Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 17(1): 33, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840181

RESUMO

Loss-of-function mutations in the progranulin (GRN) gene are an autosomal dominant cause of Frontotemporal Dementia (FTD). These mutations typically result in haploinsufficiency of the progranulin protein. Grn+/- mice provide a model for progranulin haploinsufficiency and develop FTD-like behavioral abnormalities by 9-10 months of age. In previous work, we demonstrated that Grn+/- mice develop a low dominance phenotype in the tube test that is associated with reduced dendritic arborization of layer II/III pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC), a region key for social dominance behavior in the tube test assay. In this study, we investigated whether progranulin haploinsufficiency induced changes in dendritic spine density and morphology. Individual layer II/III pyramidal neurons in the prelimbic mPFC of 9-10 month old wild-type or Grn+/- mice were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and 3D reconstruction for morphometry analysis. Dendritic spine density in Grn+/- mice was comparable to wild-type littermates, but the apical dendrites in Grn+/- mice had a shift in the proportion of spine types, with fewer stubby spines and more thin spines. Additionally, apical dendrites of Grn+/- mice had longer spines and smaller thin spine head diameter in comparison to wild-type littermates. These changes in spine morphology may contribute to altered circuit-level activity and social dominance deficits in Grn+/- mice.


Assuntos
Espinhas Dendríticas , Haploinsuficiência , Córtex Pré-Frontal , Progranulinas , Animais , Espinhas Dendríticas/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/metabolismo , Progranulinas/deficiência , Progranulinas/genética , Camundongos , Células Piramidais/metabolismo , Células Piramidais/patologia , Masculino , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054815

RESUMO

Neurodegenerative diseases are debilitating impairments that affect millions of people worldwide and are characterized by progressive degeneration of structure and function of the central or peripheral nervous system. Effective biomarkers for neurodegenerative diseases can be used to improve the diagnostic workup in the clinic as well as facilitate the development of effective disease-modifying therapies. Progranulin (PGRN) has been reported to be involved in various neurodegenerative disorders. Hence, in the current study we systematically compared the inflammation and accumulation of typical neurodegenerative disease markers in the brain tissue between PGRN knockout (PGRN KO) and wildtype (WT) mice. We found that PGRN deficiency led to significant neuron loss as well as activation of microglia and astrocytes in aged mice. Several characteristic neurodegenerative markers, including α-synuclein, TAR DNA-binding protein 43 (TDP-43), Tau, and ß-amyloid, were all accumulated in the brain of PGRN-deficient mice as compared to WT mice. Moreover, higher aggregation of lipofuscin was observed in the brain tissue of PGRN-deficient mice compared with WT mice. In addition, the autophagy was also defective in the brain of PGRN-deficient mice, indicated by the abnormal expression level of autophagy marker LC3-II. Collectively, comprehensive assays support the idea that PGRN plays an important role during the development of neurodegenerative disease, indicating that PGRN might be a useful biomarker for neurodegenerative diseases in clinical settings.


Assuntos
Envelhecimento/patologia , Biomarcadores/metabolismo , Doenças Neurodegenerativas/metabolismo , Progranulinas/deficiência , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Autofagia , Encéfalo/patologia , Encéfalo/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Lipofuscina/metabolismo , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Progranulinas/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
3.
EMBO J ; 41(4): e109108, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35019161

RESUMO

Haploinsufficiency of the progranulin (PGRN)-encoding gene (GRN) causes frontotemporal lobar degeneration (GRN-FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP-43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2-dependent transition of microglia from a homeostatic to a disease-associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation. To explore antibody-mediated pharmacological modulation of TREM2-dependent microglial states, we identified antagonistic TREM2 antibodies. Treatment of macrophages from GRN-FTLD patients with these antibodies led to reduced TREM2 signaling due to its enhanced shedding. Furthermore, TREM2 antibody-treated PGRN-deficient microglia derived from human-induced pluripotent stem cells showed reduced microglial hyperactivation, TREM2 signaling, and phagocytic activity, but lysosomal dysfunction was not rescued. Similarly, lysosomal dysfunction, lipid dysregulation, and glucose hypometabolism of Grn KO mice were not rescued by TREM2 ablation. Synaptic loss and neurofilament light-chain (NfL) levels, a biomarker for neurodegeneration, were further elevated in the Grn/Trem2 KO cerebrospinal fluid (CSF). These findings suggest that TREM2-dependent microglia hyperactivation in models of GRN deficiency does not promote neurotoxicity, but rather neuroprotection.


Assuntos
Degeneração Lobar Frontotemporal/patologia , Glicoproteínas de Membrana/metabolismo , Microglia/fisiologia , Monócitos/metabolismo , Progranulinas/deficiência , Receptores Imunológicos/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Quinase Syk/metabolismo
4.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450028

RESUMO

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Assuntos
Produtos Biológicos/uso terapêutico , Encéfalo/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Progranulinas/uso terapêutico , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Endossomos/metabolismo , Feminino , Demência Frontotemporal/sangue , Demência Frontotemporal/líquido cefalorraquidiano , Gliose/complicações , Gliose/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Lipofuscina/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Degeneração Neural/patologia , Fenótipo , Progranulinas/deficiência , Progranulinas/metabolismo , Receptores Imunológicos/metabolismo , Receptores da Transferrina/metabolismo , Distribuição Tecidual
5.
Eur J Pharmacol ; 909: 174431, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34428436

RESUMO

Recent advances have revealed that progranulin (PGRN) is related to the aetiology of psoriasis. Moreover, curcumin, a compound derived from turmeric, has been proposed as a potential therapeutic approach in psoriasis-like dermatitis, but it is still unclear whether curcumin affects the development of psoriasis-like skin lesions under PGRN-deficient conditions. Therefore, in this study, we developed a mouse model of psoriatic skin lesions using topical application of imiquimod (IMQ) in both wild type and PGRN-knockout mice to test this possibility. We observed that PGRN deficiency not only increased proinflammatory cytokine IL-17A levels and aggravated psoriasis-like damaged appearance and epidermal thickening but also directly mediated changes in keratinocyte proliferation (Krt 14, cyclinD1 and c-Myc) and differentiation (Krt 10 and Filaggrin) associated gene expression following IMQ challenge, compared to those in the control group. Furthermore, curcumin treatment (50 mg/kg and 200 mg/kg, intragastrically) for 21 consecutive days suppressed the IMQ exposure-induced increase in PGRN expression. Importantly, curcumin treatment significantly alleviated the PGRN deficiency-induced exacerbation of psoriatic appearance, histological features and keratinocyte proliferation after IMQ exposure. In summary, these results demonstrate the direct regulation of PGRN in keratinocyte proliferation and differentiation in psoriatic lesions and demonstrate the protective effect of curcumin on PGRN deficiency-induced psoriatic skin lesion exacerbation.


Assuntos
Curcumina/farmacologia , Progranulinas/deficiência , Psoríase/tratamento farmacológico , Animais , Proliferação de Células , Curcumina/uso terapêutico , Modelos Animais de Doenças , Humanos , Imiquimode/administração & dosagem , Imiquimode/imunologia , Interleucina-17/sangue , Interleucina-17/metabolismo , Queratinócitos/imunologia , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Progranulinas/genética , Psoríase/sangue , Psoríase/genética , Psoríase/imunologia
6.
Acta Neuropathol Commun ; 9(1): 57, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795008

RESUMO

Frontotemporal lobar degeneration (FTLD) causes a spectrum of clinical presentations of frontotemporal dementia (FTD), including progressive changes in behavior, personality, executive function, and language. Up to 20% of familial FTLD cases are caused by progranulin (GRN) haploinsufficiency (FTD-GRN), with one of the most common causal variant being a nonsense mutation at arginine 493 (R493X). Recently, a genetic knockin FTD-GRN mouse model was generated bearing this GrnR493X mutation, at the analogous arginine in murine Grn. Aged, homozygous GrnR493X mice (GrnR493X/R493X) have been shown to phenotypically replicate several neuropathological hallmarks previously demonstrated in Grn null mice. We conducted a comprehensive neuropathological and behavioral assessment of 18 month old GrnR493X/R493X mice, observing a striking lysosomal dysfunction and thalamic neurodegeneration not previously described in this model, as well as a male-specific increase in generalized anxiety. These findings provide additional phenotypic markers of pathogenesis in aged GrnR493X/R493X mice that will contribute to better defining mechanisms underlying FTD-GRN, and offer relevant outcome measures for preclinical efficacy testing of novel therapeutics that target nonsense mutations leading to this devastating disease.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Progranulinas/genética , Animais , Comportamento Animal , Códon sem Sentido , Modelos Animais de Doenças , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progranulinas/deficiência
7.
Life Sci ; 264: 118687, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181174

RESUMO

Breast cancer is one of the most malignant diseases world-wide and ranks the first among female cancers. Progranulin (PGRN) plays a carcinogenic role in breast cancer, but its mechanisms are not clear. In addition, there are few reports on the relationship between PGRN and tumor-associated macrophages (TAMs). AIMS: To investigate the effects of exosomes derived from PGRN-/- TAMs on invasion and migration of breast cancer cells. MAIN METHODS: Mouse breast cancer xenograft model was constructed to explore the effect of PGRN-/- tumor environment (TME) on breast cancer. Flow cytometry was used to compare TAMs of wild type (WT) and PGRN-/- tumor tissue. Transwell assay, wound healing assay and western blot were used to explore the effect of WT and PGRN-/- TAMs and their exosomes on invasion, migration and epithelial-mesenchymal transition (EMT) of breast cancer cells. MicroRNA (miRNA) assay was used to find out the differentially expressed miRNA of negative control (NC) and siPGRN-TAMs exosomes. Quantitative PCR and luciferase report assay were used to explore the target gene. KEY FINDINGS: The lung metastasis of breast cancer of PGRN-/- mice was inhibited. PGRN-/- TAMs inhibited invasion, migration and EMT of breast cancer cells through their exosomes. MiR-5100 of PGRN-/- TAMs-derived exosomes was up-regulated, which might regulate expression of CXCL12, thereby inhibiting the CXCL12/CXCR4 axis, and ultimately inhibiting the invasion, migration and EMT of breast cancer cells. SIGNIFICANCE: Our study elucidates a new molecular mechanism of lung metastasis of breast cancer, so it may contribute to efficient prevention and therapeutic strategies.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular/fisiologia , Exossomos/metabolismo , Progranulinas/deficiência , Macrófagos Associados a Tumor/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/prevenção & controle , Exossomos/genética , Exossomos/patologia , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , Progranulinas/genética , Macrófagos Associados a Tumor/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Ann Clin Transl Neurol ; 7(12): 2433-2449, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33197149

RESUMO

OBJECTIVE: The goal of this study was to investigate the effect of progranulin insufficiency on extracellular vesicles (EVs), a heterogeneous population of vesicles that may contribute to progression of neurodegenerative disease. Loss-of-function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD), and brains from GRN carriers with FTD (FTD-GRN) exhibit signs of lysosomal dysfunction. Lysosomal dysfunction may induce compensatory increases in secretion of exosomes, EVs secreted from the endolysosomal system, so we hypothesized that progranulin insufficiency would increase EV levels in the brain. METHODS: We analyzed levels and protein contents of brain EVs from Grn-/- mice, which model the lysosomal abnormalities of FTD-GRN patients. We then measured brain EVs in FTD-GRN patients. To assess the relationship of EVs with symptomatic disease, we measured plasma EVs in presymptomatic and symptomatic GRN mutation carriers. RESULTS: Grn-/- mice had elevated brain EV levels and altered EV protein contents relative to wild-type mice. These changes were age-dependent, occurring only after the emergence of pathology in Grn-/- mice. FTD-GRN patients (n = 13) had elevated brain EV levels relative to controls (n = 5). Symptomatic (n = 12), but not presymptomatic (n = 7), GRN carriers had elevated plasma EV levels relative to controls (n = 8). INTERPRETATION: These data show that symptomatic FTD-GRN patients have elevated levels of brain and plasma EVs, and that this effect is modeled in the brain of Grn-/- mice after the onset of pathology. This increase in EVs could influence FTD disease progression, and provides further support for EVs as potential FTD biomarkers.


Assuntos
Vesículas Extracelulares/metabolismo , Lobo Frontal/metabolismo , Demência Frontotemporal/metabolismo , Progranulinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Progressão da Doença , Feminino , Demência Frontotemporal/sangue , Demência Frontotemporal/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Progranulinas/deficiência , Progranulinas/genética , Proteômica , Método Simples-Cego
9.
Nature ; 588(7838): 459-465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866962

RESUMO

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Assuntos
Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Progranulinas/deficiência , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Complemento C1q/antagonistas & inibidores , Complemento C1q/imunologia , Complemento C3b/antagonistas & inibidores , Complemento C3b/imunologia , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Poro Nuclear/metabolismo , Poro Nuclear/patologia , Progranulinas/genética , RNA-Seq , Análise de Célula Única , Proteinopatias TDP-43/tratamento farmacológico , Proteinopatias TDP-43/genética , Tálamo/metabolismo , Tálamo/patologia , Transcriptoma
10.
Sci Rep ; 10(1): 13688, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792571

RESUMO

Patients with frontotemporal dementia (FTD) resulting from granulin (GRN) haploinsufficiency have reduced levels of progranulin and exhibit dysregulation in inflammatory and lysosomal networks. Microglia produce high levels of progranulin, and reduction of progranulin in microglia alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in FTD. Limitations of current progranulin-enhancing strategies necessitate the discovery of new targets. To identify compounds that can reverse microglial defects in Grn-deficient mouse microglia, we performed a compound screen coupled with high throughput sequencing to assess key transcriptional changes in inflammatory and lysosomal pathways. Positive hits from this initial screen were then further narrowed down based on their ability to rescue cathepsin activity, a critical biochemical readout of lysosomal capacity. The screen identified nor-binaltorphimine dihydrochloride (nor-BNI) and dibutyryl-cAMP, sodium salt (DB-cAMP) as two phenotypic modulators of progranulin deficiency. In addition, nor-BNI and DB-cAMP also rescued cell cycle abnormalities in progranulin-deficient cells. These data highlight the potential of a transcription-based platform for drug screening, and advance two novel lead compounds for FTD.


Assuntos
Bucladesina/farmacologia , Cisteína Proteases/metabolismo , Demência Frontotemporal/genética , Perfilação da Expressão Gênica/métodos , Microglia/citologia , Naltrexona/análogos & derivados , Progranulinas/deficiência , Animais , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Naltrexona/farmacologia , Análise de Sequência de RNA , Bibliotecas de Moléculas Pequenas/farmacologia
11.
Cell Mol Immunol ; 17(10): 1077-1091, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31467413

RESUMO

Progranulin is a secreted neurotrophin that assists in the autophagolysosomal pathways that contribute to MHC-mediated antigen processing, pathogen removal, and autoimmunity. We showed that patients with multiple sclerosis (MS) have high levels of circulating progranulin and that its depletion in a mouse model by a monoclonal antibody aggravates MS-like experimental autoimmune encephalomyelitis (EAE). However, unexpectedly, progranulin-deficient mice (Grn-/-) were resistant to EAE, and this resistance was fully restored by wild-type bone marrow transplantation. FACS analyses revealed a loss of MHC-II-positive antigen-presenting cells in Grn-/- mice and a reduction in the number of CD8+ and CD4+ T-cells along with a strong increase in the number of scavenger receptor class B (CD36+) phagocytes, suggesting defects in antigen presentation along with a compensatory increase in phagocytosis. Indeed, bone marrow-derived dendritic cells from Grn-/- mice showed stronger uptake of antigens but failed to elicit antigen-specific T-cell proliferation. An increase in the number of CD36+ phagocytes was associated with increased local inflammation at the site of immunization, stronger stimulation-evoked morphological transformation of bone marrow-derived macrophages to phagocytes, an increase in the phagocytosis of E. coli particles and latex beads and defects in the clearance of the material. Hence, the outcomes in the EAE model reflect the dichotomy of progranulin-mediated immune silencing and autoimmune mechanisms of antigen recognition and presentation, and our results reveal a novel progranulin-dependent pathway in autoimmune encephalomyelitis.


Assuntos
Resistência à Doença , Encefalomielite Autoimune Experimental/patologia , Progranulinas/deficiência , Adolescente , Adulto , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/sangue , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Contagem de Linfócitos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/patologia , Células Mieloides/patologia , Ovalbumina , Fagócitos/metabolismo , Fagocitose , Progranulinas/sangue , Progranulinas/metabolismo , Receptores Depuradores Classe B/metabolismo , Linfócitos T/imunologia , Adulto Jovem
12.
Ann N Y Acad Sci ; 1460(1): 43-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423598

RESUMO

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency, and patients with diabetes have an increased risk of bone fracture and significantly impaired fracture healing. Proinflammatory cytokine tumor necrosis factor-alpha is significantly upregulated in diabetic fractures and is believed to underlie delayed fracture healing commonly observed in diabetes. Our previous genetic screen for the binding partners of progranulin (PGRN), a growth factor-like molecule that induces chondrogenesis, led to the identification of tumor necrosis factor receptors (TNFRs) as the PGRN-binding receptors. In this study, we employed several in vivo models to ascertain whether PGRN has therapeutic effects in diabetic fracture healing. Here, we report that deletion of PGRN significantly delayed bone fracture healing and aggravated inflammation in the fracture models of mice with T1DM. In contrast, recombinant PGRN effectively promoted diabetic fracture healing by inhibiting inflammation and enhancing chondrogenesis. In addition, both TNFR1 proinflammatory and TNFR2 anti-inflammatory signaling pathways are involved in PGRN-stimulated diabetic fracture healing. Collectively, these findings illuminate a novel understanding concerning the role of PGRN in diabetic fracture healing and may have an application in the development of novel therapeutic intervention strategies for diabetic and other types of impaired fracture healing.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Consolidação da Fratura/efeitos dos fármacos , Progranulinas/farmacologia , Animais , Condrogênese/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Deleção de Genes , Humanos , Inflamação/patologia , Camundongos , Progranulinas/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
J Interferon Cytokine Res ; 40(1): 33-42, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31804874

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease caused by the disorders of immune regulation but its pathogenesis is poorly understood. Progranulin (PGRN) is an immunomodulatory protein that is upregulated in SLE patients. However, the factors involved in regulating the pathogenesis of SLE by PGRN are largely unknown. We sought to investigate the role and molecular mechanisms of PGRN in SLE to develop a novel therapeutic target. We used an animal model of SLE that was induced in PGRN-deficient and normal wild type (WT) mice using pristane. PGRN concentrations were measured in SLE and the impact of PGRN deficiency was examined by measuring tissue injury and immune responses of T cells (Th1, Th2, Th17, and Treg) and B cells. SLE patients and mice showed elevated PGRN levels. Compared with WT SLE mice, inflammatory cell infiltration, tissue edema, and necrosis were alleviated in PGRN-/- SLE mice and the levels of serum chemistry markers of tissue damage and the presence of anti-double-stranded DNA and anti-ribosomal protein P0 antibodies were all significantly decreased. We further discovered that PGRN deficiency could disturb the immune responses of T cell (Th1, Th2, Th17, and Treg) and B cell responses, leading to the decrease of inflammatory cytokines including interferon-γ and interleukin-17A and increased levels of regulatory B cells. PGRN plays a proinflammatory role in the development of SLE partially through promoting the production of autoantibodies and enhancing Th1 and Th17 cell responses. This may provide new therapeutic options for patients with SLE.


Assuntos
Inflamação/imunologia , Inflamação/patologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Progranulinas/imunologia , Adolescente , Animais , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/terapia , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Progranulinas/deficiência , Terpenos
14.
J Mol Cell Cardiol ; 138: 197-211, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866375

RESUMO

AIMS: Age-related cardiac hypertrophy and subsequent heart failure are predicted to become increasingly serious problems in aging populations. Progranulin (PGRN) deficiency is known to be associated with accelerated aging in the brain. We aimed to evaluate the effects of PGRN deficiency on cardiac aging, including left ventricular hypertrophy. METHODS AND RESULTS: Echocardiography was performed on wild-type (WT) and PGRN-knockout (KO) mice every 3 months from 3 to 18 months of age. Compared to that of WT mice, PGRN KO mice exhibited age-dependent cardiac hypertrophy and cardiac dysfunction at 18 months. Morphological analyses showed that the heart weight to tibia length ratio and cross-sectional area of cardiomyocytes at 18 months were significantly increased in PGRN KO mice relative to those in WT mice. Furthermore, accumulation of lipofuscin and increases in senescence markers were observed in the hearts of PGRN KO mice, suggesting that PGRN deficiency led to enhanced aging of the heart. Enhanced complement C1q (C1q) and activated ß-catenin protein expression levels were also observed in the hearts of aged PGRN KO mice. Treatment of PGRN-deficient cardiomyocytes with C1q caused ß-catenin activation and cardiac hypertrophy. Blocking C1q-induced ß-catenin activation in PGRN-depleted cardiomyocytes attenuated hypertrophic changes. Finally, we showed that C1 inhibitor treatment reduced cardiac hypertrophy and dysfunction in old KO mice, possibly by reducing ß-catenin activation. These results suggest that C1q is a crucial regulator of cardiac hypertrophy induced by PGRN ablation. CONCLUSION: The present study demonstrates that PGRN deficiency enhances age-related cardiac hypertrophy via C1q-induced ß-catenin activation. PGRN is a potential therapeutic target to prevent cardiac hypertrophy and dysfunction.


Assuntos
Envelhecimento/metabolismo , Cardiomegalia/metabolismo , Complemento C1q/metabolismo , Progranulinas/deficiência , beta Catenina/metabolismo , Animais , Aorta/patologia , Biomarcadores/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Constrição Patológica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/metabolismo , Fenótipo , Pressão , Progranulinas/metabolismo , Ratos , Transdução de Sinais
15.
PLoS One ; 14(7): e0212382, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291241

RESUMO

Mutation in the GRN gene, encoding the progranulin (PGRN) protein, shows a dose-dependent disease correlation, wherein haploinsufficiency results in frontotemporal lobar degeneration (FTLD) and complete loss results in neuronal ceroid lipofuscinosis (NCL). Although the exact function of PGRN is unknown, it has been increasingly implicated in lysosomal physiology. Here we report that PGRN interacts with the lysosomal enzyme, glucocerebrosidase (GCase), and is essential for proper GCase activity. GCase activity is significantly reduced in tissue lysates from PGRN-deficient mice. This is further evidence that reduced lysosomal hydrolase activity may be a pathological mechanism in cases of GRN-related FTLD and NCL.


Assuntos
Glucosilceramidase/metabolismo , Progranulinas/deficiência , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Glucosilceramidase/genética , Células HEK293 , Haploinsuficiência , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Progranulinas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Cell Death Dis ; 10(7): 524, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285425

RESUMO

Mitochondrial dysfunction is considered as a key mediator in the pathogenesis of diabetic nephropathy (DN). Therapeutic strategies targeting mitochondrial dysfunction hold considerable promise for the treatment of DN. In this study, we investigated the role of progranulin (PGRN), a secreted glycoprotein, in mediating mitochondrial homeostasis and its therapeutic potential in DN. We found that the level of PGRN was significantly reduced in the kidney from STZ-induced diabetic mice and patients with biopsy-proven DN compared with healthy controls. In DN model, PGRN-deficient mice aggravated podocyte injury and proteinuria versus wild-type mice. Functionally, PGRN deficiency exacerbated mitochondrial damage and dysfunction in podocytes from diabetic mice. In vitro, treatment with recombinant human PGRN (rPGRN) attenuated high glucose-induced mitochondrial dysfunction in podocytes accompanied by enhanced mitochondrial biogenesis and mitophagy. Inhibition of mitophagy disturbed the protective effects of PGRN in high glucose-induced podocytotoxicity. Mechanistically, we demonstrated that PGRN maintained mitochondrial homeostasis via PGRN-Sirt1-PGC-1α/FoxO1 signaling-mediated mitochondrial biogenesis and mitophagy. Finally, we provided direct evidence for therapeutic potential of PGRN in mice with DN. This study provides new insights into the novel role of PGRN in maintaining mitochondrial homeostasis, suggesting that PGRN may be an innovative therapeutic strategy for treating patients with DN.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Homeostase , Mitocôndrias/metabolismo , Mitofagia , Biogênese de Organelas , Podócitos/patologia , Progranulinas/metabolismo , Acetilação , Animais , Biópsia , Morte Celular , Citoproteção , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Proteína Forkhead Box O1/metabolismo , Glucose/toxicidade , Humanos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Podócitos/metabolismo , Podócitos/ultraestrutura , Progranulinas/deficiência , Ratos , Sirtuína 1/metabolismo
17.
EMBO Mol Med ; 11(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31122931

RESUMO

Microglia adopt numerous fates with homeostatic microglia (HM) and a microglial neurodegenerative phenotype (MGnD) representing two opposite ends. A number of variants in genes selectively expressed in microglia are associated with an increased risk for neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). Among these genes are progranulin (GRN) and the triggering receptor expressed on myeloid cells 2 (TREM2). Both cause neurodegeneration by mechanisms involving loss of function. We have now isolated microglia from Grn-/- mice and compared their transcriptomes to those of Trem2-/-mice Surprisingly, while loss of Trem2 enhances the expression of genes associated with a homeostatic state, microglia derived from Grn-/- mice showed a reciprocal activation of the MGnD molecular signature and suppression of gene characteristic for HM The opposite mRNA expression profiles are associated with divergent functional phenotypes. Although loss of TREM2 and progranulin resulted in opposite activation states and functional phenotypes of microglia, FDG (fluoro-2-deoxy-d-glucose)-µPET of brain revealed reduced glucose metabolism in both conditions, suggesting that opposite microglial phenotypes result in similar wide spread brain dysfunction.


Assuntos
Cerebelo , Glucose/metabolismo , Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Tomografia por Emissão de Pósitrons , Progranulinas/deficiência , Receptores Imunológicos/deficiência , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Camundongos , Camundongos Knockout
18.
Mol Ther ; 27(2): 465-478, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30559071

RESUMO

Adeno-associated virus-mediated gene replacement is emerging as a safe and effective means of correcting single-gene mutations affecting the CNS. AAV-mediated progranulin gene (GRN) delivery has been proposed as a treatment for GRN-deficient frontotemporal dementia and neuronal ceroid lipofuscinosis, and recent studies using intraparenchymal AAV-Grn delivery to brain have shown moderate success in histopathologic and behavioral rescue in mouse models. Here, we used AAV9 to deliver GRN to the lateral ventricle to achieve widespread expression in the Grn null mouse brain. We found that, despite a global increase in progranulin, overexpression resulted in dramatic and selective hippocampal toxicity and degeneration affecting neurons and glia. Hippocampal degeneration was preceded by T cell infiltration and perivascular cuffing. GRN delivery with an ependymal-targeting AAV for selective secretion of progranulin into the cerebrospinal fluid similarly resulted in T cell infiltration, as well as ependymal hypertrophy. Interestingly, overexpression of GRN in wild-type animals also provoked T cell infiltration. These results call into question the safety of GRN overexpression in the CNS, with evidence for both a region-selective immune response and cellular proliferative response. Our results highlight the importance of careful consideration of target gene biology and cellular response to overexpression prior to progressing to the clinic.


Assuntos
Dependovirus/genética , Progranulinas/metabolismo , Linfócitos T/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Terapia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Teóricos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Progranulinas/líquido cefalorraquidiano , Progranulinas/deficiência , Progranulinas/genética
19.
Neurobiol Aging ; 72: 186.e9-186.e12, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30057241

RESUMO

Loss-of-function mutations in progranulin (PGRN) gene cause frontotemporal lobar degeneration. Here, we report a case of a 63-year-old woman with a 2-year history of speech impairment, diagnosed with a nonfluent variant of primary progressive aphasia, a subtype of frontotemporal lobar degeneration. In this patient, a novel heterozygous frameshift mutation, c.77delG, in exon 2 of PGRN gene, introducing premature stop codon, p.(C26SfsX28), has been identified. Cultured fibroblasts derived from the patient and her asymptomatic first-degree relative with c.77delG mutation had decreased levels of PGRN messenger RNA (mRNA) and protein. However, PGRN mRNA levels did not recover upon incubation with inhibitors of nonsense-mediated mRNA decay (cycloheximide or puromycin), suggesting involvement of other mRNA degradation pathways. In addition, we observed upregulated wingless-type mouse mammary tumor virus integration site (WNT) signaling pathway gene, WNT3A, in fibroblasts of the patient and her asymptomatic first-degree relative with c.77delG mutation. As reported previously, this is an early hallmark of PGRN deficiency.


Assuntos
Fibroblastos/metabolismo , Afasia Primária Progressiva não Fluente/genética , Progranulinas/genética , Proteína Wnt3/genética , Células Cultivadas , Feminino , Mutação da Fase de Leitura , Haploinsuficiência , Humanos , Pessoa de Meia-Idade , Linhagem , Progranulinas/deficiência , RNA Mensageiro/metabolismo
20.
Methods Mol Biol ; 1806: 233-253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956280

RESUMO

Currently one of the few molecules that equally excites a neuroscientist, a cancer biologist, an immunologist, and a developmental biologist is progranulin (GRN/Grn)-a pluripotent growth factor that plays key roles in cell survival, proliferation, development, tissue regeneration, inflammation, wound healing, and angiogenesis. However, the molecular pathways associated with GRN signaling involved in these varied physiological processes are not understood. Gene inactivation has been considered as one of the best methods to delineate the biological role of a protein, and gene targeting is a direct means to disrupt a gene's open reading frame and block its expression, for instance, in a mouse. Such a gene knockout animal model also served as an in vivo disease model where loss of gene or its function is thought to be the primary disease mechanism, as is the case with progranulin loss of function in frontotemporal lobar degeneration (FTLD). It is estimated that up to half of the cases of familial, dominant FTLD might be due to GRN haploinsufficiency. To understand the molecular pathways associated with GRN loss, constitutive and conditional progranulin knockout (Grn-/-) mice have also been constructed in several laboratories, including ours. These mice show several disease-characteristic features and suggest that continued studies on the Grn-/- mice would be instructive in the understanding of complex GRN biology in health and disease.


Assuntos
Comportamento Animal , Encéfalo/metabolismo , Biologia Molecular/métodos , Progranulinas/metabolismo , Envelhecimento , Animais , Aprendizagem em Labirinto , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Reação em Cadeia da Polimerase , Progranulinas/deficiência , Progranulinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...