Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.203
Filtrar
1.
Chin Med J (Engl) ; 137(9): 1033-1043, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38545694

RESUMO

ABSTRACT: Epitranscriptomics focuses on the RNA-modification-mediated post-transcriptional regulation of gene expression. The past decade has witnessed tremendous progress in our understanding of the landscapes and biological functions of RNA modifications, as prompted by the emergence of potent analytical approaches. The hematopoietic system provides a lifelong supply of blood cells, and gene expression is tightly controlled during the differentiation of hematopoietic stem cells (HSCs). The dysregulation of gene expression during hematopoiesis may lead to severe disorders, including acute myeloid leukemia (AML). Emerging evidence supports the involvement of the mRNA modification system in normal hematopoiesis and AML pathogenesis, which has led to the development of small-molecule inhibitors that target N6-methyladenosine (m 6 A) modification machinery as treatments. Here, we summarize the latest findings and our most up-to-date information on the roles of m 6 A and N7-methylguanine in both physiological and pathological conditions in the hematopoietic system. Furthermore, we will discuss the therapeutic potential and limitations of cancer treatments targeting m 6 A.


Assuntos
Adenosina , Adenosina/análogos & derivados , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Adenosina/metabolismo , Sistema Hematopoético , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Processamento Pós-Transcricional do RNA/genética
2.
Cell Mol Life Sci ; 81(1): 73, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308713

RESUMO

N4 acetylcytidine (ac4C) modification mainly occurs on tRNA, rRNA, and mRNA, playing an important role in the expression of genetic information. However, it is still unclear whether microRNAs have undergone ac4C modification and their potential physiological and pathological functions. In this study, we identified that NAT10/THUMPD1 acetylates primary microRNAs (pri-miRNAs) with ac4C modification. Knockdown of NAT10 suppresses and augments the expression levels of mature miRNAs and pri-miRNAs, respectively. Molecular mechanism studies found that pri-miRNA ac4C promotes the processing of pri-miRNA into precursor miRNA (pre-miRNA) by enhancing the interaction of pri-miRNA and DGCR8, thereby increasing the biogenesis of mature miRNA. Knockdown of NAT10 attenuates the oncogenic characters of lung cancer cells by regulating miRNA production in cancers. Moreover, NAT10 is highly expressed in various clinical cancers and negatively correlated with poor prognosis. Thus, our results reveal that NAT10 plays a crucial role in cancer initiation and progression by modulating pri-miRNA ac4C to affect miRNA production, which would provide an attractive therapeutic strategy for cancers.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Citidina/genética , Neoplasias/genética
3.
Int J Biol Macromol ; 254(Pt 1): 127769, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287578

RESUMO

Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.


Assuntos
Senescência Celular , Metilação de RNA , Metilação , RNA/genética , Processamento Pós-Transcricional do RNA/genética
4.
New Phytol ; 241(4): 1662-1675, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058237

RESUMO

Ribosome biogenesis is a highly dynamic and orchestrated process facilitated by hundreds of ribosomal biogenesis factors and small nucleolar RNAs. While many of the advances are derived from studies in yeast, ribosome biogenesis remains largely unknown in plants despite its importance to plant growth and development. Through characterizing the maize (Zea mays) defective kernel and embryo-lethal mutant dek58, we show that DEK58 encodes an Rrp15p domain-containing protein with 15.3% identity to yeast Rrp15. Over-expression of DEK58 rescues the mutant phenotype. DEK58 is localized in the nucleolus. Ribosome profiling and RNA gel blot analyses show that the absence of DEK58 reduces ribosome assembly and impedes pre-rRNA processing, accompanied by the accumulation of nearly all the pre-rRNA processing intermediates and the production of an aberrant processing product P-25S*. DEK58 interacts with ZmSSF1, a maize homolog of the yeast Ssf1 in the 60S processome. DEK58 and ZmSSF1 interact with ZmCK2α, a putative component of the yeast UTP-C complex involved in the small ribosomal subunit processome. These results demonstrate that DEK58 is essential to seed development in maize. It functions in the early stage of pre-rRNA processing in ribosome biogenesis, possibly through interacting with ZmSSF1 and ZmCK2α in maize.


Assuntos
RNA Ribossômico , Zea mays , Zea mays/genética , Zea mays/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribossomos/metabolismo , Sementes/genética , Sementes/metabolismo , Processamento Pós-Transcricional do RNA/genética
5.
Adv Sci (Weinh) ; 10(33): e2301459, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37845007

RESUMO

Selective RNA processing and stabilization (SRPS) facilitates the differential expression of multiple genes in polycistronic operons. However, how the coordinated actions of SRPS-related enzymes affect stoichiometric regulation remains unclear. In the present study, the first genome-wide targetome analysis is reported of these enzymes in Escherichia coli, at a single-nucleotide resolution. A strictly linear relationship is observed between the RNA pyrophosphohydrolase processing ratio and scores assigned to the first three nucleotides of the primary transcript. Stem-loops associated with PNPase targetomes exhibit a folding free energy that is negatively correlated with the termination ratio of PNPase at the 3' end. More than one-tenth of the RNase E processing sites in the 5'-untranslated regions(UTR) form different stem-loops that affect ribosome-binding and translation efficiency. The effectiveness of the SRPS elements is validated using a dual-fluorescence reporter system. The findings highlight a multi-layer and quantitative regulatory method for optimizing the stoichiometric expression of genes in bacteria and promoting the application of SRPS in synthetic biology.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Processamento Pós-Transcricional do RNA/genética , Expressão Gênica
6.
Proc Natl Acad Sci U S A ; 120(41): e2306727120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788316

RESUMO

The nuclear cleavage of a suboptimal primary miRNA hairpin by the Drosha/DGCR8 complex ("Microprocessor") can be enhanced by an optimal miRNA neighbor, a phenomenon termed cluster assistance. Several features and biological impacts of this new layer of miRNA regulation are not fully known. Here, we elucidate the parameters of cluster assistance of a suboptimal miRNA and also reveal competitive interactions amongst optimal miRNAs within a cluster. We exploit cluster assistance as a functional assay for suboptimal processing and use this to invalidate putative suboptimal substrates, as well as identify a "solo" suboptimal miRNA. Finally, we report complexity in how specific mutations might affect the biogenesis of clustered miRNAs in disease contexts. This includes how an operon context can buffer the effect of a deleterious processing variant, but reciprocally how a point mutation can have a nonautonomous effect to impair the biogenesis of a clustered, suboptimal, neighbor. These data expand our knowledge regarding regulated miRNA biogenesis in humans and represent a functional assay for empirical definition of suboptimal Microprocessor substrates.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
7.
Signal Transduct Target Ther ; 8(1): 412, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884527

RESUMO

Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.


Assuntos
Doenças Cardiovasculares , Humanos , Adolescente , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Adenosina/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/metabolismo
8.
STAR Protoc ; 4(4): 102505, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733595

RESUMO

We present a detailed protocol for sequencing full-length mRNA isoforms using the Oxford nanopore long-read sequencing technology. We describe steps for poly(A) RNA isolation, library preparation, and cDNA size selection. We then detail procedures for sequencing and processing and a computational framework to identify exon couplings and assign mRNA 5' ends and 3' ends to each other. Our approach enables the identification of links between transcription initiation and co-transcriptional RNA processing events. For complete details on the use and execution of this protocol, please refer to Alfonso-Gonzalez et al.1.


Assuntos
Processamento Pós-Transcricional do RNA , Processamento Pós-Transcricional do RNA/genética , DNA Complementar , Éxons , Biblioteca Gênica , RNA Mensageiro/genética
9.
Int Immunopharmacol ; 123: 110740, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543013

RESUMO

Acute lung injury (ALI) and its extreme manifestation, acute respiratory distress syndrome (ARDS), are life-threatening diseases in intensive care units. LncRNA THRIL plays a crucial role in regulating the inflammatory response; however, the potential function of THRIL in ALI/ARDS and the associated mechanism remain unclear. In our study, we found that THRIL was upregulated in the serum of ALI/ARDS patients, and its increased expression was positively correlated with the inflammatory cytokines IL-17. In LPS-induced A549 cells, knockdown of THRIL inhibited the release of the proinflammatory cytokines TNF-α, IL-1ß, IL-17, and IL-6, decreased the number of monodansylcadaverine-positive cells and LC3-II with immunofluorescence staining, decreased the expression of autophagy marker ATG7 and Beclin1, and increased expression of p62. Mechanistically, the transcription factor AP-1 bound directly to the THRIL promoter region and activated its transcription by c-Jun upon LPS exposure. Moreover, m6A modification of THRIL was increased in LPS-treated A549 cells, and METTL14 knockdown significantly abolished m6A modification and reduced stabilization of THRIL mRNA. In conclusion, our findings reveal that THRIL, transcriptionally activated by AP-1 and modified by METTL14-mediated m6A modification, induces autophagy in LPS-treated A549 cells, suggesting the potential application of THRIL for ALI/ARDS therapy.


Assuntos
RNA Longo não Codificante , Síndrome do Desconforto Respiratório , Humanos , Células Epiteliais Alveolares , Citocinas/metabolismo , Interleucina-17/metabolismo , Lipopolissacarídeos/metabolismo , Metiltransferases/metabolismo , Síndrome do Desconforto Respiratório/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Processamento Pós-Transcricional do RNA/genética
10.
Parasitol Res ; 122(9): 1961-1971, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400534

RESUMO

Giardia duodenalis is a protozoan intestinal parasite that causes a significant number of infections worldwide each year, particularly in low-income and developing countries. Despite the availability of treatments for this parasitic infection, treatment failures are alarmingly common. As a result, new therapeutic strategies are urgently needed to effectively combat this disease. On the other hand, within the eukaryotic nucleus, the nucleolus stands out as the most prominent structure. It plays a crucial role in coordinating ribosome biogenesis and is involved in vital processes such as maintaining genome stability, regulating cell cycle progression, controlling cell senescence, and responding to stress. Given its significance, the nucleolus presents itself as a valuable target for selectively inducing cell death in undesirable cells, making it a potential avenue for anti-Giardia treatments. Despite its potential importance, the Giardia nucleolus remains poorly studied and often overlooked. In light of this, the objective of this study is to provide a detailed molecular description of the structure and function of the Giardia nucleolus, with a primary focus on its involvement in ribosomal biogenesis. Likewise, it discusses the targeting of the Giardia nucleolus as a therapeutic strategy, its feasibility, and the challenges involved.


Assuntos
Nucléolo Celular , Giardia , Ribossomos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Giardia/citologia , Giardia/genética , RNA Ribossômico/genética , DNA Ribossômico/genética , DNA de Protozoário/genética , RNA de Protozoário/genética , Transcrição Gênica , Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA/genética , Ribossomos/genética , Ribossomos/metabolismo , Giardíase/tratamento farmacológico , Antiparasitários/uso terapêutico , Desenvolvimento de Medicamentos/tendências
11.
Nat Rev Mol Cell Biol ; 24(10): 714-731, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37369853

RESUMO

Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.


Assuntos
Eucariotos , Regulação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Eucariotos/genética , Estabilidade de RNA/genética , Splicing de RNA/genética , Processamento Pós-Transcricional do RNA/genética
12.
Trends Cell Biol ; 33(12): 1035-1048, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37179136

RESUMO

Transfer RNA (tRNA) plays a central role in translation by functioning as a biological link between messenger RNA (mRNA) and proteins. One prominent feature of the tRNA molecule is its heavily modified status, which greatly affects its biogenesis and function. Modifications within the anticodon loop are crucial for translation efficiency and accuracy, whereas other modifications in the body region affect tRNA structure and stability. Recent research has revealed that these diverse modifications are critical regulators of gene expression. They are involved in many important physiological and pathological processes, including cancers. In this review we focus on six different tRNA modifications to delineate their functions and mechanisms in tumorigenesis and tumor progression, providing insights into their clinical potential as biomarkers and therapeutic targets.


Assuntos
Anticódon , Neoplasias , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neoplasias/genética , Processamento Pós-Transcricional do RNA/genética
13.
Trends Plant Sci ; 28(7): 841-853, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019716

RESUMO

The SERRATE (SE) protein is involved in the processing of RNA polymerase II (RNAPII) transcripts. It is associated with different complexes engaged in different aspects of plant RNA metabolism, including assemblies involved in transcription, splicing, polyadenylation, miRNA biogenesis, and RNA degradation. SE stability and interactome properties can be influenced by phosphorylation. SE exhibits an intriguing liquid-liquid phase separation property that may be important in the assembly of different RNA-processing bodies. Therefore, we propose that SE seems to participate in the coordination of different RNA-processing steps and can direct the fate of transcripts, targeting them for processing or degradation when they cannot be properly processed or are synthesized in excess.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo , RNA/metabolismo , MicroRNAs/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Plant Cell ; 35(6): 1801-1816, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36794718

RESUMO

Although covalent nucleotide modifications were first identified on the bases of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), a number of these epitranscriptome marks have also been found to occur on the bases of messenger RNAs (mRNAs). These covalent mRNA features have been demonstrated to have various and significant effects on the processing (e.g. splicing, polyadenylation, etc.) and functionality (e.g. translation, transport, etc.) of these protein-encoding molecules. Here, we focus our attention on the current understanding of the collection of covalent nucleotide modifications known to occur on mRNAs in plants, how they are detected and studied, and the most outstanding future questions of each of these important epitranscriptomic regulatory signals.


Assuntos
Nucleotídeos , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nucleotídeos/genética , Processamento Pós-Transcricional do RNA/genética
15.
Nat Genet ; 55(3): 389-398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823319

RESUMO

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Assuntos
Biologia Celular , Células , Doença , Estudos de Associação Genética , Pleiotropia Genética , Estudos de Associação Genética/métodos , Humanos , Ubiquitinação/genética , Processamento Pós-Transcricional do RNA/genética , Células/metabolismo , Células/patologia , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Doença/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Estudo de Associação Genômica Ampla , Fenótipo , Doenças Autoimunes/genética , Doenças Autoimunes/patologia
16.
Nat Biotechnol ; 41(3): 344-354, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36302989

RESUMO

Functional characterization of pseudouridine (Ψ) in mammalian mRNA has been hampered by the lack of a quantitative method that maps Ψ in the whole transcriptome. We report bisulfite-induced deletion sequencing (BID-seq), which uses a bisulfite-mediated reaction to convert pseudouridine stoichiometrically into deletion upon reverse transcription without cytosine deamination. BID-seq enables detection of abundant Ψ sites with stoichiometry information in several human cell lines and 12 different mouse tissues using 10-20 ng input RNA. We uncover consensus sequences for Ψ in mammalian mRNA and assign different 'writer' proteins to individual Ψ deposition. Our results reveal a transcript stabilization role of Ψ sites installed by TRUB1 in human cancer cells. We also detect the presence of Ψ within stop codons of mammalian mRNA and confirm the role of Ψ in promoting stop codon readthrough in vivo. BID-seq will enable future investigations of the roles of Ψ in diverse biological processes.


Assuntos
Pseudouridina , Processamento Pós-Transcricional do RNA , RNA Mensageiro , Animais , Humanos , Camundongos , Composição de Bases , Mamíferos/genética , Pseudouridina/genética , Pseudouridina/metabolismo , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Sulfitos
17.
Plant Cell ; 35(6): 1654-1670, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36259932

RESUMO

The activities of RNA polymerases shape the epigenetic landscape of genomes with profound consequences for genome integrity and gene expression. A fundamental event during the regulation of eukaryotic gene expression is the coordination between transcription and RNA processing. Most primary RNAs mature through various RNA processing and modification events to become fully functional. While pioneering results positioned RNA maturation steps after transcription ends, the coupling between the maturation of diverse RNA species and their transcription is becoming increasingly evident in plants. In this review, we discuss recent advances in our understanding of the crosstalk between RNA Polymerase II, IV, and V transcription and nascent RNA processing of both coding and noncoding RNAs.


Assuntos
Processamento Pós-Transcricional do RNA , Transcrição Gênica , Processamento Pós-Transcricional do RNA/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerase II/genética , Plantas/genética , RNA não Traduzido/genética
18.
Mol Oncol ; 17(2): 195-229, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260366

RESUMO

N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.


Assuntos
Neoplasias , RNA , Humanos , RNA/metabolismo , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA não Traduzido/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
19.
Plant Cell ; 34(12): 4920-4935, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36087009

RESUMO

In plants, microRNA (miRNA) biogenesis involves cotranscriptional processing of RNA polymerase II (RNAPII)-generated primary transcripts by a multi-protein complex termed the microprocessor. Here, we report that Arabidopsis (Arabidopsis thaliana) PRE-MRNA PROCESSING PROTEIN 40 (PRP40), the U1 snRNP auxiliary protein, positively regulates the recruitment of SERRATE, a core component of the plant microprocessor, to miRNA genes. The association of DICER-LIKE1 (DCL1), the microprocessor endoribonuclease, with chromatin was altered in prp40ab mutant plants. Impaired cotranscriptional microprocessor assembly was accompanied by RNAPII accumulation at miRNA genes and retention of miRNA precursors at their transcription sites in the prp40ab mutant plants. We show that cotranscriptional microprocessor assembly, regulated by AtPRP40, positively affects RNAPII transcription of miRNA genes and is important to reach the correct levels of produced miRNAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Microcomputadores , Cromatina/genética , Cromatina/metabolismo , Processamento Pós-Transcricional do RNA/genética
20.
Cell Death Dis ; 13(8): 723, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985997

RESUMO

Uncontrolled epithelial cell proliferation in the prostate transition zone and the hyper-accumulation of mesenchymal-like cells derived from the epithelial-mesenchymal transition (EMT) of prostatic epithelium are two key processes in benign prostatic hyperplasia (BPH). m6A RNA modification affects multiple cellular processes, including cell proliferation, apoptosis, and differentiation. In this study, the aberrant up-regulation of methylase METTL3 in BPH samples suggests its potential role in BPH development. Elevated m6A modification in the prostate of the BPH rat was partially reduced by METTL3 knockdown. METTL3 knockdown also partially reduced the prostatic epithelial thickness and prostate weight, significantly improved the histological features of the prostate, inhibited epithelial proliferation and EMT, and promoted apoptosis. In vitro, METTL3 knockdown decreased TGF-ß-stimulated BPH-1 cell proliferation, m6A modification, and EMT, whereas promoted cell apoptosis. METTL3 increased the m6A modification of PTEN and inhibited its expression through the reading protein YTHDF2. PTEN knockdown aggravated the molecular, cellular, and pathological alterations in the prostate of BPH rats and amplified TGF-ß-induced changes in BPH-1 cells. More importantly, PTEN knockdown partially abolished the improving effects of METTL3 knockdown both in vivo and in vitro. In conclusion, the level of m6A modification is elevated in BPH; the METTL3/YTHDF2/PTEN axis disturbs the balance between epithelial proliferation and apoptosis, promotes EMT, and accelerates BPH development in an m6A modification-related manner.


Assuntos
Metiltransferases , Hiperplasia Prostática , Adenina/metabolismo , Animais , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Humanos , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA , Ratos , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...