Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.067
Filtrar
1.
RNA ; 30(5): 530-536, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531650

RESUMO

Pseudouridine is an abundant mRNA modification found in diverse organisms ranging from bacteria and viruses to multicellular plants and humans. New developments in pseudouridine profiling provide quantitative tools to map mRNA pseudouridylation sites. Sparse biochemical studies establish the potential for mRNA pseudouridylation to affect most stages of the mRNA life cycle from birth to death. This recent progress sets the stage for deeper investigations into the molecular and cellular functions of specific mRNA pseudouridines, including in disease.


Assuntos
RNA Mensageiro , Pesquisa , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Transferases Intramoleculares/metabolismo , Transcrição Gênica , Precursores de RNA/química , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Biossíntese de Proteínas , Ligação Proteica , Humanos , Animais , Pesquisa/tendências
2.
Nature ; 624(7992): 682-688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993708

RESUMO

The group II intron ribonucleoprotein is an archetypal splicing system with numerous mechanistic parallels to the spliceosome, including excision of lariat introns1,2. Despite the importance of branching in RNA metabolism, structural understanding of this process has remained elusive. Here we present a comprehensive analysis of three single-particle cryogenic electron microscopy structures captured along the splicing pathway. They reveal the network of molecular interactions that specifies the branchpoint adenosine and positions key functional groups to catalyse lariat formation and coordinate exon ligation. The structures also reveal conformational rearrangements of the branch helix and the mechanism of splice site exchange that facilitate the transition from branching to ligation. These findings shed light on the evolution of splicing and highlight the conservation of structural components, catalytic mechanism and dynamical strategies retained through time in premessenger RNA splicing machines.


Assuntos
Biocatálise , Íntrons , Conformação de Ácido Nucleico , Splicing de RNA , Adenosina/metabolismo , Microscopia Crioeletrônica , Éxons , Precursores de RNA/química , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , Sítios de Splice de RNA
3.
J Biol Chem ; 299(9): 105138, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544645

RESUMO

Through its role in intron cleavage, tRNA splicing endonuclease (TSEN) plays a critical function in the maturation of intron-containing pre-tRNAs. The catalytic mechanism and core requirement for this process is conserved between archaea and eukaryotes, but for decades, it has been known that eukaryotic TSENs have evolved additional modes of RNA recognition, which have remained poorly understood. Recent research identified new roles for eukaryotic TSEN, including processing or degradation of additional RNA substrates, and determined the first structures of pre-tRNA-bound human TSEN complexes. These recent discoveries have changed our understanding of how the eukaryotic TSEN targets and recognizes substrates. Here, we review these recent discoveries, their implications, and the new questions raised by these findings.


Assuntos
Endorribonucleases , Eucariotos , Precursores de RNA , Splicing de RNA , RNA de Transferência , Humanos , Íntrons/genética , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato , Eucariotos/enzimologia , Endorribonucleases/química , Endorribonucleases/metabolismo
4.
J Chem Inf Model ; 63(10): 3086-3093, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37129986

RESUMO

The U2AF2 splicing factor is involved in the RNA recognition of the pre-mRNA poly-pyrimidine signaling sequence. This protein contains two RRM domains connected by a flexible linker, which ensure the preferential selection of a poly-uridine sequence over a poly-cytosine one. In this work, all-atom simulations provide insights into the U2AF2 recognition mechanism and on the features underlying its selectivity. Our outcomes show that U2AF2's RNA recognition is driven by cooperative events modulated by RNA-protein and RNA-ion interactions. Stunningly, monovalent ions contribute to mediating the binding of the weakly binding polyC strand, thus contributing to the selection of suboptimal poly-pyrimidine tracts. This finding broadens our understanding of the diverse traits tuning splicing factors' selectivity and adaptability to precisely handle and process diverse pre-mRNA sequences.


Assuntos
Precursores de RNA , RNA , RNA/química , Precursores de RNA/genética , Precursores de RNA/química , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Sequência de Bases , Motivo de Reconhecimento de RNA , Pirimidinas
5.
PLoS One ; 18(3): e0283698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996028

RESUMO

RpS0/uS2, rpS2/uS5, and rpS21/eS21 form a cluster of ribosomal proteins (S0-cluster) at the head-body junction near the central pseudoknot of eukaryotic small ribosomal subunits (SSU). Previous work in yeast indicated that S0-cluster assembly is required for the stabilisation and maturation of SSU precursors at specific post-nucleolar stages. Here, we analysed the role of S0-cluster formation for rRNA folding. Structures of SSU precursors isolated from yeast S0-cluster expression mutants or control strains were analysed by cryogenic electron microscopy. The obtained resolution was sufficient to detect individual 2'-O-methyl RNA modifications using an unbiased scoring approach. The data show how S0-cluster formation enables the initial recruitment of the pre-rRNA processing factor Nob1 in yeast. Furthermore, they reveal hierarchical effects on the pre-rRNA folding pathway, including the final maturation of the central pseudoknot. Based on these structural insights we discuss how formation of the S0-cluster determines at this early cytoplasmic assembly checkpoint if SSU precursors further mature or are degraded.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/química , Subunidades Ribossômicas Menores/metabolismo , Precursores de RNA/genética , Precursores de RNA/química , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Conformação de Ácido Nucleico
6.
Nature ; 615(7951): 323-330, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813957

RESUMO

RNA silencing relies on specific and efficient processing of double-stranded RNA by Dicer, which yields microRNAs (miRNAs) and small interfering RNAs (siRNAs)1,2. However, our current knowledge of the specificity of Dicer is limited to the secondary structures of its substrates: a double-stranded RNA of approximately 22 base pairs with a 2-nucleotide 3' overhang and a terminal loop3-11. Here we found evidence pointing to an additional sequence-dependent determinant beyond these structural properties. To systematically interrogate the features of precursor miRNAs (pre-miRNAs), we carried out massively parallel assays with pre-miRNA variants and human DICER (also known as DICER1). Our analyses revealed a deeply conserved cis-acting element, termed the 'GYM motif' (paired G, paired pyrimidine and mismatched C or A), near the cleavage site. The GYM motif promotes processing at a specific position and can override the previously identified 'ruler'-like counting mechanisms from the 5' and 3' ends of pre-miRNA3-6. Consistently, integrating this motif into short hairpin RNA or Dicer-substrate siRNA potentiates RNA interference. Furthermore, we find that the C-terminal double-stranded RNA-binding domain (dsRBD) of DICER recognizes the GYM motif. Alterations in the dsRBD reduce processing and change cleavage sites in a motif-dependent fashion, affecting the miRNA repertoire in cells. In particular, the cancer-associated R1855L substitution in the dsRBD strongly impairs GYM motif recognition. This study uncovers an ancient principle of substrate recognition by metazoan Dicer and implicates its potential in the design of RNA therapeutics.


Assuntos
RNA Helicases DEAD-box , MicroRNAs , Conformação de Ácido Nucleico , Precursores de RNA , RNA Interferente Pequeno , Ribonuclease III , Humanos , Pareamento de Bases , RNA Helicases DEAD-box/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Precursores de RNA/biossíntese , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sequência de Bases
7.
Nature ; 615(7951): 331-338, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813958

RESUMO

Dicer has a key role in small RNA biogenesis, processing double-stranded RNAs (dsRNAs)1,2. Human DICER (hDICER, also known as DICER1) is specialized for cleaving small hairpin structures such as precursor microRNAs (pre-miRNAs) and has limited activity towards long dsRNAs-unlike its homologues in lower eukaryotes and plants, which cleave long dsRNAs. Although the mechanism by which long dsRNAs are cleaved has been well documented, our understanding of pre-miRNA processing is incomplete because structures of hDICER in a catalytic state are lacking. Here we report the cryo-electron microscopy structure of hDICER bound to pre-miRNA in a dicing state and uncover the structural basis of pre-miRNA processing. hDICER undergoes large conformational changes to attain the active state. The helicase domain becomes flexible, which allows the binding of pre-miRNA to the catalytic valley. The double-stranded RNA-binding domain relocates and anchors pre-miRNA in a specific position through both sequence-independent and sequence-specific recognition of the newly identified 'GYM motif'3. The DICER-specific PAZ helix is also reoriented to accommodate the RNA. Furthermore, our structure identifies a configuration of the 5' end of pre-miRNA inserted into a basic pocket. In this pocket, a group of arginine residues recognize the 5' terminal base (disfavouring guanine) and terminal monophosphate; this explains the specificity of hDICER and how it determines the cleavage site. We identify cancer-associated mutations in the 5' pocket residues that impair miRNA biogenesis. Our study reveals how hDICER recognizes pre-miRNAs with stringent specificity and enables a mechanistic understanding of hDICER-related diseases.


Assuntos
Microscopia Crioeletrônica , RNA Helicases DEAD-box , MicroRNAs , Precursores de RNA , Ribonuclease III , Humanos , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/ultraestrutura , MicroRNAs/biossíntese , MicroRNAs/química , MicroRNAs/metabolismo , MicroRNAs/ultraestrutura , Mutação , Ribonuclease III/química , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonuclease III/ultraestrutura , Precursores de RNA/química , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , RNA de Cadeia Dupla/metabolismo , Especificidade por Substrato
8.
Curr Opin Struct Biol ; 77: 102461, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116369

RESUMO

The spliceosome is a multi-megadalton RNA-protein complex responsible for the removal of non-coding introns from pre-mRNAs. Due to its complexity and dynamic nature, it has proven to be a very challenging target for structural studies. Developments in single particle cryo-EM have overcome these previous limitations and paved the way towards a structural characterisation of the splicing machinery. Despite tremendous progress, many aspects of spliceosome structure and function remain elusive. In particular, the events leading to the definition of exon-intron boundaries, alternative and non-canonical splicing events, and cross-talk with other cellular machineries. Efforts are being made to address these knowledge gaps and further our mechanistic understanding of the spliceosome. Here, we summarise recent progress in the structural and functional analysis of the spliceosome.


Assuntos
Splicing de RNA , Spliceossomos , Spliceossomos/metabolismo , Precursores de RNA/genética , Precursores de RNA/química , Íntrons , Éxons
9.
Expert Opin Drug Discov ; 17(10): 1095-1109, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35983696

RESUMO

INTRODUCTION: RNA splicing is a pivotal step of eukaryotic gene expression during which the introns are excised from the precursor (pre-)RNA and the exons are joined together to form mature RNA products (i.e a protein-coding mRNA or long non-coding (lnc)RNAs). The spliceosome, a complex ribonucleoprotein machine, performs pre-RNA splicing with extreme precision. Deregulated splicing is linked to cancer, genetic, and neurodegenerative diseases. Hence, the discovery of small-molecules targeting core spliceosome components represents an appealing therapeutic opportunity. AREA COVERED: Several atomic-level structures of the spliceosome and distinct splicing-modulators bound to its protein/RNA components have been solved. Here, we review recent advances in the discovery of small-molecule splicing-modulators, discuss opportunities and challenges for their therapeutic applicability, and showcase how structural data and/or all-atom simulations can illuminate key facets of their mechanism, thus contributing to future drug-discovery campaigns. EXPERT OPINION: This review highlights the potential of modulating pre-RNA splicing with small-molecules, and anticipates how the synergy of computer and wet-lab experiments will enrich our understanding of splicing regulation/deregulation mechanisms. This information will aid future structure-based drug-discovery efforts aimed to expand the currently limited portfolio of selective splicing-modulators.


Assuntos
Precursores de RNA , Spliceossomos , Humanos , Íntrons , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Spliceossomos/química , Spliceossomos/genética , Spliceossomos/metabolismo
10.
Methods Enzymol ; 673: 77-101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965019

RESUMO

The RNA helicase Dhr1 from S. cerevisiae is an essential enzyme required for the assembly of the cytosolic small ribosomal subunit (SSU). A critical feature of the SSU is the central pseudoknot, an RNA fold that organizes the overall architecture of the subunit and connects all four domains of the 18S ribosomal RNA (rRNA). The initial folding of rRNA is guided, in part, by the U3 small nucleolar RNA, which base-pairs with the pre-rRNA in such a way as to preclude premature formation of the central pseudoknot. Thus, the essential role of Dhr1 is the unwinding of U3 from the pre-rRNA to allow folding of the central pseudoknot. Enzymes of the DEAH/RNA helicase A-like (RHA) family, to which Dhr1 belongs, are involved in splicing and ribosome biogenesis. They typically unwind RNA duplexes by translocation along a single strand of RNA in a 3' to 5' direction, driven by ATP hydrolysis. The substrate specificity of these enzymes requires tight regulation of their activity, by restricting access to their substrates, requiring adaptors to recruit them to their substrates and mechanisms of inhibiting and activating their activity. Purified Dhr1 is an active RNA-dependent ATPase with specific unwinding activity. Here, we provide detailed protocols for its purification and assays for its ATPase and unwinding activities.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , RNA Helicases , Precursores de RNA/química , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
11.
Biol Chem ; 403(8-9): 765-778, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35621519

RESUMO

Transfer RNAs (tRNAs) are transcribed as precursor molecules that undergo several maturation steps before becoming functional for protein synthesis. One such processing mechanism is the enzyme-catalysed splicing of intron-containing pre-tRNAs. Eukaryotic tRNA splicing is an essential process since intron-containing tRNAs cannot fulfil their canonical function at the ribosome. Splicing of pre-tRNAs occurs in two steps: The introns are first excised by a tRNA-splicing endonuclease and the exons are subsequently sealed by an RNA ligase. An intriguing complexity has emerged from newly identified tRNA splicing factors and their interplay with other RNA processing pathways during the past few years. This review summarises our current understanding of eukaryotic tRNA splicing and the underlying enzyme machinery. We highlight recent structural advances and how they have shaped our mechanistic understanding of tRNA splicing in eukaryotic cells. A special focus lies on biochemically distinct strategies for exon-exon ligation in fungi versus metazoans.


Assuntos
Células Eucarióticas , Objetivos , Células Eucarióticas/metabolismo , Íntrons , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Invest Ophthalmol Vis Sci ; 63(4): 17, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472218

RESUMO

Background: The progression and recurrence of pterygium mainly occur due to the abnormal proliferation and migration of stromal pterygium fibroblasts. This research explores the aberrant expression of small nucleolar RNA U3 (U3 snoRNA) in pterygium and elucidates the molecular mechanisms of U3 snoRNA in pterygium development. Methods: Primary human conjunctival fibroblasts (HCFs) and human pterygium fibroblasts (HPFs) were separated and cultured from fresh conjunctiva grafts and pterygium tissues. The PLKO.1 lentiviral system and CRISPR/Cas9 recombinant construct were, respectively, used to overexpress and silence U3 snoRNA in HPFs and HCFs for further specific phenotype analysis. RNA-seq and TMT-labeled quantitative protein mass spectrometry were utilized to evaluate the effect of U3 snoRNA on mRNA transcripts and protein synthesis. Results: Reduced U3 snoRNA in pterygium promotes HCF or HPF cells' proliferation, migration, and cell cycle but has no significant effect on apoptosis. U3 snoRNA modulates 18S rRNA synthesis through shearing precursor ribosomal RNA 47S rRNA at the 5' external transcribed spacer (5' ETS). Moreover, the altered U3 snoRNA causes mRNA and protein differential expression in HCF or HPF cells. Conclusions: The atypical U3 snoRNA regulates the translation of specific proteins to exert a suppressive function in pterygium through modulating the 18S rRNA synthesis. Here, we uncover a novel insight into U3 snoRNA biology in the development of pterygium.


Assuntos
Pterígio , RNA Nucleolar Pequeno , Sequência de Bases , Túnica Conjuntiva/anormalidades , Túnica Conjuntiva/metabolismo , Humanos , Pterígio/genética , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
13.
Biosystems ; 215-216: 104662, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35306049

RESUMO

microRNAs (miRNAs) are known as one of the small non-coding RNA molecules that control the expression of genes at the RNA level, while some operate at the DNA level. They typically range from 20 to 24 nucleotides in length and can be found in the plant and animal kingdoms as well as in some viruses. Computational approaches have overcome the limitations of the experimental methods and have performed well in identifying miRNAs. Compared to mature miRNAs, precursor miRNAs (pre-miRNAs) are long and have a hairpin loop structure with structural features. Therefore, most in-silico tools are implemented for pre-miRNA identification. This study presents a multilayer perceptron (MLP) based classifier implemented using 180 features under sequential, structural, and thermodynamic feature categories for plant pre-miRNA identification. This classifier has a 92% accuracy, a 94% specificity, and a 90% sensitivity. We have further tested this model with other small non-coding RNA types and obtained 78% accuracy. Furthermore, we introduce a novel dataset to train and test machine learning models, addressing the overlapping data issue in the positive training and testing datasets presented in PlantMiRNAPred for the classification of real and pseudo-plant pre-miRNAs. The new dataset and the classifier that can be used with any plant species are deployed on a web server freely accessible at http://mirnafinder.shyaman.me/.


Assuntos
MicroRNAs , Precursores de RNA , Animais , Biologia Computacional/métodos , Aprendizado de Máquina , MicroRNAs/química , MicroRNAs/genética , Plantas/genética , Precursores de RNA/química , Precursores de RNA/genética
14.
J Clin Immunol ; 42(5): 962-974, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35320431

RESUMO

BACKGROUND: Aicardi-Goutières syndrome (AGS) is a type I interferonopathy usually characterized by early-onset neurologic regression. Biallelic mutations in LSM11 and RNU7-1, components of the U7 small nuclear ribonucleoprotein (snRNP) complex, have been identified in a limited number of genetically unexplained AGS cases. Impairment of U7 snRNP function results in misprocessing of replication-dependent histone (RDH) pre-mRNA and disturbance of histone occupancy of nuclear DNA, ultimately driving cGAS-dependent type I interferon (IFN-I) release. OBJECTIVE: We performed a clinical, genetic, and immunological workup of 3 unrelated patients with uncharacterized AGS. METHODS: Whole exome sequencing (WES) and targeted Sanger sequencing of RNU7-1 were performed. Primary fibroblasts were used for mechanistic studies. IFN-I signature and STAT1/2 phosphorylation were assessed in peripheral blood. Cytokines were profiled on serum and cerebrospinal fluid (CSF). Histopathology was examined on brain and kidney tissue. RESULTS: Sequencing revealed compound heterozygous RNU7-1 mutations, resulting in impaired RDH pre-mRNA processing. The 3' stem-loop mutations reduced stability of the secondary U7 snRNA structure. A discrete IFN-I signature in peripheral blood was paralleled by MCP-1 (CCL2) and CXCL10 upregulation in CSF. Histopathological analysis of the kidney showed thrombotic microangiopathy. We observed dysregulated STAT phosphorylation upon cytokine stimulation. Clinical overview of all reported patients with RNU7-1-related disease revealed high mortality and high incidence of organ involvement compared to other AGS genotypes. CONCLUSIONS: Targeted RNU7-1 sequencing is recommended in genetically unexplained AGS cases. CSF cytokine profiling represents an additional diagnostic tool to identify aberrant IFN-I signaling. Clinical follow-up of RNU7-1-mutated patients should include screening for severe end-organ involvement including liver disease and nephropathy.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , RNA Nuclear Pequeno/genética , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Quimiocina CXCL10/genética , Histonas , Humanos , Interferons , Mutação , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética
15.
Nat Commun ; 13(1): 649, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115551

RESUMO

RMRP encodes a non-coding RNA forming the core of the RNase MRP ribonucleoprotein complex. Mutations cause Cartilage Hair Hypoplasia (CHH), characterized by skeletal abnormalities and impaired T cell activation. Yeast RNase MRP cleaves a specific site in the pre-ribosomal RNA (pre-rRNA) during ribosome synthesis. CRISPR-mediated disruption of RMRP in human cells lines caused growth arrest, with pre-rRNA accumulation. Here, we analyzed disease-relevant primary cells, showing that mutations in RMRP impair mouse T cell activation and delay pre-rRNA processing. Patient-derived human fibroblasts with CHH-linked mutations showed similar pre-rRNA processing delay. Human cells engineered with the most common CHH mutation (70AG in RMRP) show specifically impaired pre-rRNA processing, resulting in reduced mature rRNA and a reduced ratio of cytosolic to mitochondrial ribosomes. Moreover, the 70AG mutation caused a reduction in intact RNase MRP complexes. Together, these results indicate that CHH is a ribosomopathy.


Assuntos
Endorribonucleases/genética , Mutação , RNA Longo não Codificante/genética , RNA Ribossômico/genética , Ribossomos/genética , Animais , Sequência de Bases , Proliferação de Células/genética , Células Cultivadas , Endorribonucleases/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Cabelo/anormalidades , Cabelo/metabolismo , Doença de Hirschsprung/genética , Doença de Hirschsprung/metabolismo , Humanos , Células K562 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocondrodisplasias/congênito , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/metabolismo , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
16.
Science ; 375(6576): 50-57, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34822310

RESUMO

Recognition of the intron branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is a critical event during spliceosome assembly. In mammals, BS sequences are poorly conserved, and unambiguous intron recognition cannot be achieved solely through a base-pairing mechanism. We isolated human 17S U2 snRNP and reconstituted in vitro its adenosine 5´-triphosphate (ATP)­dependent remodeling and binding to the pre­messenger RNA substrate. We determined a series of high-resolution (2.0 to 2.2 angstrom) structures providing snapshots of the BS selection process. The substrate-bound U2 snRNP shows that SF3B6 stabilizes the BS:U2 snRNA duplex, which could aid binding of introns with poor sequence complementarity. ATP-dependent remodeling uncoupled from substrate binding captures U2 snRNA in a conformation that competes with BS recognition, providing a selection mechanism based on branch helix stability.


Assuntos
Íntrons , Precursores de RNA/química , Ribonucleoproteína Nuclear Pequena U2/química , Spliceossomos/química , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/metabolismo , Transativadores/química , Transativadores/metabolismo
17.
Nucleic Acids Res ; 49(22): 12622-12633, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871435

RESUMO

The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the unique structural properties of RNA, often characterized by polar surfaces and high flexibility. In addition, the frequent lack of well-defined binding pockets complicates the development of small molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among these, peptide-derived molecules represent appealing entities as they can mimic structural features also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-based design of constrained α-helical peptides derived from the viral suppressor of RNA silencing, TAV2b, is described. We observe that the introduction of two inter-side chain crosslinks provides peptides with increased α-helicity and protease stability. One of these modified peptides (B3) shows high affinity for double-stranded RNA structures including a palindromic siRNA as well as microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry. Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering them potentially useful for the design of bioactive RNA-targeting ligands.


Assuntos
Peptídeos/química , Interferência de RNA , RNA de Cadeia Dupla/química , Proteínas de Ligação a RNA/química , Proteínas Virais/química , Permeabilidade da Membrana Celular , Cucumovirus , Endopeptidase K , Humanos , Células K562 , MicroRNAs/química , MicroRNAs/metabolismo , Mimetismo Molecular , Peptídeos/metabolismo , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
18.
Nat Commun ; 12(1): 6153, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686656

RESUMO

Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


Assuntos
RNA Helicases DEAD-box/metabolismo , Chaperonas Moleculares/metabolismo , RNA Nucleolar Pequeno/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Pareamento de Bases , RNA Helicases DEAD-box/genética , Chaperonas Moleculares/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
19.
Nat Commun ; 12(1): 6152, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686661

RESUMO

Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5' and 3' ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Ribossômico/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Dobramento de RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Proteína Ribossômica L3/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
RNA Biol ; 18(sup2): 730-737, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592896

RESUMO

Exportin 5 (Exp5, XPO5) is a nuclear export factor that functions in the microRNA (miRNA) biogenesis pathway to transport precursor miRNAs (pre-miRNAs) from the nucleus to the cytoplasm. Most of our current understanding of the Exp5 and pre-miRNA interaction is based on the investigation of how Exp5 binds to human pre-miR-30a (pre-miR-30 for short). As there are hundreds of human miRNA genes, how representative pre-miR-30 is, whether or how Exp5 interacts with distinct cargoes differentially, or whether Exp5 regulates miRNA expression, is unknown. Here we examined and compared the interactions between Exp5 and 157 human pre-miRNAs. We found that Exp5 binds distinct pre-miRNAs with modest variations in efficiencies, with the 3' overhang and the apical loop in pre-miRNAs being the two major discriminating factors. Exp5 binding efficiencies do not significantly correlate with endogenous miRNA expression, suggesting that Exp5 activity does not contribute to differential miRNA expression in vivo. Nonetheless, in human cells with reduced Exp5 levels, preferential Exp5 binding correlated with miRNA expression changes. Thus, our study provides a global picture of how Exp5 interacts with human pre-miRNAs and its role in regulating miRNA expression.Abbreviations: Exp5: Exportin 5; miRNA: microRNA; pri-miRNA: primary microRNA; pre-miRNA: precursor microRNA; nt: nucleotide.


Assuntos
Carioferinas/metabolismo , MicroRNAs/genética , Precursores de RNA/genética , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Humanos , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Precursores de RNA/química , Precursores de RNA/metabolismo , Transporte de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...