Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
PLoS One ; 15(11): e0241667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33137166

RESUMO

OBJECTIVE: HIV-associated CNS dysfunction is a significant problem among people with HIV (PWH), who now live longer due to viral suppression from combined anti-retroviral therapy (ART). Over the course of infection, HIV generates toxic viral proteins and induces inflammatory cytokines that have toxic effects on neurons in the CNS. Among these viral proteins, HIV Nef has been found in neurons of postmortem brain specimens from PWH. However, the source of Nef and its impact on neuronal cell homeostasis are still elusive. METHODS AND RESULTS: Here, in using a simian immunodeficiency virus (SIV) infected rhesus macaque model of neuroHIV, we find SIV Nef reactivity in the frontal cortex, hippocampus and cerebellum of SIV-infected animals using immunohistochemistry (IHC). Interestingly, SIV-infected macaques treated with ART also showed frequent Nef positive cells in the cerebellum and hippocampus. Using dual quantitative RNAscope and IHC, we observed cells that were positive for Nef, but were not for SIV RNA, suggesting that Nef protein is present in cells that are not actively infected with SIV. Using cell specific markers, we observed Nef protein in microglia/macrophages and astrocytes. Importantly, we also identified a number of NeuN-positive neurons, which are not permissive to SIV infection, but contained Nef protein. Further characterization of Nef-positive neurons showed caspase 3 activation, indicating late stage apoptosis in the CNS neurons. CONCLUSIONS: Our results suggest that regardless of ART status, Nef is expressed in the brain of SIV infected macaques and may contribute to neurological complications seen in PWH.


Assuntos
Cerebelo/metabolismo , Produtos do Gene nef/genética , Hipocampo/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Animais , Cerebelo/virologia , Produtos do Gene nef/metabolismo , Hipocampo/virologia , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo
2.
PLoS One ; 15(8): e0225420, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764749

RESUMO

The H196 residue in SIVmac239 Nef is conserved across the majority of HIV and SIV isolates, lies immediately adjacent to the AP-2 (adaptor protein 2) binding di-leucine domain (ExxxLM195), and is critical for several described AP-2 dependent Nef functions, including the downregulation of tetherin (BST-2/CD317), CD4, and others. Surprisingly, many stocks of the closely related SIVmac251 swarm virus harbor a nef allele encoding a Q196. In SIVmac239, this variant is associated with loss of multiple AP-2 dependent functions. Publicly available sequences for SIVmac251 stocks were mined for variants linked to Q196 that might compensate for functional defects associated with this residue. Variants were engineered into the SIVmac239 backbone and in Nef expression plasmids and flow cytometry was used to examine surface tetherin expression in primary CD4 T cells and surface CD4 expression in SupT1 cells engineered to express rhesus CD4. We found that SIVmac251 stocks that encode a Q196 residue in Nef uniformly also encode an upstream R191 residue. We show that R191 restores the ability of Nef to downregulate tetherin in the presence of Q196 and has a similar but less pronounced impact on CD4 expression. However, a published report showed Q196 commonly evolves to H196 in vivo, suggesting a fitness cost. R191 may represent compensatory evolution to restore the ability to downregulate tetherin lost in viruses harboring Q196.


Assuntos
Antígeno 2 do Estroma da Médula Óssea/metabolismo , Vírus da Imunodeficiência Símia/genética , Proteínas Virais Reguladoras e Acessórias/genética , Animais , Antígenos CD/metabolismo , Antígeno 2 do Estroma da Médula Óssea/genética , Linfócitos T CD4-Positivos/metabolismo , Proteínas Ligadas por GPI/metabolismo , Produtos do Gene nef/metabolismo , Macaca mulatta/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Proteínas Virais Reguladoras e Acessórias/metabolismo
3.
Elife ; 92020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32119644

RESUMO

HIV-1 Vpr is necessary for maximal HIV infection and spread in macrophages. Evolutionary conservation of Vpr suggests an important yet poorly understood role for macrophages in HIV pathogenesis. Vpr counteracts a previously unknown macrophage-specific restriction factor that targets and reduces the expression of HIV Env. Here, we report that the macrophage mannose receptor (MR), is a restriction factor targeting Env in primary human monocyte-derived macrophages. Vpr acts synergistically with HIV Nef to target distinct stages of the MR biosynthetic pathway and dramatically reduce MR expression. Silencing MR or deleting mannose residues on Env rescues Env expression in HIV-1-infected macrophages lacking Vpr. However, we also show that disrupting interactions between Env and MR reduces initial infection of macrophages by cell-free virus. Together these results reveal a Vpr-Nef-Env axis that hijacks a host mannose-MR response system to facilitate infection while evading MR's normal role, which is to trap and destroy mannose-expressing pathogens.


Human cells have defense mechanisms against viral infection known as restriction factors. These are proteins that break down parts of a virus including its DNA or proteins. To evade these defenses, viruses in turn make proteins that block or break down restriction factors. This battle between human and viral proteins determines which types of cells are infected and how quickly a virus can multiply and spread to new cells. HIV produces a protein called Vpr that counteracts a restriction factor found in immune cells called macrophages. However, the identity of the restriction factor targeted by Vpr is a mystery. When Vpr is missing, this unknown restriction factor breaks down a virus protein called Env. Env is a glycoprotein, which is a protein with sugars attached. When Env levels are low, HIV cannot spread to other cells and multiply. Identifying the restriction factor that breaks down Env may lead to new ways of treating and preventing HIV infections. Now, Lubow et al. reveal that the unknown restriction factor in macrophages is a protein called the mannose receptor. This protein binds and destroys proteins containing mannose, a type of sugar found on bacteria and some viruses. The experiments revealed that the mannose receptor grabs mannose on the HIV protein Env. This causes Env to be broken down and stops HIV from spreading. Lubow et al. also find that Vpr works with another protein produced by HIV called Nef to reduce the number of mannose receptors on macrophages. The two proteins do this by targeting different steps in the assembly of mannose receptors, allowing the virus to multiply and spread more efficiently. The experiments suggest that drugs that simultaneously block Vpr and Nef might prevent or suppress HIV infections. More studies are needed to develop and test potential HIV-treatments targeting Vpr and Nef.


Assuntos
HIV-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Lectinas de Ligação a Manose/metabolismo , Receptores de Superfície Celular/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene env/metabolismo , Produtos do Gene nef/metabolismo , HIV-1/fisiologia , Humanos , Receptor de Manose , Ligação Proteica , Replicação Viral
4.
Cell Host Microbe ; 26(3): 359-368.e8, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31447307

RESUMO

Tetherin is a host defense factor that physically prevents virion release from the plasma membrane. The Nef accessory protein of simian immunodeficiency virus (SIV) engages the clathrin adaptor AP-2 to downregulate tetherin via its DIWK motif. As human tetherin lacks DIWK, antagonism of tetherin by Nef is a barrier to simian-human transmission of non-human primate lentiviruses. To determine the molecular basis for tetherin counteraction, we reconstituted the AP-2 complex with a simian tetherin and SIV Nef and determined its structure by cryoelectron microscopy (cryo-EM). Nef refolds the first α-helix of the ß2 subunit of AP-2 to a ß hairpin, creating a binding site for the DIWK sequence. The tetherin binding site in Nef is distinct from those of most other Nef substrates, including MHC class I, CD3, and CD4 but overlaps with the site for the restriction factor SERINC5. This structure explains the dependence of SIVs on tetherin DIWK and consequent barrier to human transmission.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antígeno 2 do Estroma da Médula Óssea/química , Antígeno 2 do Estroma da Médula Óssea/farmacologia , Infecções por Lentivirus/prevenção & controle , Infecções por Lentivirus/transmissão , Zoonoses/virologia , Complexo 2 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/química , Animais , Sítios de Ligação , Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Membrana Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Regulação para Baixo , Produtos do Gene nef/química , Produtos do Gene nef/metabolismo , Células HEK293 , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Infecções por Lentivirus/virologia , Proteínas de Membrana/metabolismo , Modelos Moleculares , Cultura Primária de Células , Conformação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/metabolismo , Vírion/efeitos dos fármacos
5.
J Immunol ; 202(12): 3349-3358, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043477

RESUMO

Similar to host proteins, N-myristoylation occurs for viral proteins to dictate their pathological function. However, this lipid-modifying reaction creates a novel class of "lipopeptide" Ags targeted by host CTLs. The primate MHC class I-encoded protein, Mamu-B*098, was previously shown to bind N-myristoylated 5-mer peptides. Nevertheless, T cells exist that recognize even shorter lipopeptides, and much remains to be elucidated concerning the molecular mechanisms of lipopeptide presentation. We, in this study, demonstrate that the MHC class I allele, Mamu-B*05104, binds the N-myristoylated 4-mer peptide (C14-Gly-Gly-Ala-Ile) derived from the viral Nef protein for its presentation to CTLs. A phylogenetic tree analysis indicates that these classical MHC class I alleles are not closely associated; however, the high-resolution x-ray crystallographic analyses indicate that both molecules share lipid-binding structures defined by the exceptionally large, hydrophobic B pocket to accommodate the acylated glycine (G1) as an anchor. The C-terminal isoleucine (I4) of C14-Gly-Gly-Ala-Ile anchors at the F pocket, which is distinct from that of Mamu-B*098 and is virtually identical to that of the peptide-presenting MHC class I molecule, HLA-B51. The two central amino acid residues (G2 and A3) are only exposed externally for recognition by T cells, and the methyl side chain on A3 constitutes a major T cell epitope, underscoring that the epitopic diversity is highly limited for lipopeptides as compared with that for MHC class I-presented long peptides. These structural features suggest that lipopeptide-presenting MHC class I alleles comprise a distinct MHC class I subset that mediates an alternative pathway for CTL activation.


Assuntos
Autoantígenos/metabolismo , Epitopos de Linfócito T/metabolismo , Produtos do Gene nef/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Lipopeptídeos/metabolismo , Peptídeos/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Autoantígenos/química , Autoantígenos/imunologia , Cristalografia por Raios X , Epitopos de Linfócito T/imunologia , Produtos do Gene nef/química , Produtos do Gene nef/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Lipopeptídeos/química , Lipopeptídeos/imunologia , Ativação Linfocitária , Ácido Mirístico/química , Peptídeos/química , Peptídeos/imunologia , Filogenia , Primatas
6.
AIDS ; 33(6): 953-964, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946149

RESUMO

OBJECTIVE: HIV-infected patients receiving antiretroviral treatment (ART) often present adipose tissue accumulation and/or redistribution. adipose tissue has been shown to be an HIV/SIV reservoir and viral proteins as Tat or Nef can be released by infected immune cells and exert a bystander effect on adipocytes or precursors. Our aim was to demonstrate that SIV/HIV infection per se could alter adipose tissue structure and/or function. DESIGN: Morphological and functional alterations of subcutaneous (SCAT) and visceral adipose tissue (VAT) were studied in SIV-infected macaques and HIV-infected ART-controlled patients. To analyze the effect of Tat or Nef, we used human adipose stem cells (ASCs) issued from healthy donors, and analyzed adipogenesis and extracellular matrix component production using two dimensional (2D) and three-dimensional (3D) culture models. METHODS: Adipocyte size and index of fibrosis were determined on Sirius red-stained adipose tissue samples. Proliferating and adipocyte 2D-differentiating or 3D-differentiating ASCs were treated chronically with Tat or Nef. mRNA, protein expression and secretion were examined by RT-PCR, western-blot and ELISA. RESULTS: SCAT and VAT from SIV-infected macaques displayed small adipocytes, decreased adipogenesis and severe fibrosis with collagen deposition. SCAT and VAT from HIV-infected ART-controlled patients presented similar alterations. In vitro, Tat and/or Nef induced a profibrotic phenotype in undifferentiated ASCs and altered adipogenesis and collagen production in adipocyte-differentiating ASCs. CONCLUSION: We demonstrate here a specific role for HIV/SIV infection per se on adipose tissue fibrosis and adipogenesis, probably through the release of viral proteins, which could be involved in adipose tissue dysfunction contributing to cardiometabolic alterations of HIV-infected individuals.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/patologia , Fibrose/patologia , Infecções por HIV/patologia , HIV/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Adulto , Animais , Células Cultivadas , Feminino , Produtos do Gene nef/metabolismo , Produtos do Gene tat/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macaca fascicularis , Masculino , Pessoa de Meia-Idade , Síndrome de Imunodeficiência Adquirida dos Símios/patologia
7.
Traffic ; 20(3): 202-212, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569492

RESUMO

When studying how HIV-1 Nef can promote packaging of the proinflammatory transmembrane protease TACE (tumor necrosis factor-α converting enzyme) into extracellular vesicles (EVs) we have revealed a novel tyrosine kinase-regulated unconventional protein secretion (UPS) pathway for TACE. When TACE was expressed without its trafficking cofactor iRhom allosteric Hck activation by Nef triggered translocation of TACE into EVs. This process was insensitive to blocking of classical secretion by inhibiting endoplasmic reticulum (ER) to Golgi transport, and involved a distinct form of TACE devoid of normal glycosylation and incompletely processed for prodomain removal. Like most other examples of UPS this process was Golgi reassembly stacking protein (GRASP)-dependent but was not associated with ER stress. These data indicate that Hck-activated UPS provides an alternative pathway for TACE secretion that can bypass iRhom-dependent ER to Golgi transfer, and suggest that tyrosine phosphorylation might have a more general role in regulating UPS.


Assuntos
Proteína ADAM17/metabolismo , Vesículas Extracelulares/metabolismo , Via Secretória , Produtos do Gene nef/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-hck/metabolismo
8.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437924

RESUMO

Extracellular vesicles (EVs) or exosomes have been implicated in the pathophysiology of infections and cancer. The negative regulatory factor (Nef) encoded by simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) plays a critical role in the progression to AIDS and impairs endosomal trafficking. Whether HIV-1 Nef can be loaded into EVs has been the subject of controversy, and nothing is known about the connection between SIV Nef and EVs. We find that both SIV and HIV-1 Nef proteins are present in affinity-purified EVs derived from cultured cells, as well as in EVs from SIV-infected macaques. Nef-positive EVs were functional, i.e., capable of membrane fusion and depositing their content into recipient cells. The EVs were able to transfer Nef into recipient cells. This suggests that Nef readily enters the exosome biogenesis pathway, whereas HIV virions are assembled at the plasma membrane. It suggests a novel mechanism by which lentiviruses can influence uninfected and uninfectable, i.e., CD4-negative, cells.IMPORTANCE Extracellular vesicles (EVs) transfer biologically active materials from one cell to another, either within the adjacent microenvironment or further removed. EVs also package viral RNAs, microRNAs, and proteins, which contributes to the pathophysiology of infection. In this report, we show that both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) incorporate the virus-encoded Nef protein into EVs, including EVs circulating in the blood of SIV-infected macaques and that this presents a novel mechanism of Nef transfer to naive and even otherwise non-infectable cells. Nef is dispensable for viral replication but essential for AIDS progression in vivo Demonstrating that Nef incorporation into EVs is conserved across species implicates EVs as novel mediators of the pathophysiology of HIV. It could help explain the biological effects that HIV has on CD4-negative cells and EVs could become biomarkers of disease progression.


Assuntos
Exossomos/metabolismo , Produtos do Gene nef/metabolismo , HIV-1/fisiologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Células Cultivadas , Humanos , Macaca , Transporte Proteico
9.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878119

RESUMO

Eradication of the HIV-1 latent reservoir represents the current paradigm to developing a cure for AIDS. HIV-1 has evolved multiple mechanisms to evade CD8 T cell responses, including HIV-1 Nef-mediated downregulation of MHC-I from the surface of infected cells. Nef transcripts and protein are detectable in samples from aviremic donors, suggesting that Nef expression in latently HIV-1-infected CD4 T cells protects them from immune-mediated clearance. Here, we tested 4 small molecule inhibitors of HIV-1 Nef in an in vitro primary CD4 T cell latency model and measured the ability of autologous ex vivo or HIV-1 peptide-expanded CD8 T cells to recognize and kill latently infected cells as a function of inhibitor treatment. Nef inhibition enhanced cytokine secretion by autologous CD8 T cells against latently HIV-1-infected targets in an IFN-γ release assay. Additionally, CD8 T cell-mediated elimination of latently HIV-1-infected cells was significantly enhanced following Nef blockade, measured as a reduction in the frequency of infected cells and Gag protein in cultures following viral outgrowth assays. We demonstrate for the first time to our knowledge that Nef blockade, in combination with HIV-specific CD8 T cell expansion, might be a feasible strategy to target the HIV-1 latent reservoir that should be tested further in vivo.


Assuntos
Fármacos Anti-HIV/farmacologia , Produtos do Gene nef/antagonistas & inibidores , HIV-1/metabolismo , Latência Viral , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Regulação para Baixo , Produtos do Gene nef/genética , Produtos do Gene nef/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Complexo Principal de Histocompatibilidade/imunologia
10.
Nat Commun ; 8(1): 442, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874665

RESUMO

Lentiviral Nefs recruit assembly polypeptide complexes and target sorting motifs in cellular receptors to induce their internalization. While Nef-mediated CD4 downmodulation is conserved, the ability to internalize CD3 was lost in HIV-1 and its precursors. Although both functions play key roles in lentiviral replication and pathogenicity, the underlying structural requirements are poorly defined. Here, we determine the structure of SIVmac239 Nef bound to the ExxxLM motif of another Nef molecule at 2.5 Å resolution. This provides a basis for a structural model, where a hydrophobic crevice in simian immunodeficiency virus (SIV) Nef targets a dileucine motif in CD4 and a tyrosine-based motif in CD3. Introducing key residues into this crevice of HIV-1 Nef enables CD3 binding but an additional N-terminal tyrosine motif is required for internalization. Our resolution of the CD4/Nef/AP2 complex and generation of HIV-1 Nefs capable of CD3 downregulation provide insights into sorting motif interactions and target discrimination of Nef.HIV and simian immunodeficiency virus (SIV) Nef proteins both stimulate the clathrin-mediated endocytosis of CD4 but differ in downmodulation of the immune receptor CD3. Here, the authors present the structure of SIV Nef bound to the ExxxLM motif of another Nef molecule, which allows them to propose a model how Nef recognizes these motifs in CD3 and CD4.


Assuntos
Complexo CD3/metabolismo , Antígenos CD4/metabolismo , Regulação para Baixo , Endocitose , Produtos do Gene nef/metabolismo , Motivos de Aminoácidos , Cristalografia por Raios X , Produtos do Gene nef/química , Células HEK293 , HIV-1/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Vírus da Imunodeficiência Símia , Fator de Transcrição AP-2/metabolismo
11.
J Med Virol ; 89(10): 1788-1795, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28500742

RESUMO

Several HIV-1 subtypes are co-circulating among various high-risk groups in China, and an increasing prevalence of CRF01_AE was observed among MSM (men who have sex with men) within recent years. Patients infected with CRF01_AE may experience a more rapid disease progression than patients infected with non-CRF01_AE; however, the underlying mechanisms remains elusive. HIV-1 Nef is a multifunctional protein and plays critical roles in viral pathogenesis. Nef downregulates CD4 and human leukocyte antigen (HLA) to promote viral transmission and escape from the host immune response. In this study, we investigated the CD4 downmodulation activity of Nef proteins isolated from HIV-1 CRF01_AE and analyzed a potential relationship of Nef's capacity to downregulate CD4 with disease progression. We found that the majority of these Nefs from HIV-1 CRF01_AE efficiently downregulated CD4; Nefs with weaker CD4 downmodulation activity tended to be associated with higher CD4 levels and lower viral loads. Further elucidation revealed that amino acid residues at positions 3, 168, and 169 of CRF01_AE Nefs were associated with the capacity to downregulate CD4. Our data suggest that the capacity of Nef-mediated CD4 downregulation is not the only determinant for controlling disease progression, and other host and viral factors should be considered to explain the rapid disease progression of patients infected with HIV-1 CRF01_AE.


Assuntos
Aminoácidos/química , Antígenos CD4/genética , Linfócitos T CD4-Positivos/imunologia , Produtos do Gene nef/metabolismo , Infecções por HIV/virologia , HIV-1/química , HIV-1/imunologia , Antígenos CD4/imunologia , China/epidemiologia , Progressão da Doença , Regulação para Baixo , Produtos do Gene nef/genética , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/genética , HIV-1/patogenicidade , Células HeLa , Humanos , Masculino , Carga Viral
12.
J Immunol ; 197(5): 1843-51, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27481843

RESUMO

Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , HIV-1/imunologia , Evasão da Resposta Imune , Células T Matadoras Naturais/imunologia , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Células Dendríticas/virologia , Feminino , Produtos do Gene nef/deficiência , Produtos do Gene nef/genética , Produtos do Gene nef/metabolismo , Glucosilceramidas/genética , Glucosilceramidas/imunologia , Células HEK293 , Antígenos HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/deficiência , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Imunidade Celular , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Proteínas Virais Reguladoras e Acessórias/deficiência , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
13.
Viruses ; 8(7)2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399760

RESUMO

Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity.


Assuntos
Produtos do Gene nef/metabolismo , HIV-1/fisiologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Animais , Linhagem Celular , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Produtos do Gene gag/metabolismo , Produtos do Gene nef/genética , Produtos do Gene pol/metabolismo , Humanos , Pan troglodytes , Ligação Proteica , Vírus da Imunodeficiência Símia/genética
14.
PLoS One ; 11(2): e0149491, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26886938

RESUMO

Prevalent HSV-2 infection increases the risk of HIV acquisition both in men and women even in asymptomatic subjects. Understanding the impact of HSV-2 on the mucosal microenvironment may help to identify determinants of susceptibility to HIV. Vaginal HSV-2 infection increases the frequency of cells highly susceptible to HIV in the vaginal tissue of women and macaques and this correlates with increased susceptibility to vaginal SHIV infection in macaques. However, the effect of rectal HSV-2 infection on HIV acquisition remains understudied. We developed a model of rectal HSV-2 infection in macaques in combination with rectal SIVmac239Δnef (SIVΔnef) vaccination and our results suggest that rectal HSV-2 infection may increase the susceptibility of macaques to rectal SIVmac239 wild-type (wt) infection even in SIVΔnef-infected animals. Rectal SIVΔnef infection/vaccination protected 7 out of 7 SIVΔnef-infected macaques from SIVmac239wt rectal infection (vs 12 out of 16 SIVΔnef-negative macaques), while 1 out of 3 animals co-infected with SIVΔnef and HSV-2 acquired SIVmac239wt infection. HSV-2/SIVmac239wt co-infected animals had increased concentrations of inflammatory factors in their plasma and rectal fluids and a tendency toward higher acute SIVmac239wt plasma viral load. However, they had higher blood CD4 counts and reduced depletion of CCR5+ CD4+ T cells compared to SIVmac239wt-only infected animals. Thus, rectal HSV-2 infection generates a pro-inflammatory environment that may increase susceptibility to rectal SIV infection and may impact immunological and virological parameters during acute SIV infection. Studies with larger number of animals are needed to confirm these findings.


Assuntos
Produtos do Gene nef/metabolismo , Herpesvirus Humano 2/fisiologia , Reto/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Vacinação , Animais , Contagem de Linfócito CD4 , Coinfecção/sangue , Coinfecção/imunologia , Coinfecção/virologia , Citocinas/metabolismo , Humanos , Inflamação/patologia , Linfonodos/patologia , Macaca mulatta , Masculino , Fenótipo , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Carga Viral/imunologia
15.
Nature ; 526(7572): 212-7, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26416734

RESUMO

HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor.


Assuntos
HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Vírion/química , Vírion/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Endossomos/química , Endossomos/metabolismo , Evolução Molecular , Produtos do Gene gag/metabolismo , Produtos do Gene nef/química , Produtos do Gene nef/metabolismo , HIV-1/química , Especificidade de Hospedeiro , Humanos , Vírus da Leucemia Murina/química , Vírus da Leucemia Murina/fisiologia , Glicoproteínas de Membrana , Proteínas de Membrana/análise , Proteínas de Neoplasias/metabolismo , Primatas/virologia , Receptores de Superfície Celular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
16.
J Gen Virol ; 96(9): 2867-2877, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26041873

RESUMO

It has been estimated that human immunodeficiency virus type 1 originated from the zoonotic transmission of simian immunodeficiency virus (SIV) of chimpanzees, SIVcpz, and that SIVcpz emerged by the recombination of two lineages of SIVs in Old World monkeys (SIVgsn/mon/mus in guenons and SIVrcm in red-capped mangabeys) and SIVcpz Nef is most closely related to SIVrcm Nef. These observations suggest that SIVrcm Nef had an advantage over SIVgsn/mon/mus during the evolution of SIVcpz in chimpanzees, although this advantage remains uncertain. Nef is a multifunctional protein which downregulates CD4 and coreceptor proteins from the surface of infected cells, presumably to limit superinfection. To assess the possibility that SIVrcm Nef was selected by its superior ability to downregulate viral entry receptors in chimpanzees, we compared its ability to down-modulate viral receptor proteins from humans, chimpanzees and red-capped mangabeys with Nef proteins from eight other different strains of SIVs. Surprisingly, the ability of SIVrcm Nef to downregulate CCR5, CCR2B and CXCR6 was comparable to or lower than SIVgsn/mon/mus Nef, indicating that ability to down-modulate chemokine receptors was not the selective pressure. However, SIVrcm Nef significantly downregulates chimpanzee CD4 over SIVgsn/mon/mus Nefs. Our findings suggest the possibility that the selection of SIVrcm Nef by ancestral SIVcpz is due to its superior capacity to down-modulate chimpanzees CD4 rather than coreceptor proteins.


Assuntos
Evolução Molecular , Produtos do Gene nef/genética , Lentivirus de Primatas/genética , Doenças dos Primatas/genética , Receptores Virais/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Animais , Cercocebus , Produtos do Gene nef/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Lentivirus de Primatas/classificação , Lentivirus de Primatas/metabolismo , Pan troglodytes , Filogenia , Doenças dos Primatas/metabolismo , Doenças dos Primatas/virologia , Primatas , Receptores Virais/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/metabolismo
17.
Mol Cell Neurosci ; 61: 141-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24983517

RESUMO

Local synthesis of proteins in the axons participates in axonogenesis and axon guidance to establish appropriate synaptic connections and confer plasticity. To study the transcripts present in the growth cones and axonal shafts of cultured rat hippocampal neurons, two chip devices, differing in their abilities to support axonal growth and branching, are designed and employed here to isolate large quantities of axonal materials. Cone-, shaft- and axon-residing transcripts with amounts higher than that of a somatodendritic transcript, Actg1 (γ-actin), are selected and classified. Since the chips are optically transparent, distribution of transcripts over axons can be studied by fluorescence in situ hybridization. Three transcripts, Cadm1 (cell adhesion molecule 1), Nefl (neurofilament light polypeptide), and Cfl1 (non-muscle cofilin) are confirmed to be preferentially localized to the growth cones, while Pfn2 (profilin2) is preferentially localized to the shafts of those axons growing on the chip that restricts axonal growth. The different growing conditions of axons on chips and on conventional coverslips do not affect the cone-preferred localization of Cadm1 and shaft-preferred localization of Pfn2, but affect the distributions of Nefl and Cfl1 over the axons at 14th day in vitro. Furthermore, the distributions of Cadm1 and Nefl over the axons growing on conventional coverslips undergo changes during in vitro development. Our results suggest a dynamic nature of the mechanisms regulating the distributions of transcripts in axonal substructures in a manner dependent upon both growth conditions and neuronal maturation.


Assuntos
Cones de Crescimento/metabolismo , Hipocampo/citologia , Microdomínios da Membrana/metabolismo , Neurônios/citologia , Actinas/genética , Actinas/metabolismo , Fatores Etários , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Cofilina 1/genética , Cofilina 1/metabolismo , Embrião de Mamíferos , Feminino , Produtos do Gene nef/genética , Produtos do Gene nef/metabolismo , Hibridização in Situ Fluorescente , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Gravidez , Profilinas/genética , Profilinas/metabolismo , RNA Ribossômico 18S/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Biochem Biophys Res Commun ; 450(2): 942-7, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24971540

RESUMO

Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Produtos do Gene nef/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T , Produtos do Gene nef/genética , Produtos do Gene nef/imunologia , Genes MHC Classe I , Haplótipos , Evasão da Resposta Imune , Macaca mulatta , Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Carga Viral
19.
PLoS One ; 9(4): e95352, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24748174

RESUMO

Nef is an important player for viral infectivity and AIDS progression, but the mechanisms involved are not completely understood. It was previously demonstrated that Nef interacts with GagPol through p6*-Protease region. Because p6* and Protease are involved in processing, we explored the effect of Nef on viral Protease activity and virion assembly. Using in vitro assays, we observed that Nef is highly capable of inhibiting Protease activity. The IC50 for nef-deficient viruses in drug susceptibility assays were 1.7- to 3.5-fold higher than the wild-type counterpart varying with the type of the Protease inhibitor used. Indicating that, in the absence of Nef, Protease is less sensitive to Protease inhibitors. We compared the protein content between wild-type and nef-deficient mature viral particles by gradient sedimentation and observed up to 2.7-fold reduction in the Integrase levels in nef-deficient mature particles. This difference in levels of Integrase correlated with the difference in infectivity levels of wild type and nef-deficient viral progeny. In addition, an overall decrease in the production of mature particles was detected in nef-deficient viruses. Collectively, our data support the hypothesis that the decreased infectivity typical of nef-deficient viruses is due to an abnormal function of the viral Protease, which is in turn associated with less mature particles being produced and the loss of Integrase content in these particles, and these results may characterize Nef as a regulator of viral Protease activity.


Assuntos
Produtos do Gene nef/metabolismo , Protease de HIV/metabolismo , HIV-1/metabolismo , Vírion , Linhagem Celular , Humanos
20.
Retrovirology ; 11: 1, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24383984

RESUMO

BACKGROUND: Increased cellular iron levels are associated with high mortality in HIV-1 infection. Moreover iron is an important cofactor for viral replication, raising the question whether highly divergent lentiviruses actively modulate iron homeostasis. Here, we evaluated the effect on cellular iron uptake upon expression of the accessory protein Nef from different lentiviral strains. RESULTS: Surface Transferrin receptor (TfR) levels are unaffected by Nef proteins of HIV-1 and its simian precursors but elevated in cells expressing Nefs from most other primate lentiviruses due to reduced TfR internalization. The SIV Nef-mediated reduction of TfR endocytosis is dependent on an N-terminal AP2 binding motif that is not required for downmodulation of CD4, CD28, CD3 or MHCI. Importantly, SIV Nef-induced inhibition of TfR endocytosis leads to the reduction of Transferrin uptake and intracellular iron concentration and is accompanied by attenuated lentiviral replication in macrophages. CONCLUSION: Inhibition of Transferrin and thereby iron uptake by SIV Nef might limit viral replication in myeloid cells. Furthermore, this new SIV Nef function could represent a virus-host adaptation that evolved in natural SIV-infected monkeys.


Assuntos
Endocitose/efeitos dos fármacos , Produtos do Gene nef/metabolismo , Ferro/metabolismo , Receptores da Transferrina/antagonistas & inibidores , Vírus da Imunodeficiência Símia/fisiologia , Transferrina/metabolismo , Animais , Haplorrinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...