Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 45(51): 15495-504, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176071

RESUMO

The PheA domain of gramicidin synthetase A, a non-ribosomal peptide synthetase, selectively binds phenylalanine along with ATP and Mg2+ and catalyzes the formation of an aminoacyl adenylate. In this study, we have used a novel protein redesign algorithm, K*, to predict mutations in PheA that should exhibit improved binding for tyrosine. Interestingly, the introduction of two predicted mutations to PheA did not significantly improve KD, as measured by equilibrium fluorescence quenching. However, the mutations improved the specificity of the enzyme for tyrosine (as measured by kcat/KM), primarily driven by a 56-fold improvement in KM, although the improvement did not make tyrosine the preferred substrate over phenylalanine. Using stopped-flow fluorometry, we examined binding of different amino acid substrates to the wild-type and mutant enzymes in the pre-steady state in order to understand the improvement in KM. Through these investigations, it became evident that substrate binding to the wild-type enzyme is more complex than previously described. These experiments show that the wild-type enzyme binds phenylalanine in a kinetically selective manner; no other amino acids tested appeared to bind the enzyme in the early time frame examined (500 ms). Furthermore, experiments with PheA, phenylalanine, and ATP reveal a two-step binding process, suggesting that the PheA-ATP-phenylalanine complex may undergo a conformational change toward a catalytically relevant intermediate on the pathway to adenylation; experiments with PheA, phenylalanine, and other nucleotides exhibit only a one-step binding process. The improvement in KM for the mutant enzyme toward tyrosine, as predicted by K*, may indicate that redesigning the side-chain binding pocket allows the substrate backbone to adopt productive conformations for catalysis but that further improvements may be afforded by modeling an enzyme:ATP:substrate complex, which is capable of undergoing conformational change.


Assuntos
Corismato Mutase/síntese química , Proteínas de Escherichia coli/síntese química , Complexos Multienzimáticos/síntese química , Prefenato Desidratase/síntese química , Estrutura Terciária de Proteína , Corismato Mutase/genética , Corismato Mutase/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese Sítio-Dirigida , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Prefenato Desidratase/genética , Prefenato Desidratase/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética , Triptofano/química , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...