei belongs to a group of protozoans presenting fragmented large subunit rRNA. Its LSU rRNA equivalent to the 25S/28S rRNA of other eukaryotes is split into six fragments, requiring additional processing for removal of the extra spacer sequences. We have used a genetic complementation strategy to further investigate the T. brucei RRP44 nuclease in pre-rRNA maturation. TbRRP44 contains both a PIN and a RNB domain whose homologues are found in association with the exosome complex. We found that the exonucleolytic activity of the RNB domain as well as the physical presence of the PIN domain are essential for TbRRP44 function, while a catalytic site mutation in the PIN domain has no detectable effect on cell growth. A new endonucleolytic cleavage site in ITS1 was identified. In addition to the 5.8S rRNA 3'-end maturation, TbRRP44 is required for degradation of the excised 5'-ETS and for removal of part of ITS1 during maturation of the 18S rRNA 3'-end. TbRRP44 deficiency leads to accumulation of many LSU intermediate precursors, most of them not detected in control cells. TbRRP44 is also required for U3 snoRNA and spliced leader processing, indicating that TbRRP44 may have a wide role in RNA processing in T. brucei.
Assuntos
Exonucleases , Trypanosoma brucei brucei , Exossomos/metabolismo , Expressão Gênica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Trypanosoma brucei brucei/enzimologia , Exonucleases/metabolismoRESUMO
Plants undergo transcriptome reprograming to adapt to daily and seasonal fluctuations in light and temperature conditions. While most efforts have focused on the role of master transcription factors, the importance of splicing factors modulating these processes is now emerging. Efficient pre-mRNA splicing depends on proper spliceosome assembly, which in plants and animals requires the methylosome complex. Ion Chloride nucleotide-sensitive protein (PICLN) is part of the methylosome complex in both humans and Arabidopsis (Arabidopsis thaliana), and we show here that the human PICLN ortholog rescues phenotypes of Arabidopsis picln mutants. Altered photomorphogenic and photoperiodic responses in Arabidopsis picln mutants are associated with changes in pre-mRNA splicing that partially overlap with those in PROTEIN ARGININE METHYL TRANSFERASE5 (prmt5) mutants. Mammalian PICLN also acts in concert with the Survival Motor Neuron (SMN) complex component GEMIN2 to modulate the late steps of UsnRNP assembly, and many alternative splicing events regulated by PICLN but not PRMT5, the main protein of the methylosome, are controlled by Arabidopsis GEMIN2. As with GEMIN2 and SM PROTEIN E1/PORCUPINE (SME1/PCP), low temperature, which increases PICLN expression, aggravates morphological and molecular defects of picln mutants. Taken together, these results establish a key role for PICLN in the regulation of pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Animais , Processamento Alternativo/genética , Arabidopsis/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Temperatura , Splicing de RNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mamíferos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismoRESUMO
Background: Congenital iodide transport defect (ITD) is an uncommon cause of dyshormonogenic congenital hypothyroidism characterized by the absence of active iodide accumulation in the thyroid gland. ITD is an autosomal recessive disorder caused by loss-of-function variants in the sodium/iodide symporter (NIS)-coding SLC5A5 gene. Objective: We aimed to identify, and if so to functionally characterize, novel ITD-causing SLC5A5 gene variants in a cohort of five unrelated pediatric patients diagnosed with dyshormonogenic congenital hypothyroidism with minimal to absent 99mTc-pertechnetate accumulation in the thyroid gland. Methods: The coding region of the SLC5A5 gene was sequenced using Sanger sequencing. In silico analysis and functional in vitro characterization of a novel synonymous variant were performed. Results: Sanger sequencing revealed a novel homozygous synonymous SLC5A5 gene variant (c.1326A>C in exon 11). In silico analysis revealed that the c.1326A>C variant is potentially deleterious for NIS pre-mRNA splicing. The c.1326A>C variant was predicted to lie within a putative exonic splicing enhancer reducing the binding of splicing regulatory trans-acting protein SRSF5. Splicing minigene reporter assay revealed that c.1326A>C causes exon 11 or exon 11 and 12 skipping during NIS pre-mRNA splicing leading to the NIS pathogenic variants p.G415_P443del and p.G415Lfs*32, respectively. Significantly, the frameshift variant p.G415Lfs*32 is predicted to be subjected to degradation by nonsense-mediated decay. Conclusions: We identified the first exonic synonymous SLC5A5 gene variant causing aberrant NIS pre-mRNA splicing, thus expanding the mutational landscape of the SLC5A5 gene leading to dyshormonogenic congenital hypothyroidism.
Assuntos
Hipotireoidismo Congênito , Simportadores , Criança , Hipotireoidismo Congênito/genética , Éxons , Humanos , Iodetos/metabolismo , Precursores de RNA , Simportadores/genéticaRESUMO
MOTIVATION: The genome-wide discovery of microRNAs (miRNAs) involves identifying sequences having the highest chance of being a novel miRNA precursor (pre-miRNA), within all the possible sequences in a complete genome. The known pre-miRNAs are usually just a few in comparison to the millions of candidates that have to be analyzed. This is of particular interest in non-model species and recently sequenced genomes, where the challenge is to find potential pre-miRNAs only from the sequenced genome. The task is unfeasible without the help of computational methods, such as deep learning. However, it is still very difficult to find an accurate predictor, with a low false positive rate in this genome-wide context. Although there are many available tools, these have not been tested in realistic conditions, with sequences from whole genomes and the high class imbalance inherent to such data. RESULTS: In this work, we review six recent methods for tackling this problem with machine learning. We compare the models in five genome-wide datasets: Arabidopsis thaliana, Caenorhabditis elegans, Anopheles gambiae, Drosophila melanogaster, Homo sapiens. The models have been designed for the pre-miRNAs prediction task, where there is a class of interest that is significantly underrepresented (the known pre-miRNAs) with respect to a very large number of unlabeled samples. It was found that for the smaller genomes and smaller imbalances, all methods perform in a similar way. However, for larger datasets such as the H. sapiens genome, it was found that deep learning approaches using raw information from the sequences reached the best scores, achieving low numbers of false positives. AVAILABILITY: The source code to reproduce these results is in: http://sourceforge.net/projects/sourcesinc/files/gwmirna Additionally, the datasets are freely available in: https://sourceforge.net/projects/sourcesinc/files/mirdata.
Assuntos
Genoma , Aprendizado de Máquina , MicroRNAs/genética , Precursores de RNA/genética , Animais , Arabidopsis/genética , Biologia Computacional/métodos , HumanosRESUMO
Alopecia, neurologic defects, and endocrinopathy (ANE) syndrome is a rare ribosomopathy known to be caused by a p.(Leu351Pro) variant in the essential, conserved, nucleolar large ribosomal subunit (60S) assembly factor RBM28. We report the second family of ANE syndrome to date and a female pediatric ANE syndrome patient. The patient presented with alopecia, craniofacial malformations, hypoplastic pituitary, and hair and skin abnormalities. Unlike the previously reported patients with the p.(Leu351Pro) RBM28 variant, this ANE syndrome patient possesses biallelic precursor messenger RNA (pre-mRNA) splicing variants at the 5' splice sites of exon 5 (ΔE5) and exon 8 (ΔE8) of RBM28 (NM_018077.2:c.[541+1_541+2delinsA]; [946G > T]). In silico analyses and minigene splicing experiments in cells indicate that each splice variant specifically causes skipping of its respective mutant exon. Because the ΔE5 variant results in an in-frame 31 amino acid deletion (p.(Asp150_Lys180del)) in RBM28 while the ΔE8 variant leads to a premature stop codon in exon 9, we predicted that the ΔE5 variant would produce partially functional RBM28 but the ΔE8 variant would not produce functional protein. Using a yeast model, we demonstrate that the ΔE5 variant does indeed lead to reduced overall growth and large subunit ribosomal RNA (rRNA) production and pre-rRNA processing. In contrast, the ΔE8 variant is comparably null, implying that the partially functional ΔE5 RBM28 protein enables survival but precludes correct development. This discovery further defines the underlying molecular pathology of ANE syndrome to include genetic variants that cause aberrant splicing in RBM28 pre-mRNA and highlights the centrality of nucleolar processes in human genetic disease.
Assuntos
Alopecia/metabolismo , Nucléolo Celular/metabolismo , Doenças do Sistema Endócrino/metabolismo , Deficiência Intelectual/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Adulto , Alopecia/genética , Brasil , Doenças do Sistema Endócrino/genética , Éxons , Feminino , Células HEK293 , Cabelo/metabolismo , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Linhagem , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores/genética , Saccharomyces cerevisiae , Adulto JovemRESUMO
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene have been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. The purpose of the present study was to identify and characterize new variants in the TG gene. We report an Argentine patient with congenital hypothyroidism, enlarged thyroid gland and low levels of serum TG. Sequencing of DNA, expression of chimeric minigenes as well as bioinformatics analysis were performed. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a c.3001+5G > A, whereas the paternal mutation consists of p.Arg296*. Minigen analysis of the variant c.3001+5A performed in HeLa, CV1 and Hek293T cell lines, showed a total lack of transcript expression. So, in order to validate that the loss of expression was caused by such variation, site-directed mutagenesis was performed on the mutated clone, which previously had a pSPL3 vector change, to give rise to a wild-type clone c.3001+5G, endorsing that the mutation c.3001+5G > A is the cause of the total lack of expression. In conclusion, we demonstrate that the c.3001+5G > A mutation causes a rare genotype, altering the splicing of the pre-mRNA. This work contributes to elucidating the molecular bases of TG defects associated with congenital hypothyroidism and expands our knowledge in relation to the pathologic roles of the position 5 in the donor splice site.
Assuntos
Biologia Computacional , Íntrons/genética , Mutação/genética , Precursores de RNA/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Tireoglobulina/genética , Sequência de Bases , Genótipo , Células HEK293 , Células HeLa , Humanos , Recém-Nascido , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Precursores de RNA/metabolismo , Tireoglobulina/químicaRESUMO
The Let-7:LIN28 regulatory loop is a paradigm in miRNA regulation. LIN28 harbors two RNA binding domains, which interact with well-conserved sequences in pre-let-7 RNAs, the GNGAY and the GGAG motifs. Here, the differential binding between LIN28B and pre-let-7 members was associated with the structural characteristics of the pre-let-7 family mapped by SHAPE, uncovering diverse structural patterns within pre-let-7 members. Pre-let-7 mutants supported a relevant role of the GGAG motif location and the preE-stem stability for the interaction with LIN28B. Based on these results, we propose a core RNA structure for LIN28B interaction.
Assuntos
MicroRNAs/química , MicroRNAs/metabolismo , Precursores de RNA/química , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Humanos , MicroRNAs/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Precursores de RNA/genéticaRESUMO
The RNA exosome is a multisubunit protein complex involved in RNA surveillance of all classes of RNA, and is essential for pre-rRNA processing. The exosome is conserved throughout evolution, present in archaea and eukaryotes from yeast to humans, where it localizes to the nucleus and cytoplasm. The catalytically active subunit Rrp44/Dis3 of the exosome in budding yeast (Saccharomyces cerevisiae) is considered a protein present in these two subcellular compartments, and here we report that it not only localizes mainly to the nucleus, but is concentrated in the nucleolus, where the early pre-rRNA processing reactions take place. Moreover, we show by confocal microscopy analysis that the core exosome subunits Rrp41 and Rrp43 also localize largely to the nucleus and strongly accumulate in the nucleolus. These results shown here shed additional light on the localization of the yeast exosome and have implications regarding the main function of this RNase complex, which seems to be primarily in early pre-rRNA processing and surveillance.
Assuntos
Nucléolo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Complexo Multienzimático de Ribonucleases do Exossomo/química , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Frações Subcelulares/metabolismoRESUMO
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Assuntos
Regulação Viral da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Capuzes de RNA , Precursores de RNA/genética , Splicing de RNA , RNA Viral , Retroviridae/genética , Animais , Humanos , Sítios Internos de Entrada Ribossomal , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroviridae/metabolismoRESUMO
microRNAs (miRNAs) are non-coding small RNAs that regulate gene expression at post-transcriptional level. Thousands of miRNAs have been identified in legumes, but studies about miRNAs linked to peanut nodule functionality are scarce. In this work we analyzed transcriptional changes in peanut nodules to identify miRNAs involved in functional processes of these organs. We found 32 miRNAs precursors differentially expressed in nodules compared with roots, and predicted the potential targets of their corresponding mature miRNAs. Among them, 20 belong to 14 conserved miRNAs families and 12 are Arachis hypogaea-specific miRNAs. Expression levels of 3 miRNAs (ahy-miR399, ahy-miR159 and ahy-miR3508) were confirmed experimentally by qPCR. We also demonstrated that the expression of these miRNAs was not affected by inoculation of a biocontrol bacterium or a fungal pathogen. The catalogue of differentially expressed miRNA precursors and the expression of the corresponding mature miRNA potential targets in the nodules of A. hypogaea obtained in this work is a database of strong candidates, including A. hypogaea-specific miRNAs, for the regulation of the nodule functionality. The analysis of their role in this process will certainly lead to the characterization of essential regulators in these particular aeschynomenoid nodules.
Assuntos
Arachis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Precursores de RNA/genética , RNA de Plantas/genética , Nódulos Radiculares de Plantas/genética , Arachis/metabolismo , Arachis/microbiologia , Bacillus/fisiologia , Bradyrhizobium/fisiologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , MicroRNAs/classificação , MicroRNAs/metabolismo , Precursores de RNA/classificação , Precursores de RNA/metabolismo , RNA de Plantas/classificação , RNA de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/fisiologia , TranscriptomaRESUMO
Eukaryotic ribosomal biogenesis is a high-energy-demanding and complex process that requires hundreds of trans-acting factors to dynamically build the highly-organized 40S and 60S subunits. Each ribonucleoprotein complex comprises specific rRNAs and ribosomal proteins that are organized into functional domains. The RNA exosome complex plays a crucial role as one of the pre-60S-processing factors, because it is the RNase responsible for processing the 7S pre-rRNA to the mature 5.8S rRNA. The yeast pre-60S assembly factor Nop53 has previously been shown to associate with the nucleoplasmic pre-60S in a region containing the "foot" structure assembled around the 3' end of the 7S pre-rRNA. Nop53 interacts with 25S rRNA and with several 60S assembly factors, including the RNA exosome, specifically, with its catalytic subunit Rrp6 and with the exosome-associated RNA helicase Mtr4. Nop53 is therefore considered the adaptor responsible for recruiting the exosome complex for 7S processing. Here, using proteomics-based approaches in budding yeast to analyze the effects of Nop53 on the exosome interactome, we found that the exosome binds pre-ribosomal complexes early during the ribosome maturation pathway. We also identified interactions through which Nop53 modulates exosome activity in the context of 60S maturation and provide evidence that in addition to recruiting the exosome, Nop53 may also be important for positioning the exosome during 7S processing. On the basis of these findings, we propose that the exosome is recruited much earlier during ribosome assembly than previously thought, suggesting the existence of additional interactions that remain to be described.
Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteômica , Proteínas de Saccharomyces cerevisiae/químicaRESUMO
Ribonucleoprotein (RNP) complexes and RNA-processing enzymes are attractive targets for antibiotic development owing to their central roles in microbial physiology. For many of these complexes, comprehensive strategies to identify inhibitors are either lacking or suffer from substantial technical limitations. Here, we describe an activity-binding-structure platform for bacterial ribonuclease P (RNase P), an essential RNP ribozyme involved in 5' tRNA processing. A novel, real-time fluorescence-based assay was used to monitor RNase P activity and rapidly identify inhibitors using a mini-helix and a pre-tRNA-like bipartite substrate. Using the mini-helix substrate, we screened a library comprising 2560 compounds. Initial hits were then validated using pre-tRNA and the pre-tRNA-like substrate, which ultimately verified four compounds as inhibitors. Biolayer interferometry-based binding assays and molecular dynamics simulations were then used to characterize the interactions between each validated inhibitor and the P protein, P RNA and pre-tRNA. X-ray crystallographic studies subsequently elucidated the structure of the P protein bound to the most promising hit, purpurin, and revealed how this inhibitor adversely affects tRNA 5' leader binding. This integrated platform affords improved structure-function studies of RNA processing enzymes and facilitates the discovery of novel regulators or inhibitors.
Assuntos
Antraquinonas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Ribonuclease P/antagonistas & inibidores , Antraquinonas/química , Antraquinonas/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Corantes Fluorescentes , Fluorometria , Hematoxilina/análogos & derivados , Hematoxilina/química , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Simulação de Dinâmica Molecular , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Ribonuclease P/química , Ribonuclease P/metabolismo , Bibliotecas de Moléculas PequenasRESUMO
We present a simple protocol to image floral tissues with confocal laser scanning microscopy (CLSM). Recently, new imaging techniques have emerged that improve the image quality of plant tissues. In this protocol, as an example, we focus on the fluorescence detection of the miRNA MIR164c precursor. Briefly, the method involves tissue clearing, cell wall staining, and the visualization of fluorescence in tissues in young floral buds of Arabidopsis with CLSM with the use of water dipping lenses.
Assuntos
Arabidopsis/ultraestrutura , Microscopia Confocal/métodos , Parede Celular/ultraestrutura , Fluorescência , Precursores de RNA/genética , Coloração e Rotulagem/métodosRESUMO
MicroRNAs (miRNA) are small RNAs of 20-22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroRNAs/genética , RNA de Plantas/genética , RNA Helicases DEAD-box/genética , Precursores de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas Serrate-Jagged/genéticaRESUMO
Plant microRNAs are commonly encoded in transcripts containing a single microRNA precursor. Processing by DICER-LIKE 1 and associated factors results in the production of a small RNA, followed by its incorporation into an AGO-containing protein complex to guide silencing of an mRNA possessing a complementary target sequence. Certain microRNA loci contain more than one precursor stem-loop structure, thus encoding more than one microRNA in the same transcript. Here, we describe a unique case where the evolutionary conserved miR398a is encoded in the same transcript as the legume-specific miR2119. The dicistronic arrangement found in common bean was also observed in other legumes. In Phaseolus vulgaris, mature miR398 and miR2119 are repressed in response to water deficit, and we demonstrate that both are functional as they target the mRNAs for CSD1 and ADH1, respectively. Our results indicate that the repression of miR398 and miR2119 leads to coordinated up-regulation of CSD1 and ADH1 mRNAs in response to water deficit in common bean and possibly in other legumes. Furthermore, we show that miRNA directed CSD1 and ADH1 mRNAs up-regulation also occurs when common bean plants are exposed to flooding, suggesting that plant redox status and fermentation metabolism must be closely coordinated under different adverse conditions.