Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Food Res Int ; 187: 114456, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763686

RESUMO

Single starter can hardly elevate the gel property of fermented freshwater fish sausage. In this work, in order to improve the physical properties of tilapia sausage, two newly isolated strains of lactic acid bacteria (LAB), Latilactobacillus sakei and Pediococcus acidilactici were used for cooperative fermentation of tilapia sausage, followed by the revelation of their formation mechanisms during cooperative fermentation and their improvement mechanisms after comparison with natural fermentation. Both strains, especially L. sakei possessed good growth, acidification ability, and salt tolerance. The gel strength, hardness, springiness, chewiness, whiteness, acidification, and total plate count significantly elevated during cooperative fermentation with starters. Pediococcus, Acinetobacter, and Macrococcus were abundant before fermentation, while Latilactobacillus quickly occupied the dominant position after fermentation for 18-45 h with the relative abundance over 51.5 %. The influence of each genus on the physical properties was calculated through the time-dimension and group-dimension correlation networks. The results suggested that the increase of Latilactobacillus due to the good growth and metabolism of L. sakei contributed the most to the formation and improvement of gel strength, texture properties, color, acidification, and food safety of tilapia sausage after cooperative fermentation. This study provides a novel analysis method to quantitatively evaluate the microbial contribution on the changes of various properties. The cooperative fermentation of LAB can be used for tilapia sausage fermentation to improve its physical properties.


Assuntos
Fermentação , Produtos Pesqueiros , Microbiologia de Alimentos , Tilápia , Animais , Tilápia/microbiologia , Produtos Pesqueiros/microbiologia , Concentração de Íons de Hidrogênio , Latilactobacillus sakei/metabolismo , Lactobacillales/metabolismo , Lactobacillales/isolamento & purificação , Lactobacillales/crescimento & desenvolvimento , Pediococcus acidilactici/metabolismo , Alimentos Fermentados/microbiologia , Produtos da Carne/microbiologia
2.
Food Chem ; 449: 139239, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604034

RESUMO

Single starter can hardly improve the volatile flavor of fermented fish surimi. In this study, the changes of volatile compounds (VCs) and microbial composition during cooperative fermentation of Latilactobacillus sakei and Pediococcus acidilactici were studied by headspace solid-phase microextraction gas chromatography-mass spectrometry and 16S rRNA gene high-throughput sequencing. During cooperative fermentation, most VCs and the abundance of Latilactobacillus and Lactococcus significantly increased, while Pediococcus, Acinetobacter, and Macrococcus obviously decreased. After evaluation of correlation and abundance of each genus, Latilactobacillus and Lactococcus possessed the highest influence on the formation of volatile flavor during cooperative fermentation. Compared with the natural fermentation, cooperative fermentation with starters significantly enhanced most of pleasant core VCs (odor activity value≥1), but inhibited the production of trimethylamine and methanethiol, mainly resulting from the absolutely highest influence of Latilactobacillus. Cooperative fermentation of starters is an effective method to improve the volatile flavor in the fermented tilapia surimi.


Assuntos
Fermentação , Produtos Pesqueiros , Latilactobacillus sakei , Pediococcus acidilactici , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Animais , Pediococcus acidilactici/metabolismo , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Latilactobacillus sakei/metabolismo , Tilápia/microbiologia , Tilápia/metabolismo , Tilápia/crescimento & desenvolvimento , Paladar , Aromatizantes/metabolismo , Aromatizantes/química , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Cromatografia Gasosa-Espectrometria de Massas
3.
Food Chem ; 449: 139329, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615634

RESUMO

Cured Spanish mackerel has a promising market owing to its nutritious nature as well as ease of transportation and preservation. However, the nutritional and flavor formation mechanism of Spanish mackerel after curing and drying is unclear. To overcome this problem, the effects of different processing conditions on the free amino acid, microbial community, and flavor of Spanish mackerel were explored. Staphylococcus and Cobetia are the main microorganisms in cured mackerel and are closely associated with the formation of their quality. Compared with fresh mackerel, cured mackerel contains increased levels of protein, fat, and chloride, contributing to its distinctive flavor. The contents of free amino acids in the BA64 group were substantially higher than those in other groups, particularly the contents of threonine, glycine, and tyrosine. These findings will contribute to the development of high-quality cured Spanish mackerel products and cured aquatic products.


Assuntos
Aminoácidos , Microbiota , Perciformes , Animais , Aminoácidos/análise , Aminoácidos/metabolismo , Aminoácidos/química , Perciformes/microbiologia , Perciformes/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Manipulação de Alimentos , Paladar , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Dessecação , Conservação de Alimentos/métodos
4.
J Agric Food Chem ; 72(18): 10558-10569, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38668637

RESUMO

As a traditional Thai condiment, Pla-ra is used to add flavor and richness to dishes. Nine treatment combinations of Pla-ra formulations created from 3 types of fish (Mor fish, Kradee fish, and Mor + Kradee fish) and 4 different carbohydrate sources (none, rice bran, roasted rice, and rice bran─roasted rice mixture) were studied through a 12 month fermentation period (1, 3, 5, 7, 8, 9, 10, 11, and 12 months). 16S rRNA Next Generation Sequencing (NGS) and LC-MS/MS techniques were used to analyze the microbial diversity and identify taste-enhancing peptides. Descriptive sensory analysis was performed on the extracts of the 108 Pla-ra samples mixed in a model broth. Koku perception and saltiness-enhancing attributes were clearly perceived and dominant in all samples, even though glutamyl peptides, including γ-Glu-Val-Gly, were found at subthreshold levels. The samples from mixed fish and Mor fish fermented with roasted ground rice and rice bran for 12 months had the most typical Pla-ra odors and tastes and had high taste-enhancing activities. NGS analysis revealed the presence of bacteria containing a large number of protease and aminopeptidase genes in the samples. Bacillus spp., Gallicola spp., and Proteiniclasticum spp. correlated well with the generation of glutamyl and arginyl peptides and typical odors in the samples. These results confirmed the typical sensory quality of Pla-ra depended on protein sources, carbohydrate sources, and bacteria communities. Further optimization of the microbial composition found could lead to the development of starter cultures to control and promote flavor development in fermented fish products.


Assuntos
Bactérias , Fermentação , Peixes , Aromatizantes , Microbiota , Peptídeos , Paladar , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Peixes/microbiologia , Tailândia , Humanos , Peptídeos/metabolismo , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Odorantes/análise , Masculino , Feminino , Adulto , Oryza/química , Oryza/microbiologia , Oryza/metabolismo , RNA Ribossômico 16S/genética , Condimentos/análise , Condimentos/microbiologia , População do Sudeste Asiático
5.
J Food Prot ; 85(6): 956-960, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202455

RESUMO

ABSTRACT: Histamine-forming bacteria (HFB) were isolated from the 70 salted fish samples bought from town markets of Guangdong Province of south China. In addition, the histamine-forming ability of HFB was analyzed. There were 31 strains of HFB isolated from 36 salted fish pickled overnight. They were identified as six bacteria species: Vibrio alginolyticus, Vibrio rumoiensis, Staphylococcus saprophyticus, Staphylococcus xylosus, Lactococcus lactis, and Morganella morganii. The rate of confirmation of V. alginolyticus was highest (23 of 31), exceeding 200 mg/kg histamine. In particular, M. morganii produced a histamine amount that exceeded 2,000 mg/kg, although it was only one isolate in this study. In addition, five bacteria species of HFB were isolated from 34 dried salted fish. Among them, S. saprophyticus was dominant in the dried salted fish but produced histamines below 200 mg/kg. However, Enterobacter aerogenes from dried salted fish formed a histamine amount exceeding 200 mg/kg. The study showed that the dominant strain of HFB was different in two kinds of salted fish. Both kinds of salted fish contained HFB whose histamine-forming capacity exceeded 200 mg/kg. As a result, the safety of salted fish should be of concern, especially salted fish pickled overnight.


Assuntos
Histamina , Morganella morganii , Animais , Bactérias , Produtos Pesqueiros/microbiologia , Peixes/microbiologia , Prevalência , Cloreto de Sódio
6.
J Sci Food Agric ; 102(1): 105-112, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048077

RESUMO

BACKGROUND: The effect of nanoemulsions prepared with grape seed and cinnamon essential oils on the shelf-life of flathead mullet (Mugil cephalus) fillets was evaluated by determining physicochemical (pH, free fatty acids, peroxide value, total volatile base nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARs)), sensory and microbiological (mesophilic aerobic bacteria, total psychrophilic bacteria, and Enterobacteriaceae counts) properties during 14 day storage at 2 °C. RESULTS: The nanoemulsions showed good stability and low average droplet size. The results indicated that nanoemulsion treatments significantly prolonged the shelf-life of the fillets. Treatment inhibited increases in pH and TVB-N, and retarded lipid oxidation and hydrolysis. Sensory assessment revealed that treatment induced shelf-life extension from 10 to 14 days, compared with controls. Microbiological analyses showed nanoemulsion treatment caused shelf-life extension from 10 to 12 days with reduction of microbiological contamination by up to 1 log cfu g-1 in mesophilic and 1.5 log cfu g-1 in psychrotrophic bacteria. CONCLUSION: Considering the results, grape seed and cinnamon essential oil nanoemulsions could be considered as novel antimicrobial and antioxidant materials for shelf-life extension of flathead mullet fillets during cold storage. © 2021 Society of Chemical Industry.


Assuntos
Cinnamomum zeylanicum/química , Produtos Pesqueiros/análise , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Vitis/química , Animais , Bactérias/efeitos dos fármacos , Emulsões/química , Produtos Pesqueiros/microbiologia , Armazenamento de Alimentos , Humanos , Smegmamorpha/microbiologia , Paladar , Água/análise
7.
ScientificWorldJournal ; 2021: 3119958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594160

RESUMO

Fish and fish products are considered a fundamental part of the human diet due to their high nutritional value. Food-borne diseases are considered a major public health challenge worldwide due to their incidence, associated mortality, and negative economic repercussions. Food safety is the guarantee that foods will not cause harm to the health of those who consume them, and it is a fundamental property of food quality. Food safety can be at risk of being lost at any stage of the food chain if the food is contaminated by pathogenic microorganisms. Many diverse bacteria are present in the environment and as part of the microbiota of food that can be transmitted to humans during the handling and consumption of food. Plesiomonas shigelloides has been mainly associated with outbreaks of gastrointestinal diseases due to the consumption of fish. This bacterium inhabits the environment and aquatic animals and is associated with the microbiota of fish such as tilapia, a fish of importance in fishing, aquaculture, commercialization, and consumption worldwide. The purpose of this document is to provide, through a bibliographic review of databases (Scopus, Web of Science, and Google Scholar, among others), a general informative perspective on food-borne diseases and, in particular, the consumption of fish and tilapia. Diseases derived from contamination by Plesiomonas shigelloides are included, and control and prevention actions and sanitary regulations for fishery products established in several countries around the world are discussed to promote the safety of foods of aquatic origin intended for human consumption and to protect public health.


Assuntos
Doenças dos Peixes/microbiologia , Contaminação de Alimentos , Microbiologia de Alimentos , Gastroenterite/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Plesiomonas/isolamento & purificação , Alimentos Marinhos/microbiologia , Tilápia/microbiologia , Animais , Aquicultura , Carga Bacteriana , Criopreservação , Reservatórios de Doenças , Produtos Pesqueiros/microbiologia , Manipulação de Alimentos , Conservação de Alimentos , Inocuidade dos Alimentos , Gastroenterite/epidemiologia , Gastroenterite/etiologia , Gastroenterite/prevenção & controle , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Plesiomonas/crescimento & desenvolvimento , Prevalência , Controle de Qualidade , Poluição da Água
8.
J Food Sci ; 86(10): 4628-4636, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34549438

RESUMO

This study investigated the effect of antioxidants on lipid stability of mackerel (Scomber japonicus) fish balls. Oat phenolic acid compounds (OPC) and ascorbate palmitoyl (AP) were used to prolong the shelf life of steamed mackerel fish balls. Fish balls were stored at 4°C for 21 days, and the total bacterial count, hardness, whiteness, water holding capacity (WHC), pH, total volatile basic nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS) value were monitored regularly. The results indicated that OPC+AP composite as a biological preservative could significantly inhibit the increase of the total bacterial count. Meanwhile, OPC and AP could maintain better hardness, whiteness, and WHC of fish balls during refrigerated storage. Furthermore, OPC and AP slowed down the increase of TVB-N and TBARS values. The results showed that OPC+AP had a synergistic effect on the storage time and could prolong the shelf life within the storage time. Adding OPC and AP was a promising strategy to improve the quality and shelf life of fish balls. PRACTICAL APPLICATION: The research provided a new application of OPC and AP for improving fish balls quality and shelf life during cold storage (4°C). OPC is a natural plant secondary metabolite from oat which exhibits excellent anti-oxidation. The research showed that OPC and AP combined with synergistic effect as biological preservatives can effectively inhibit the total bacterial count and reduce TBARS and TVB-N value of fish balls during the shelf life and maintain the hardness, which improved the quality and shelf life of fish balls.


Assuntos
Ácido Ascórbico/análogos & derivados , Avena , Produtos Pesqueiros , Conservação de Alimentos , Fenóis , Animais , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Avena/química , Carga Bacteriana/efeitos dos fármacos , Temperatura Baixa , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Produtos Pesqueiros/normas , Conservação de Alimentos/métodos , Armazenamento de Alimentos , Oxirredução/efeitos dos fármacos , Fenóis/farmacologia
9.
Nat Commun ; 12(1): 5384, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508079

RESUMO

Antimicrobial resistance (AMR) is a growing threat to human and animal health. However, in aquatic animals-the fastest growing food animal sector globally-AMR trends are seldom documented, particularly in Asia, which contributes two-thirds of global food fish production. Here, we present a systematic review and meta-analysis of 749 point prevalence surveys reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 articles published in 2000-2019. We find concerning levels of resistance to medically important antimicrobials in foodborne pathogens. In aquaculture, the percentage of antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% [95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer resolution, finding resistance hotspots along Asia's major river systems and coastal waters of China and India. Regions benefitting most from future surveillance efforts are eastern China and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally.


Assuntos
Antibacterianos/efeitos adversos , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Doenças dos Peixes/tratamento farmacológico , Pesqueiros/tendências , Animais , Antibacterianos/administração & dosagem , Ásia , Bactérias/isolamento & purificação , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Produtos Pesqueiros/microbiologia , Pesqueiros/estatística & dados numéricos , Peixes/microbiologia , Prevalência
10.
Int J Food Microbiol ; 352: 109265, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34116257

RESUMO

Listeria monocytogenes is a potentially fatal foodborne pathogen that can be found in various ready-to-eat (RTE) products. It tolerates adverse conditions such as high salt concentrations and refrigerated storage, thus, the elimination of the pathogen in food processing often relies on heat processing. The objective of this study was to create a model to predict the effect of salt on heat tolerance of L. monocytogenes in meat and seafood products during heat treatments conducted at 57 to 65 °C to reduce numbers by ≥3 log10 cycles. Salt concentrations, up to 6% in the water phase (WPS%), were applied to cover a variety of lightly salted RTE meat and seafood products. The experimental work involved samples of ground pork tenderloin, ground chicken breast fillet and skinned, ground salmon fillet adjusted to different WPS% i.e., 3.6 and 5.2 WPS% for pork samples, 2.0, 3.0, 3.5 and 6.0 WPS% for chicken samples and 3.0 and 6.0 WPS% for salmon samples. All samples were inoculated with late-stationary phase L. monocytogenes cultures. For pork samples, a two-strain mixture of a pork isolate (MS22254) and an environmental isolate (MS22246) was applied. For chicken and salmon samples, a seafood isolate (MS22258) and isolate MS22246 was applied as single cultures. Samples were vacuum-packed in sterile bags, immerged in water bath, and held at constant temperatures of 57, 60 and 65 °C for pork samples and 58, 61 and 62.5 °C for chicken and salmon samples. For survivor curves, where at least 3 log10-reduction were obtained, heat tolerance was expressed as decimal reduction times, D-values. D-values were observed to increase with increasing WPS%. The effect of salt on heat tolerance of L. monocytogenes was defined as the relative increase (RI-value) in D-value obtained when salt had been added to the food. The effect of WPS% on RI-values was independent of heating temperatures, foods and strains. For secondary modelling, RI-values were transformed using the natural logarithm, ln(RI) and fitted to a linear model as a function of WPS%. Model validation, with 56 independent values collected from the scientific literature, resulted in bias and accuracy factors of 0.89 and 1.26, respectively, suggesting acceptable performance with tendency to slightly under-predict. The developed predictive model can be used to guide the design of heat processes for manufacturers of lightly preserved and mildly processed meat and seafood products requiring more than 3 log10 reduction of L. monocytogenes to ensure safety.


Assuntos
Produtos Pesqueiros/microbiologia , Manipulação de Alimentos/métodos , Listeria monocytogenes/efeitos dos fármacos , Produtos da Carne/microbiologia , Modelos Biológicos , Cloreto de Sódio/farmacologia , Termotolerância/efeitos dos fármacos , Animais , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Temperatura Alta
11.
Food Chem ; 358: 129863, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940298

RESUMO

Traditional high-salt fermented Suanyu is an ethnic fermented fish product in southwest China. Lactic acid bacteria (LAB) are the most appropriate strains because of their technological properties during ripening fermentation. The diversity of LAB in high-salt fermented Chinese Suanyu was examined through high-throughput sequencing (HTS), and the most suitable LAB strain was acquired through strain isolation and characterization, surimi simulation fermentation system, and principal component analysis (PCA). The processing adaptability of the strain was examined via Suanyu fermentation. Results showed that Lactobacillus, Tetragenococcus, and Weissella were the dominant bacteria in Suanyu, and their contributions were 53.99%, 35.60%, and 4.10%, respectively. The most suitable strain (Lactobacillus plantarum B7) rapidly produced acid, exhibited a strong antibacterial activity, showed salt tolerance, and had no amino acid decarboxylase activity. pH decreased to about 3.6. Eventually, the ability to tolerate 20% salt was observed, and the activity of amino acid decarboxylase was negative. Fermented Suanyu with B7 rapidly produced acid (11.7% d-1). The non-protein nitrogen (NPN) and total free amino acid (FAA) contents of fermented Suanyu were higher and its total volatile base nitrogen (TVB-N), thiobarbituric acid (TBARS), and biogenic amines (BAs) levels were lower than those of naturally fermented Suanyu. Therefore, B7 is a potential microbial starter for Suanyu industrial production.


Assuntos
Bactérias/metabolismo , Alimentos Fermentados/microbiologia , Produtos Pesqueiros/microbiologia , Aminoácidos/análise , Animais , Bactérias/genética , Aminas Biogênicas/análise , Fermentação , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/metabolismo , RNA Ribossômico 16S , Weissella/isolamento & purificação
12.
Food Microbiol ; 98: 103686, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875196

RESUMO

This study aimed to achieve deeper insights into the microbiota composition and dynamic succession of the dry-cured black carp during storage using a high-throughput sequencing technique (HTS). The effect of lipid oxidation on microorganisms was also evaluated. Over 651 bacterial genera belonging to 37 phyla were identified. Firmicutes, Proteobacteria and Actinobacteria were the main bacterial phylum, some are highly associated with meat spoilage. Staphylococcus, Macrococcus and Acinetobacter were the most three microbial genera throughout the entire storage period (30 days). Between two different storage temperature, refrigeration at 4 °C could facilitate maintaining the microbial diversity, while 25 °C storage led to the formation of dominant microflora and the reduction of community diversity. Canonical correspondence analysis (CCA) showed that acid value (AV), malondialdehyde (MDA) and 4-hydroxy-2-hexenal (HHE) contents were three key environmental factors (oxidation products) affecting the profile of the microbiota. Staphylococcus presented a positive correlation with HHE content, while Macrococcus and Acinetobacter were negatively correlated with HHE content. These results could expand our knowledge on the effect of lipid oxidation on change of microbial distribution, it could also present an guideline to develop advanced storage methods for the vacuum packed dry-cured fish products.


Assuntos
Bactérias/isolamento & purificação , Produtos Pesqueiros/microbiologia , Lipídeos/química , Microbiota , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Carpas/microbiologia , Produtos Pesqueiros/análise , Microbiologia de Alimentos , Embalagem de Alimentos/instrumentação , Embalagem de Alimentos/métodos , Armazenamento de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Oxirredução , Refrigeração , Vácuo
13.
Food Microbiol ; 98: 103756, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875198

RESUMO

Phenotypic and genotypic resistance to benzalkonium chloride (BC), cadmium and arsenic was tested (by susceptibility assays and molecular methods) in 287 Listeria monocytogenes strains isolated from fish and fish products, and food-producing factories in Poland. Overall, 40% of the isolates were resistant to BC, 56% to cadmium and 41% to arsenic (57% displayed resistance to more than one of the tested compounds). Among BC-resistant isolates, the most commonly detected resistance determinant was the qacH gene (83%). Three distinct types of cadA gene determining resistance to cadmium were detected, with the cadA1 variant predominant (88%), while most arsenic-resistant isolates (86%) harbored the arsA gene associated with a Tn554-like transposon (one strain harbored two copies of arsA in different arsenic resistance cassettes). 53% of all tested isolates contained plasmids (from 4 kb to > 90 kb in size), which were classified into 11 groups (p1-p11) based on their restriction patterns. Interestingly, 12 isolates harbored the small mobilizable pLMST6-like plasmid pLIS3 encoding multidrug efflux pump EmrC. Clustering analysis of PFGE patterns revealed that these isolates represent several diverse bacterial populations, which strongly suggests mobility of the pLMST6-like plasmids among L. monocytogenes strains and their role in dissemination of BC resistance.


Assuntos
Antibacterianos/farmacologia , Arsênio/farmacologia , Compostos de Benzalcônio/farmacologia , Farmacorresistência Bacteriana , Produtos Pesqueiros/microbiologia , Peixes/microbiologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/isolamento & purificação , Animais , Peixes/classificação , Contaminação de Alimentos/análise , Listeria monocytogenes/classificação , Listeria monocytogenes/genética , Polônia
14.
PLoS One ; 16(1): e0245227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444386

RESUMO

DNA-sequencing was performed on the V3-V4 regions of 16S rRNA genes to investigate the microbial diversity of five samples of fermented freshwater fish (pla-ra) from three provinces in northeastern Thailand. The samples had salt concentrations ranging from 7 to 10%, pH values from 4.83 to 7.15, and D-/L-lactic acid concentrations of 90 to 450 mg/l. A total of 598 operational taxonomic units were annotated at various taxonomic ranks based on the SILVA Database. The lactic-acid and halophilic genera Tetragenococcus, Halanaerobium and Lactobacillus were among the dominant taxa of bacteria. The top 20 non-redundant taxa were considered in more detail. In two pla-ra samples, Tetragenococcus muriaticus was commonly identified. Halanaerobium fermentans was the most abundant species in a third sample and co-dominant in another sample. Lactobacillus rennini was dominant in the pla-ra sample from Roi Et Province. Additionally, other beneficial bacteria were detected including Staphylococcus nepalensis, Lactobacillus sakei, Lactobacillus pentosus, Weissella confusa, and Bifidobacterium bifidum. Differences between samples may be due to use of different raw materials, salt concentrations, recipes, processes and fermentation periods. The microbial communities in pla-ra provide a better understanding of the production outcomes of traditional products. Further optimization of the fermentation process, for example by using dominant bacterial taxa in starter cultures, may improve processes of food fermentation, food quality and flavor control, providing useful guidelines for industrial applications.


Assuntos
Fermentação , Produtos Pesqueiros/microbiologia , Microbiota , Biodiversidade , Concentração de Íons de Hidrogênio , Ácido Láctico/análise , Salinidade , Especificidade da Espécie , Tailândia
15.
Food Microbiol ; 95: 103705, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397623

RESUMO

Amplicon sequencing approaches have been widely used in food bacterial ecology. However, choices regarding the methodology can bias results. In this study, bacterial communities associated with cold-smoked salmon products and their processing plant surfaces were monitored via sequencing of the V3-V4 region of the 16S rRNA gene. The impact of DNA extraction protocols, sampling methods (swabbing or sponging) and surface materials on bacterial communities were investigated. α and ß diversity analyses revealed that DNA extraction methods mainly influence the observed cold-smoked salmon microbiota composition. Moreover, different DNA extraction methods revealed significant differences in observed community richness and evenness. ß-Proteobacteria: Photobacterium, Serratia and Firmicutes: Brochothrix, Carnobacterium and Staphylococcus were identified as the dominant genera. Surface microbiota richness, diversity and composition were mainly affected by cleaning and disinfection procedures but not by DNA extraction methods. Surface community richness and evenness appeared higher when sampled by sponging compared to swabbing. ß-diversity analyses highlighted that surface topology, cleaning and disinfection and sampling devices seemed to affect the bacterial community composition. The dominant surface bacteria identified were mainly Flavobacteriaceae, ß-Proteobacteria and γ-Proteobacteria described as fish spoilers such as Acinetobacter, Pseudomonas and Shewanella. DNA extraction and sampling methods can have an impact on sequencing results and the ecological analysis of bacterial community structures. This study confirmed the importance of methodology standardization and the need for analytical validation before 16S rDNA metabarcoding surveys.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Produtos Pesqueiros/microbiologia , Técnicas Genéticas , Microbiota , RNA Ribossômico 16S/isolamento & purificação , Salmão/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Manipulação de Alimentos/instrumentação , RNA Ribossômico 16S/genética
16.
Int J Food Microbiol ; 336: 108895, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33075693

RESUMO

Fresh Atlantic salmon (Salmo salar) represents a healthy, nutritious food with global distribution and increasing consumption and economic value. Contaminating Listeria monocytogenes in fresh salmon represents a health hazard to consumers, is linked to extensive product recalls and is a major challenge for salmon processors. Verdad N6, a commercially available buffered vinegar, was evaluated as a treatment for raw salmon fillets either alone or in combination with the antimicrobial peptide nisin, with regard to anti-listerial effects under processing and storage, and influence on sensory quality and background microbiota. Salmon fillets were surface contaminated with L. monocytogenes and immersed in solutions of Verdad N6 or treated with nisin or a combination of these two treatments. Levels of L. monocytogenes were determined during vacuum-pack refrigerated storage. The use of Verdad N6 resulted in increased lag times and substantially reduced growth of L. monocytogenes. The inhibitory effects were dependent on Verdad N6 levels, immersion time, and storage time and temperature. A 5 s immersion in 10% Verdad N6 solution at 4 °C reduced growth of L. monocytogenes from log 2.8 to log 1 after 12 days of storage. Nisin (0.2-1 ppm) had listericidal effects up to 1 log but did not inhibit regrowth when used alone. Appropriate combinations of Verdad N6 and nisin led to L. monocytogenes levels no higher after 12 days of storage than the initial levels. The inhibitory effects were markedly lower at 7 °C than at 4 °C. Salmon with Verdad N6 showed reduced levels of total counts during storage indicating a longer shelf-life, and a shift in the dominating bacteria with reduced and increased relative levels of Enterobacteriaceae and lactic acid bacteria, respectively. Sensory analyses of raw and cooked Verdad N6 treated a non-treated salmon resulted in small differences. In summary, Verdad N6 is an option for production of high-quality raw salmon with increased shelf-life and enhanced food safety through its Listeria inhibiting effects. The application of Verdad N6 in combination with nisin treatment can further reduce the listeria-risks of these products.


Assuntos
Ácido Acético/farmacologia , Antibacterianos/farmacologia , Produtos Pesqueiros/microbiologia , Armazenamento de Alimentos/métodos , Listeria monocytogenes/efeitos dos fármacos , Nisina/farmacologia , Salmo salar/microbiologia , Animais , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Alimentos Crus/microbiologia , Vácuo
17.
Food Chem ; 340: 128104, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010644

RESUMO

Bacteria release membrane vesicles into the extracellular environment but which activity is unclear. We investigated the applications of extracellular vesicles (EVs) isolated from probiotic Lactobacillus plantarum to protect tuna fish against spoilage and quality loss in this study. A significant difference was found in EVs size obtained from L. plantarum after 8, 24, and 48 hr incubation. The L. plantarum-derived EVs were collected and used to confirm the anti-bacterial activity versus Shewanella putrefaciens. Finally, the tuna fish was stored at 4 °C for 5 days after coating with EVs or sodium erythorbate, and the quality indexes were assayed. Results indicated that EVs markedly inhibited oxidation reaction, total volatile base nitrogen (TVBN), peroxide value (PV), malondialdehyde (MDA), and bacteria levels. These results finding out that EVs from L. plantarum may have potential for application in food storage technology. Overall, we indicated this new material may be developed as an anti-bacterial agent for prolonging the shelf life of tuna fish.


Assuntos
Antibacterianos/farmacologia , Vesículas Extracelulares , Produtos Pesqueiros/microbiologia , Microbiologia de Alimentos/métodos , Lactobacillus plantarum/citologia , Animais , Antibacterianos/química , Armazenamento de Alimentos , Malondialdeído/metabolismo , Oxirredução , Probióticos , Shewanella putrefaciens/efeitos dos fármacos , Shewanella putrefaciens/crescimento & desenvolvimento , Atum/microbiologia
18.
Bioengineered ; 12(1): 54-62, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33350336

RESUMO

This study was aimed to identify and optimize the culture conditions for gamma-aminobutyric acid (GABA) production by a lactic acid bacterium strain isolated from mam nem, a fermented fish sauce. Among the six isolates obtained from mam nem, the MN12 had the most potent GABA-producing capability. The strain was then identified to be Pedioccocus pentosaceus by employing MALDI-TOF-MS and phenylalanyl-tRNA synthase sequencing methods. The initial cell density of 5.106 CFU/mL, monosodium glutamate concentration of 60 mM, initial pH of 7, temperature of 45°C and cultivation time of 72 h were found to be the optimal culture conditions for highest production of GABA, reaching 27.9 ± 0.42 mM, by this strain. The cultivation conditions for GABA production by P. pentosaceus MN12 have been successfully optimized, providing a foundation for the development of fermented foods enriched with GABA.


Assuntos
Alimentos Fermentados/microbiologia , Produtos Pesqueiros/microbiologia , Pediococcus pentosaceus/metabolismo , Ácido gama-Aminobutírico , Técnicas de Cultura de Células , Meios de Cultura , Glutamato de Sódio , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
19.
J Sci Food Agric ; 101(8): 3225-3236, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33222174

RESUMO

BACKGROUND: Psychrophiles have evolved to adapt to freezing environments, and cold-adapted enzymes from these organisms can maintain high catalytic activity at low temperature. The use of cold-adapted enzymes has great potential for the revolution of food and molecular biology industries. RESULTS: In this study, four different strains producing protease were isolated from traditional fermented shrimp paste, one of which, named Planococcus maritimus XJ11 by 16S rRNA nucleotide sequence analysis, exhibited the largest protein hydrolysis clear zone surrounding the colonies. Meanwhile, the strain P. maritimus XJ11 was selected for further investigation because of its great adaptation to low temperature, low salinity and alkaline environment. The enzyme activity assay of P. maritimus XJ11 indicated that the optimum conditions for catalytic activity were pH 10.0 and 40 °C. Moreover, the enzyme also showed an increasing activity with temperatures from 10 to 40 °C and retained more than 67% activity of the maximum over a broad range of salinity (50-150 g L-1 ). Genome sequencing analysis revealed that strain XJ11 possessed one circular chromosome of 3 282 604 bp and one circular plasmid of 67 339 bp, with a total number of 3293 open reading frames (ORFs). Besides, 21 genes encoding protease, including three serine proteases, were identified through the NR database. CONCLUSION: Cold-adapted bacterium P. maritimus XJ11 was capable of producing alkaline proteases with high catalytic efficiency at low or moderate temperatures. Furthermore, the favorable psychrophilic and enzymatic characters of strain P. maritimus XJ11 seem to have a promising potential for industrial application. © 2020 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias/genética , Alimentos Fermentados/microbiologia , Produtos Pesqueiros/microbiologia , Genoma Bacteriano , Palaemonidae/microbiologia , Peptídeo Hidrolases/genética , Planococáceas/enzimologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura Baixa , DNA Bacteriano/genética , Estabilidade Enzimática , Produtos Pesqueiros/análise , Hidrólise , Fases de Leitura Aberta , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Planococáceas/química , Planococáceas/genética , Planococáceas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Food Microbiol ; 94: 103649, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279074

RESUMO

In this study, the bioprotective potential of Lactobacillus sakei CTC494 against Listeria monocytogenes CTC1034 was evaluated on vacuum packaged hot-smoked sea bream at 5 °C and dynamic temperatures ranging from 3 to 12 °C. The capacity of three microbial competition interaction models to describe the inhibitory effect of L. sakei CTC494 on L. monocytogenes was assessed based on the Jameson effect and Lotka-Volterra approaches. A sensory analysis was performed to evaluate the spoiling capacity of L. sakei CTC494 on the smoked fish product at 5 °C. Based on the sensory results, the bioprotection strategy against the pathogen was established by inoculating the product at a 1:2 ratio (pathogen:bioprotector, log CFU/g). The kinetic growth parameters of both microorganisms were estimated in mono-culture at constant storage (5 °C). In addition, the inhibition function parameters of the tested interaction models were estimated in co-culture at constant and dynamic temperature storage using as input the mono-culture kinetic parameters. The growth potential (δ log) of L. monocytogenes, in mono-culture, was 3.5 log on smoked sea bream during the experimental period (20 days). In co-culture, L. sakei CTC494 significantly reduced the capability of L. monocytogenes to grow, although its effectiveness was temperature dependent. The LAB strain limited the growth of the pathogen under storage at 5 °C (<1 log increase) and at dynamic profile 2 (<2 log increase). Besides, under storage at dynamic profile 1, the growth of L. monocytogenes was inhibited (<0.5 log increase). These results confirmed the efficacy of L. sakei CTC494 for controlling the pathogen growth on the studied fish product. The Lotka-Volterra competition model showed slightly better fit to the observed L. monocytogenes growth response than the Jameson-based models according to the statistical performance. The proposed modelling approach could support the assessment and establishment of bioprotective culture-based strategies aimed at reducing the risk of listeriosis linked to the consumption of RTE hot-smoked sea bream.


Assuntos
Produtos Pesqueiros/microbiologia , Conservação de Alimentos/métodos , Latilactobacillus sakei/fisiologia , Listeria monocytogenes/crescimento & desenvolvimento , Animais , Antibiose , Embalagem de Alimentos , Listeria monocytogenes/fisiologia , Dourada/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...