Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 65(11): 1869-1886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36856922

RESUMO

To exploit the rice seed-based oral vaccine against Sjögren's syndrome, altered peptide ligand of N-terminal 1 (N1-APL7) from its M3 muscarinic acetylcholine receptor (M3R) autoantigen was expressed as fusion protein with the representative four types of rice prolamins (16 kDa, 14 kDa, 13 kDa, and 10 kDa prolamins) under the control of the individual native prolamin promoter. The 10kD:N1-APL7 and 14kD:N1-APL7 accumulated at high levels (287 and 58 µg/grain), respectively, whereas production levels of the remaining ones were remarkably low. Co-expression of these fusion proteins did not enhance the accumulation level of N1-APL7 in an additive manner. Downregulation of endogenous seed storage proteins by RNAi-mediated suppression also did not lead to substantial elevation of the co-expressed prolamin:N1-APL7 products. When transgenic rice seeds were subjected to in vitro proteolysis with pepsin, the 10kD:N1-APL7 was digested more quickly than the endogenous 10 kDa prolamin and the 14kD:N1-APL7 deposited in PB-Is. This difference could be explained by the finding that the 10kD:N1-APL7 was unexpectedly localized in the PB-IIs containing glutelins. These results indicated that not only accumulation level but also subcellular localization of inherent prolamins were highly influenced by the liked N1-APL7 peptide.


Assuntos
Oryza , Animais , Oryza/genética , Oryza/metabolismo , Prolaminas/genética , Prolaminas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo , Peptídeos/metabolismo , Animais Geneticamente Modificados , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 35(1): 409-434, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222567

RESUMO

Fluctuations in nitrogen (N) availability influence protein and starch levels in maize (Zea mays) seeds, yet the underlying mechanism is not well understood. Here, we report that N limitation impacted the expression of many key genes in N and carbon (C) metabolism in the developing endosperm of maize. Notably, the promoter regions of those genes were enriched for P-box sequences, the binding motif of the transcription factor prolamin-box binding factor 1 (PBF1). Loss of PBF1 altered accumulation of starch and proteins in endosperm. Under different N conditions, PBF1 protein levels remained stable but PBF1 bound different sets of target genes, especially genes related to the biosynthesis and accumulation of N and C storage products. Upon N-starvation, the absence of PBF1 from the promoters of some zein genes coincided with their reduced expression, suggesting that PBF1 promotes zein accumulation in the endosperm. In addition, PBF1 repressed the expression of sugary1 (Su1) and starch branching enzyme 2b (Sbe2b) under normal N supply, suggesting that, under N-deficiency, PBF1 redirects the flow of C skeletons for zein toward the formation of C compounds. Overall, our study demonstrates that PBF1 modulates C and N metabolism during endosperm development in an N-dependent manner.


Assuntos
Endosperma , Zeína , Endosperma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Proteínas de Plantas/metabolismo , Prolaminas/genética , Zeína/genética , Zeína/metabolismo , Nitrogênio/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Sci Rep ; 12(1): 8660, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606450

RESUMO

Oat (Avena sativa L.) is considered to be a healthy food. In contrast to other grain crops, oat is high in protein, lipids, dietary fiber, antioxidants, and uniquely in avenanthramides. The question of whether it can also be consumed by people suffering from celiac disease is still unresolved. The main aim of this study was to extract and sequence genes for potentially harmful avenins, globulins, and α-amylase/trypsin inhibitors in six oat varieties and to establish their variability using PacBio sequencing technology of enriched libraries. The results were compared with sequences of the genes already present in databases. In total, 21 avenin, 75 globulin, and 25 α-amylase/trypsin inhibitor genes were identified and mapped in the hexaploid oat chromosomes. In all of the three gene families, only marginal sequence differences were found between the oat varieties within the individual genes. Avenin epitopes were found in all four types of avenin genes occurring in all oat varieties tested within this study. However, the number of avenin genes was nearly four times lower than of globulin genes and, on the protein level, formed only 10% of storage proteins. Therefore, the question of whether oat is safe to celiac disease people is a question of boundary values.


Assuntos
Doença Celíaca , Globulinas , Alérgenos/metabolismo , Avena/genética , Avena/metabolismo , Doença Celíaca/genética , Doença Celíaca/metabolismo , Globulinas/metabolismo , Humanos , Prolaminas/genética , Sementes/genética , Sementes/metabolismo , Transcriptoma , alfa-Amilases/metabolismo
4.
Transgenic Res ; 31(1): 43-58, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34427836

RESUMO

Wheat seed storage proteins (prolamins) are important for the grain quality because they provide a characteristic texture to wheat flour products. In wheat endosperm cells, prolamins are transported from the Endoplasmic reticulum to Protein storage vacuoles through two distinct pathways-a conventional pathway passing through the Golgi apparatus and an unconventional Golgi-bypassing pathway during which prolamins accumulate in the ER lumen, forming Protein bodies. Unfortunately, transport studies conducted previously achieved limited success because of the seed-specificity of the latter pathway and the multigene architecture of prolamins. To overcome this difficulty, we expressed either of the two families of wheat prolamins, namely α-gliadin or High-molecular-weight subunit of glutenin, in soybean seed, which naturally lacks prolamin-like proteins. SDS-PAGE analysis indicated the successful expression of recombinant wheat prolamins in transgenic soybean seeds. Their accumulation states were quite different-α-gliadin accumulated with partial fragmentation whereas the HMW-glutenin subunit formed disulfide-crosslinked polymers without fragmentation. Immunoelectron microscopy of seed sections revealed that α-gliadin was transported to PSVs whereas HMW-glutenin was deposited in novel ER-derived compartments distinct from PSVs. Observation of a developmental stage of seed cells showed the involvement of post-Golgi Prevacuolar compartments in the transport of α-gliadin. In a similar stage of cells, deposits of HMW-glutenin surrounded by membranes studded with ribosomes were observed confirming the accumulation of this prolamin as ER-derived PBs. Subcellular fractionation analysis supported the electron microscopy observations. Our results should help in better understanding of molecular events during the transport of prolamins in wheat.


Assuntos
Gliadina , Glycine max , Farinha , Gliadina/genética , Gliadina/metabolismo , Glutens/genética , Glutens/metabolismo , Prolaminas/genética , Prolaminas/metabolismo , Sementes/genética , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo , Triticum/genética , Triticum/metabolismo
5.
BMC Genomics ; 22(1): 864, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852761

RESUMO

BACKGROUND: Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species. RESULTS: In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes were identified in the Th. elongatum genome. Micro-synteny and phylogenetic analysis revealed dynamic changes of prolamin gene regions and genetic affinities among Th. elongatum, Triticum aestivum, T. urartu and Aegilops tauschii. The Th. elongatum genome, like the B subgenome of T. aestivum, only contained celiac disease epitope DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the low gluten toxicity wheat breeding. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) line 1E(1D) showed higher peak height values than that of their parents, and DS6E(6D) exhibited fewer α-gliadins, which indicates the potential usage for wheat quality breeding. CONCLUSIONS: Overall, this study provided a comprehensive overview of the prolamin gene family in Th. elongatum, and suggested a promising use of this species in the generation of improved wheat breeds intended for the human diet.


Assuntos
Melhoramento Vegetal , Poaceae , Prolaminas , Filogenia , Poaceae/genética , Prolaminas/genética , Triticum/genética
6.
J Agric Food Chem ; 67(31): 8559-8572, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298518

RESUMO

Avenin-like b protein is rich in cysteine residues, providing the possibility to form intermolecular disulfide bonds and then participate in glutenin polymerization. Site-directed mutagenesis was adopted to produce mutant avenin-like b gene encoding mutant avenin-like b protein, in which one tyrosine codon at the C-terminal is substituted by a cysteine codon. Compared with the control lines, both transgenic lines with wild-type and mutant avenin-like b genes demonstrated superior dough properties. While compared within the transgenic lines, the mutant lines showed relative weaker dough strength and decreased sodium-dodecyl-sulfate sedimentation volumes (from 69.7 mL in line WT alb-1 to 41.0 mL in line Mut alb-4). These inferior dough properties were accompanied by the lower contents of large-sized glutenin polymers, the decreased particle diameters of glutenin macropolymer (GMP), due to the lower content of intermolecular ß-sheets (from 39.48% for line WT alb-2 to 30.21% for line Mut alb-3) and the varied contents of disulfide bonds (from 137.37 µmol/g for line WT alb-1 to 105.49 µmol/g for line Mut alb-4) in wheat dough. The extra cysteine might alter the original disulfide bond structure, allowing cysteine residue usually involved in an intermolecular disulfide bond to become available for an intrachain disulfide bond. Avenin-like b proteins were detected in glutenin macropolymers, providing further evidence for this protein to participate in the polymerization of glutenin. This is the first time to investigate the effect of a specific cysteine residue in the avenin-like b protein on flour quality.


Assuntos
Cisteína/genética , Farinha/análise , Plantas Geneticamente Modificadas/genética , Prolaminas/genética , Triticum/genética , Pão/análise , Cisteína/metabolismo , Dissulfetos/química , Manipulação de Alimentos , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Prolaminas/metabolismo , Triticum/química , Triticum/metabolismo
7.
Plant Physiol ; 179(4): 1692-1703, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30696748

RESUMO

Celiac disease is the most common food-induced enteropathy in humans, with a prevalence of approximately 1% worldwide. It is induced by digestion-resistant, proline- and glutamine-rich seed storage proteins, collectively referred to as gluten, found in wheat (Triticum aestivum). Related prolamins are present in barley (Hordeum vulgare) and rye (Secale cereale). The incidence of both celiac disease and a related condition called nonceliac gluten sensitivity is increasing. This has prompted efforts to identify methods of lowering gluten in wheat, one of the most important cereal crops. Here, we used bulked segregant RNA sequencing and map-based cloning to identify the genetic lesion underlying a recessive, low-prolamin mutation (lys3a) in diploid barley. We confirmed the mutant identity by complementing the lys3a mutant with a transgenic copy of the wild-type barley gene and then used targeting-induced local lesions in genomes to identify induced single-nucleotide polymorphisms in the three homeologs of the corresponding wheat gene. Combining inactivating mutations in the three subgenomes of hexaploid bread wheat in a single wheat line lowered gliadin and low-molecular-weight glutenin accumulation by 50% to 60% and increased free and protein-bound lysine by 33%.


Assuntos
Glutens/genética , Hordeum/genética , Triticum/genética , Clonagem Molecular , Análise Mutacional de DNA , Diploide , Mutação de Sentido Incorreto , Plantas Geneticamente Modificadas , Prolaminas/genética , Análise de Sequência de RNA
8.
Proc Natl Acad Sci U S A ; 115(52): 13312-13317, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530679

RESUMO

Fifteen full-length wheat grain avenin-like protein coding genes (TaALP) were identified on chromosome arms 7AS, 4AL, and 7DS of bread wheat with each containing five genes. Besides the a- and b-type ALPs, a c type was identified in the current paper. Both a and b types have two subunits, named x and y types. The five genes on each of the three chromosome arms consisted of two x-type genes, two y-type genes, and one c-type gene. The a-type genes were typically of 520 bp in length, whereas the b types were of 850 bp in length, and the c type was of 470 bp in length. The ALP gene transcript levels were significantly up-regulated in Blumeria graminis f. sp. tritici (Bgt)-infected wheat grain caryopsis at early grain filling. Wild emmer wheat [(WEW), Triticum dicoccoides] populations were focused on in our paper to identify allelic variations of ALP genes and to study the influence of natural selection on certain alleles. Consequently, 25 alleles were identified for TdALP-bx-7AS, 13 alleles were identified for TdALP-ax-7AS, 7 alleles were identified for TdALP-ay-7AS, and 4 alleles were identified for TdALP-ax-4AL Correlation studies on TdALP gene diversity and ecological stresses suggested that environmental factors contribute to the ALP polymorphism formation in WEW. Many allelic variants of ALPs in the endosperm of WEW are not present in bread wheat and therefore could be utilized in breeding bread wheat varieties for better quality and elite plant defense characteristics.


Assuntos
Prolaminas/genética , Triticum/genética , Alelos , Evolução Biológica , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Variação Genética/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Poaceae/genética , Prolaminas/metabolismo , Seleção Genética/genética
9.
Plant Cell ; 30(10): 2529-2552, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30190374

RESUMO

In developing rice (Oryza sativa) endosperm, mRNAs of the major storage proteins, glutelin and prolamine, are transported and anchored to distinct subdomains of the cortical endoplasmic reticulum. RNA binding protein RBP-P binds to both glutelin and prolamine mRNAs, suggesting a role in some aspect of their RNA metabolism. Here, we show that rice lines expressing mutant RBP-P mislocalize both glutelin and prolamine mRNAs. Different mutant RBP-P proteins exhibited varying degrees of reduced RNA binding and/or protein-protein interaction properties, which may account for the mislocalization of storage protein RNAs. In addition, partial loss of RBP-P function conferred a broad phenotypic variation ranging from dwarfism, chlorophyll deficiency, and sterility to late flowering and low spikelet fertility. Transcriptome analysis highlighted the essential role of RBP-P in regulating storage protein genes and several essential biological processes during grain development. Overall, our data demonstrate the significant roles of RBP-P in glutelin and prolamine mRNA localization and in the regulation of genes important for plant growth and development through its RNA binding activity and cooperative regulation with interacting proteins.


Assuntos
Endosperma/metabolismo , Glutens/genética , Oryza/metabolismo , Prolaminas/genética , Proteínas de Ligação a RNA/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Glutens/metabolismo , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Prolaminas/metabolismo , Domínios Proteicos , Multimerização Proteica , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética
10.
Genetica ; 146(3): 255-264, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29748764

RESUMO

Nine novel high-molecular-weight prolamins (HMW-prolamins) were isolated from Leymus multicaulis and L. chinensis. Based on the structure of the repetitive domains, all nine genes were classified as D-hordeins but not high-molecular-weight glutenin subunits (HMW-GSs) that have been previously isolated in Leymus spp. Four genes, Lmul 1.2, 2.4, 2.7, and Lchi 2.5 were verified by bacterial expression, whereas the other five sequences (1.3 types) were classified as pseudogenes. The four Leymus D-hordein proteins had longer N-termini than those of Hordeum spp. [116/118 vs. 110 amino acid (AA) residues], whereas three (Lmul 1.2, 2.4, and 2.7) contained shorter N-termini than those of the Ps. juncea (116 vs. 118 AA residues). Furthermore, Lmul 1.2 was identified as the smallest D-hordein, and Lmul 1.2 and 2.7 had an additional cysteines. Phylogenetic analysis supported that the nine D-hordeins of Leymus formed two independent clades, with all the 1.3 types clustered with Ps. juncea Ns 1.3, whereas the others were clustered together with the D-hordeins from Hordeum and Ps. juncea and the HMW-GSs from Leymus. Within the clade of four D-hordein genes and HMW-GSs, the HMW-GSs of Leymus formed a separated branch that served as an intermediate between the D-hordeins of Ps. juncea and Leymus. These novel D-hordeins may be potentially utilized in the improvement of food processing properties particularly those relating to extra cysteine residues. The findings of the present study also provide basic information for understanding the HMW-prolamins among Triticeae species, as well as expand the sources of D-hordeins from Hordeum to Leymus.


Assuntos
Peso Molecular , Proteínas de Plantas/química , Poaceae/química , Prolaminas/química , Sequência de Aminoácidos , Expressão Gênica , Genes de Plantas , Genoma de Planta , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/genética , Poaceae/genética , Prolaminas/genética , Proteínas Recombinantes , Análise de Sequência de DNA
11.
Sci Rep ; 8(1): 5181, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581476

RESUMO

Wheat Gli-2 loci encode complex groups of α-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of α-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous α-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 α-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of α-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of α-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of α-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.


Assuntos
Doença Celíaca/genética , Evolução Molecular , Gliadina/genética , Prolaminas/genética , Triticum/genética , Sequência de Aminoácidos , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Mapeamento Cromossômico , Epitopos/genética , Genoma de Planta/genética , Genômica , Gliadina/classificação , Humanos , Poliploidia , Prolaminas/classificação , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Plant Cell Rep ; 37(2): 209-223, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29075848

RESUMO

KEY MESSAGE: Bioactive peptide was produced by fusion to rice prolamins in transgenic rice seeds. Their accumulation levels were affected by their deposition sites and by compensatory rebalancing between prolamins within PB-Is. Peptide immunotherapy using analogue peptide ligands (APLs) is one of promising treatments against autoimmune diseases. Use of seed storage protein as a fusion carrier is reasonable strategy for production of such small size bioactive peptides. In this study, to examine the efficacy of various rice prolamins deposited in ER-derived protein bodies (PB-Is), the APL12 from the Glucose-6-phosphate isomerase (GPI325-339) was expressed by fusion to four types of representative prolamins under the control of the individual native promoters. When the 14 and 16 kDa Cys-rich prolamins, which were localized in middle layer of PB-Is, were used for production of the APL12, they highly accumulated in transgenic rice seeds (~ 200 µg/grain). By contrast, fusion to the 10 and 13 kDa prolamins, which were localized in the core and outermost layer of PB-Is, resulted in lower levels of accumulation (~ 40 µg/grain). These results suggest that accumulation levels were highly affected by their deposition sites. Next, when different prolamin/APL12 fusion proteins were co-expressed to increase accumulation levels, they could not be increased so much as their expected additive levels. High accumulation of one type prolamin/APL12 led to reduction of other type(s) prolamin/APL12 to maintain the limited amounts of prolamins that can be deposited in PB-Is. Moreover, suppression of endogenous seed proteins by RNA interference also did not significantly enhance the accumulation levels of prolamin/APL12. These findings suggest that there may be compensatory rebalancing mechanism that controls the accumulation levels of prolamins deposited within PB-Is.


Assuntos
Oryza/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Immunoblotting , Microscopia Confocal , Oryza/genética , Peptídeos/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Prolaminas/genética , Prolaminas/metabolismo , Proteínas Recombinantes de Fusão/genética , Sementes/genética , Sementes/metabolismo
13.
Genetica ; 146(1): 45-51, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29030762

RESUMO

Avenin-like storage proteins influence the rheological properties and processing quality in common wheat, and the discovery of new alleles will benefit wheat quality improvement. In this study, 13 avenin-like b alleles (TaALPb7D-A-M) were discovered in 108 Aegilops tauschii Coss. accessions. Ten alleles were reported for the first time, while the remaining three alleles were the same as alleles in other species. A total of 15 nucleotide changes were detected in the 13 alleles, resulting in only 11 amino acid changes because of synonymous mutations. Alleles TaALPb7D-E, TaALPb7D-G, and TaALPb7D-J encoded the same protein. These polymorphic sites existed in the N-terminus, Repetitive region (Left), Repetitive region (Right) and C-terminus domains, with no polymorphisms in the signal peptide sequence nor in those encoding the 18 conserved cysteine residues. Phylogenetic analysis divided the TaALPb7Ds into four clades. The Ae. tauschii alleles were distributed in all four clades, while the alleles derived from common wheat, TaALPb7D-G and TaALPb7D-C, belonged to clade III and IV, respectively. Alleles TaALPb7D-G and TaALPb7D-C were the most widely distributed, being present in nine and six countries, respectively. Iran and Turkey exhibited the highest genetic diversity with respect to TaALPb7D alleles, accessions from these countries carrying seven and six alleles, respectively, which implied that these countries were the centers of origin of the avenin-like b gene. The new alleles discovered and the phylogenetic analysis of avenin-like b genes will provide breeding materials and a theoretical basis for wheat quality improvement.


Assuntos
Variação Genética , Poaceae/genética , Prolaminas/genética , Alelos , Genes de Plantas , Filogenia , Polimorfismo de Nucleotídeo Único , Prolaminas/classificação
14.
Plant J ; 92(4): 571-583, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28857322

RESUMO

Among the wheat prolamins important for its end-use traits, α-gliadins are the most abundant, and are also a major cause of food-related allergies and intolerances. Previous studies of various wheat species estimated that between 25 and 150 α-gliadin genes reside in the Gli-2 locus regions. To better understand the evolution of this complex gene family, the DNA sequence of a 1.75-Mb genomic region spanning the Gli-2 locus was analyzed in the diploid grass, Aegilops tauschii, the ancestral source of D genome in hexaploid bread wheat. Comparison with orthologous regions from rice, sorghum, and Brachypodium revealed rapid and dynamic changes only occurring to the Ae. tauschii Gli-2 region, including insertions of high numbers of non-syntenic genes and a high rate of tandem gene duplications, the latter of which have given rise to 12 copies of α-gliadin genes clustered within a 550-kb region. Among them, five copies have undergone pseudogenization by various mutation events. Insights into the evolutionary relationship of the duplicated α-gliadin genes were obtained from their genomic organization, transcription patterns, transposable element insertions and phylogenetic analyses. An ancestral glutamate-like receptor (GLR) gene encoding putative amino acid sensor in all four grass species has duplicated only in Ae. tauschii and generated three more copies that are interspersed with the α-gliadin genes. Phylogenetic inference and different gene expression patterns support functional divergence of the Ae. tauschii GLR copies after duplication. Our results suggest that the duplicates of α-gliadin and GLR genes have likely taken different evolutionary paths; conservation for the former and neofunctionalization for the latter.


Assuntos
Genoma de Planta/genética , Gliadina/genética , Família Multigênica/genética , Poaceae/genética , Triticum/genética , Sequência de Aminoácidos , Evolução Molecular , Duplicação Gênica , Loci Gênicos , Genômica , Dados de Sequência Molecular , Filogenia , Prolaminas/genética , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Sintenia
15.
Sci Rep ; 6: 30692, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503660

RESUMO

The wheat avenin-like proteins (ALP) are considered atypical gluten constituents and have shown positive effects on dough properties revealed using a transgenic approach. However, to date the genetic architecture of ALP genes is unclear, making it impossible to be utilized in wheat breeding. In the current study, three genes of type-b ALPs were identified and mapped to chromosomes 7AS, 4AL and 7DS. The coding gene sequence of both TaALP-7A and TaALP-7D was 855 bp long, encoding two identical homologous 284 amino acid long proteins. TaALP-4A was 858 bp long, encoding a 285 amino acid protein variant. Three alleles were identified for TaALP-7A and four for TaALP-4A. TaALP-7A alleles were of two types: type-1, which includes TaALP-7A1 andTaALP-7A2, encodes mature proteins, while type-2, represented byTaALP-7A3, contains a stop codon in the coding region and thus does not encode a mature protein. Dough quality testing of 102 wheat cultivars established a highly significant association of the type-1 TaALP-7A allele with better wheat processing quality. This allelic effects were confirmed among a range of commercial wheat cultivars. Our research makes the ALP be the first of such genetic variation source that can be readily utilized in wheat breeding.


Assuntos
Cisteína/metabolismo , Melhoramento Vegetal/métodos , Prolaminas/genética , Triticum/genética , Alelos , Sequência de Aminoácidos , Pão/análise , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
16.
Genome Biol Evol ; 8(6): 1712-21, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27190000

RESUMO

Seed storage proteins (SSP) in cereals provide essential nutrition for humans and animals. Genes encoding these proteins have undergone rapid evolution in different grass species. To better understand the degree of divergence, we analyzed this gene family in the subfamily Chloridoideae, where the genome of teff (Eragrostis tef) has been sequenced. We find gene duplications, deletions, and rapid mutations in protein-coding sequences. The main SSPs in teff, like other grasses, are prolamins, here called eragrostins. Teff has γ- and δ-prolamins, but has no ß-prolamins. One δ-type prolamin (δ1) in teff has higher methionine (33%) levels than in maize (23-25%). The other δ-type prolamin (δ2) has reduced methionine residues (<10%) and is phylogenetically closer to α prolamins. Prolamin δ2 in teff represents an intermediate between δ and α types that appears to have been lost in maize and other Panicoideae, and was replaced by the expansion of α-prolamins. Teff also has considerably larger numbers of α-prolamin genes, which we further divide into five sub-groups, where α2 and α5 represent the most abundant α-prolamins both in number and in expression. In addition, indolines that determine kernel softness are present in teff and the panicoid cereal called foxtail millet (Setaria italica) but not in sorghum or maize, indicating that these genes were only recently lost in some members of the Panicoideae Moreover, this study provides not only information on the evolution of SSPs in the grass family but also the importance of α-globulins in protein aggregation and germplasm divergence.


Assuntos
Eragrostis/genética , Evolução Molecular , Prolaminas/genética , Proteínas de Armazenamento de Sementes/genética , Grão Comestível/genética , Deleção de Genes , Duplicação Gênica/genética , Genoma de Planta , Mutação , Filogenia , Sorghum/genética , Zea mays/genética
17.
New Phytol ; 210(4): 1259-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26831622

RESUMO

In some eukaryotes, endoplasmic reticulum (ER) stress induces regulated inositol-requiring enzyme 1 (IRE1)-dependent decay (RIDD) of mRNAs. Recently, the expression levels of the mRNAs encoding some secretory proteins were reported to be downregulated by RIDD in the vegetative tissues of plants. However, the characteristics of plant RIDD have been insufficiently investigated due to difficulty of in planta analyses. Here, the RIDD susceptibilities of various mRNAs that are difficult to analyze in planta were examined using transient expression analyses of rice protoplasts. In this system, the mRNAs encoding three rice seed storage proteins (SSPs) - namely α-globulin, 16-kDa prolamin and 10-kDa prolamin - were downregulated in response to ER stress. The rapid ER stress-induced degradation of these mRNAs was repressed in cells in which the ribonuclease activity of IRE1 was specifically abolished by genome editing, suggesting that the mRNAs encoding certain SSPs are strong targets of RIDD. Furthermore, we investigated whether these RIDD targets are substrates of the IRE1 ribonuclease using a recombinant IRE1 protein, and identified candidate IRE1-mediated cleavage sites. Overall, the results demonstrate the existence of a post-transcriptional mechanism of regulation of SSPs, and illustrate the basic and multifaceted characteristics of RIDD in higher plants.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Oryza/fisiologia , Ribonucleases/metabolismo , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Prolaminas/genética , Prolaminas/metabolismo , Protoplastos , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , Ribonucleases/genética , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo
18.
Transgenic Res ; 25(1): 19-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26507269

RESUMO

C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7% reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS-PAGE electrophoresis, the protein band were excised and the proteins identified by quadrupole-time-of-flight mass spectrometry. Subsequent SDS-PAGE separation and analysis of the prolamin fraction of the transgenic lines revealed a reduction in the amounts of C-hordeins and increases in the content of other hordein family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C-hordein level. All transgenic lines that exhibited a reduction for C-hordein showed off-target effects: the lines exhibited increased level of B/γ-hordein while D-hordein level was reduced. Furthermore, the multicopy insertions correlated negatively with silencing.


Assuntos
Aminoácidos/química , Glutens/genética , Hordeum/química , Hordeum/genética , Sementes/química , Aminoácidos/genética , Eletroforese em Gel de Poliacrilamida , Gliadina/genética , Glutens/metabolismo , Plantas Geneticamente Modificadas , Prolaminas/análise , Prolaminas/genética , Prolaminas/metabolismo , Interferência de RNA , Sementes/genética , Espectrometria de Massas em Tandem/métodos , Triticum/genética
19.
Biosci Biotechnol Biochem ; 79(11): 1771-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086399

RESUMO

This work revealed peanut seed prolamins likely displaying a defensive role besides the known nitrogen storage. Drought stress and proteomic approaches were used in varieties of peanuts to explore the prolamin member in association with a test against Aspergillus flavus spore germination. The stress effect was showed by aerial biomass, leaf content of malondialdehyde, and seed contamination by A. flavus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles were not informative for the antifungal polypeptides. From two-dimensional gel electrophoresis, the suspected polypeptides were those with pI 5.45-5.75 and sizes of 22.0-30.5 kDa specifically in Spanish-type peanuts. Regarding to the drought effect in most of these peanuts, the spot peak volume analysis deduced three novel prolamin-related antifungal polypeptides at pI 5.75-5.8 with 30.5, 27.5-28.5, and 22.0-22.5 kDa, which was confirmed after isoelectric purification at pH 5.60. The data could not yet conclude their correlation with resistance to drought and to seed infection by A. flavus.


Assuntos
Arachis/genética , Nitrogênio/metabolismo , Prolaminas/metabolismo , Estresse Fisiológico , Antifúngicos , Arachis/química , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidade , Secas , Eletroforese em Gel de Poliacrilamida , Peptídeos , Prolaminas/genética , Proteômica , Sementes/química
20.
Dev Genes Evol ; 225(1): 31-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25420747

RESUMO

Four low-molecular-weight-isoleucine (LMW-i)-type and one novel chimeric (between LMW-i and LMW-methionine (m) types) low-molecular-weight glutenin subunit (LMW-GS) genes were characterized from wild emmer wheat (Triticum dicoccoides), designated as emmer-1 to emmer-5. All five LMW-GS genes possessed the same primary structure shared by other published LMW-GSs. The three genes emmer-1, emmer-3, and emmer-5 are similar, with the exception that emmer-3 and emmer-5 lost a few repeat motifs compared to emmer-1. Gene duplication and insertions/deletions of repeat motifs mediated through unequal crossing over may be responsible for the generation of these three Glu-3 alleles. Although the first residue of mature peptide of emmer-4 is isoleucine, it is not typical LMW-i-type LMW-GS. Phylogenetic analysis indicated that emmer-4 is located in the LMW-m subgroup, suggesting a closer relationship with LMW-m-type gene Y14104 of T. durum. Sequence alignment indicated that the emmer-4 is likely a chimeric gene generated by illegitimate recombination between LMW-i and LMW-m type. Unequal crossing over and illegitimate recombination are effective mechanisms for enriching both copy numbers and variations of LMW-GSs.


Assuntos
Glutens/genética , Triticum/genética , Sequência de Aminoácidos , Evolução Molecular , Genes de Plantas , Glutens/química , Dados de Sequência Molecular , Peso Molecular , Filogenia , Prolaminas/química , Prolaminas/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...