Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Behav Brain Res ; 437: 114127, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36174843

RESUMO

The 5-hydroxytryptamine 2A (5-HT2A) receptor plays an important role in schizophrenia. The 5-HT2A receptor is also involved in the regulation of prepulse inhibition (PPI) in rodents. The aim of this study was to determine whether selective 5-HT2A receptor agonizts or antagonists may alter PPI in rats and to identify the critical brain regions in which the activity of 5-HT2A receptors regulates PPI. The results showed that infusion of the 5-HT2A receptor agonist TCB-2 into the lateral ventricle disrupted PPI, but the 5-HT2A receptor antagonist M100907 had no such effect. In addition, local infusion of TCB-2 into the nucleus accumbens and ventral pallidum disrupted PPI, whereas the same manipulation in the medial prefrontal cortex, ventral hippocampus, and ventral tegmental area did not disrupt PPI. In conclusion, agonism of 5-HT2A receptors in the ventral pallidum and nucleus accumbens can disrupt PPI. The ventral pallidum and nucleus accumbens are critical brain regions responsible for the regulation of PPI by serotonin. These findings contribute to the extensive exploration of the molecular and neural mechanisms underlying the regulatory effect of 5-HT2A receptor activity on PPI, especially the neural circuits modulated by 5-HT2A receptor activity.


Assuntos
Prosencéfalo Basal , Núcleo Accumbens , Inibição Pré-Pulso , Receptor 5-HT2A de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina , Animais , Ratos , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Inibição Pré-Pulso/efeitos dos fármacos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
2.
Environ Toxicol Pharmacol ; 90: 103791, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968718

RESUMO

Cadmium (Cd) single and repeated exposure produces cognitive dysfunctions. Basal forebrain cholinergic neurons (BFCN) regulate cognitive functions. BFCN loss or cholinergic neurotransmission dysfunction leads to cognitive disabilities. Thyroid hormones (THs) maintain BFCN viability and functions, and Cd disrupts their levels. However, Cd-induced BFCN damages and THs disruption involvement was not studied. To research this we treated male Wistar rats intraperitoneally with Cd once (1 mg/kg) or repetitively for 28 days (0.1 mg/kg) with/without triiodothyronine (T3, 40 µg/kg/day). Cd increased thyroid-stimulating-hormone (TSH) and decreased T3 and tetraiodothyronine (T4). Cd altered cholinergic transmission and induced a more pronounced neurodegeneration on BFCN, mediated partially by THs reduction. Additionally, Cd antagonized muscarinic 1 receptor (M1R), overexpressed acetylcholinesterase S variant (AChE-S), downregulated AChE-R, M2R, M3R and M4R, and reduced AChE and choline acetyltransferase activities through THs disruption. These results may assist to discover cadmium mechanisms that induce cognitive disabilities, revealing a new possible therapeutic tool.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Neurônios Colinérgicos/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Masculino , Ratos Wistar , Receptor Muscarínico M1/efeitos dos fármacos , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/administração & dosagem , Tri-Iodotironina/sangue
3.
Sci Rep ; 11(1): 24267, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930953

RESUMO

The neurobiological basis of brand and product attachment has received much attention in consumer neuroscience research, although it remains unclear. In this study, we conducted functional MRI experiments involving female users of famous luxury brand cosmetics as participants, based on the regions of interest involved in human attachment and object attachment. The results showed that the left ventral pallidum (VP), which is involved in positive reward, and the right posterior cingulate cortex (PCC), which is involved in self-concept, a key concept in object attachment, are the core regions in cosmetic attachment. Moreover, the performed psychophysiological interaction analyses showed that VP-temporoparietal junction connectivity positively correlated with activity in the dorsal raphe nucleus, and PCC-anterior hippocampus (aHC) connectivity positively correlated with subjective evaluation of attachment. The former suggests that object attachment is a human-like attachment and a stronger tendency of anthropomorphism is associated with stronger feelings of security. The latter suggests that the individual's concept of attachment as well as the relationships with the attached cosmetics are represented in the aHC, and the PCC-aHC associations produce subjective awareness of the attachment relationships. These associations between memory and reward systems have been shown to play critical roles in cosmetic attachment.


Assuntos
Atenção/fisiologia , Prosencéfalo Basal/efeitos dos fármacos , Cosméticos/química , Giro do Cíngulo/efeitos dos fármacos , Neurônios/metabolismo , Adulto , Prosencéfalo Basal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Modelos Neurológicos , Rede Nervosa/fisiologia , Vias Neurais/fisiopatologia , Apego ao Objeto , Análise de Regressão , Tato
4.
CNS Neurosci Ther ; 27(7): 792-804, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764684

RESUMO

AIMS: The basal forebrain (BF) plays an essential role in wakefulness and cognition. Two subtypes of BF gamma-aminobutyric acid (GABA) neurons, including somatostatin-expressing (GABASOM ) and parvalbumin-positive (GABAParv ) neurons, function differently in mediating the natural sleep-wake cycle. Since the loss of consciousness induced by general anesthesia and the natural sleep-wake cycle probably share similar mechanisms, it is important to clarify the accurate roles of these neurons in general anesthesia procedure. METHODS: Based on two transgenic mouse lines expressing SOM-IRES-Cre and PV-IRES-Cre, we used a combination of genetic activation, inactivation, and chronic ablation approaches to further explore the behavioral and electroencephalography (EEG) roles of BFSOM and BFParv neurons in general anesthesia. After a single intravenous injection of propofol and the induction and recovery times of isoflurane anesthesia, the anesthesia time was compared. The changes in cortical EEG under different conditions were also compared. RESULTS: Activation of BF GABASOM neurons facilitates both the propofol and isoflurane anesthesia, manifesting as a longer anesthesia duration time with propofol anesthesia and a fast induction time and longer recovery time with isoflurane anesthesia. Moreover, BF GABASOM -activated mice displayed a greater suppression of cortical electrical activity during anesthesia, showing an increase in δ power bands or a simultaneous decrease in high-frequency power bands. However, only a limited and nuanced effect on propofol and isoflurane anesthesia was observed with the manipulated BF GABAParv neurons. CONCLUSIONS: Our results suggested that BF GABASOM neurons play a critical role in propofol and isoflurane general anesthesia, while BF GABAParv neurons appeared to have little effect.


Assuntos
Anestesia Geral/métodos , Prosencéfalo Basal/metabolismo , Neurônios GABAérgicos/metabolismo , Isoflurano/farmacologia , Parvalbuminas/metabolismo , Propofol/farmacologia , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Animais , Prosencéfalo Basal/efeitos dos fármacos , Eletroencefalografia/métodos , Neurônios GABAérgicos/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
5.
Psychopharmacology (Berl) ; 238(7): 1953-1964, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33735392

RESUMO

RATIONALE: In addition to the disease-defining motor symptoms, patients with Parkinson's disease (PD) exhibit gait dysfunction, postural instability, and a propensity for falls. These dopamine (DA) replacement-resistant symptoms in part have been attributed to loss of basal forebrain (BF) cholinergic neurons and, in interaction with striatal dopamine (DA) loss, to the resulting disruption of the attentional control of balance and complex movements. Rats with dual cholinergic-DA losses ("DL rats") were previously demonstrated to model PD falls and associated impairments of gait and balance. OBJECTIVES: We previously found that the muscarinic M1-positive allosteric modulator (PAM) TAK-071 improved the attentional performance of rats with BF cholinergic losses. Here, we tested the hypotheses that TAK-071 reduces fall rates in DL rats. RESULTS: Prior to DL surgery, female rats were trained to traverse a rotating straight rod as well as a rod with two zigzag segments. DL rats were refamiliarized with such traversals post-surgery and tested over 7 days on increasingly demanding testing conditions. TAK-071 (0.1, 0.3 mg/kg, p.o.) was administered prior to daily test sessions over this 7-day period. As before, DL rats fell more frequently than sham-operated control rats. Treatment of DL rats with TAK-071 reduced falls from the rotating rod and the rotating zigzag rod, specifically when the angled part of the zigzag segment, upon entering, was at a steep, near vertical angle. CONCLUSIONS: TAK-071 may benefit complex movement control, specifically in situations which disrupt the patterning of forward movement and require the interplay between cognitive and motor functions to modify movement based on information about the state of dynamic surfaces, balance, and gait.


Assuntos
Acidentes por Quedas/prevenção & controle , Agonistas Muscarínicos/uso terapêutico , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Receptor Muscarínico M1/agonistas , Administração Oral , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Feminino , Agonistas Muscarínicos/farmacologia , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1/metabolismo
6.
J Gerontol A Biol Sci Med Sci ; 76(6): 1029-1036, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32710543

RESUMO

BACKGROUND: A pre-existing neurocognitive disorder (NCD) is a relevant factor for the outcome of surgical patients. To improve understanding of these conditions, we investigated the association between parameters of the cholinergic system and NCD. METHOD: This investigation is part of the BioCog project (www.biocog.eu), which is a prospective multicenter observational study including patients aged 65 years and older scheduled for elective surgery. Patients with a Mini-Mental State Examination (MMSE) score ≤23 points were excluded. Neurocognitive disorder was assessed according to the fifth Diagnostic and Statistical Manual of Mental Disorders criteria. The basal forebrain cholinergic system volume (BFCSV) was assessed with magnetic resonance imaging, the peripheral cholinesterase (ChE) activities with point-of-care measurements, and anticholinergic load by analyzing the long-term medication with anticholinergic scales (Anticholinergic Drug Scale [ADS], Anticholinergic Risk Scale [ARS], Anticholinergic Cognitive Burden Scale [ACBS]). The associations of BFCSV, ChE activities, and anticholinergic scales with NCD were studied with logistic regression analysis, adjusting for confounding factors. RESULTS: A total of 797 participants (mean age 72 years, 42% females) were included. One hundred and eleven patients (13.9%) fulfilled criteria for mild NCD and 82 patients (10.3%) for major NCD criteria. We found that AcetylChE activity was associated with major NCD (odds ratio [95% confidence interval]: [U/gHB] 1.061 [1.010, 1.115]), as well as ADS score ([points] 1.353 [1.063, 1.723]) or ARS score, respectively ([points] 1.623 [1.100, 2.397]) with major NCD. However, we found no association between BFCSV or ButyrylChE activity with mild or major NCD. CONCLUSIONS: AcetylChE activity and anticholinergic load were associated with major NCD. Future research should focus on the association of the cholinergic system and the development of postoperative delirium and postoperative NCD.


Assuntos
Antagonistas Colinérgicos/uso terapêutico , Neurônios Colinérgicos/fisiologia , Transtornos Neurocognitivos/fisiopatologia , Período Pré-Operatório , Acetilcolinesterase/metabolismo , Idoso , Prosencéfalo Basal/diagnóstico por imagem , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Antagonistas Colinérgicos/efeitos adversos , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Neurocognitivos/induzido quimicamente , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/patologia , Neuroimagem , Estudos Prospectivos
7.
Br J Anaesth ; 126(1): 279-292, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33131759

RESUMO

BACKGROUND: The neuropeptide orexin promotes arousal from general anaesthesia, however the neuronal circuits that mediate this effect have not been defined. We investigated whether orexinergic neurones modulate the basal forebrain (BF) and locus coeruleus (LC) in emergence from anaesthesia. METHODS: Hcrtcre rats were generated using a CRISPR/Cas9-based approach. Viruses encoding optogenetic probes were injected into the perifornical lateral hypothalamic (PeFLH) area, optogenetic fibres were embedded in the PeFLH, BF, or LC, and changes in anaesthesia state under 1.4 vol% or 0.8 vol% isoflurane were determined. RESULTS: In the PeFLH, 98.8% (0.4%) of orexin-A-positive cells expressed tdTomato, and 91.9% (2.2%) of tdTomato cells were orexin-A-positive. Under 1.4 vol% isoflurane anaesthesia, compared with control groups, burst suppression ratio was less, and emergence time was shorter in groups with optogenetic activation of orexinergic cell bodies in the PeFLH (923 [162] vs 493 [68] s, P=0.0003) or orexinergic terminals in the BF (937 (122) vs 674 (108) s, P=0.0049) or LC (913 [128] vs 742 [76] s, P=0.022). Optical stimulation of orexinergic terminals in the BF and LC also improved the movement scores of rats under 0.8 vol% isoflurane anaesthesia. CONCLUSIONS: Activation of orexinergic terminals in the FB or LC mediates facilitation of emergence from anaesthesia by orexinergic neurones during isoflurane anaesthesia.


Assuntos
Período de Recuperação da Anestesia , Prosencéfalo Basal/efeitos dos fármacos , Isoflurano/farmacologia , Locus Cerúleo/efeitos dos fármacos , Optogenética/métodos , Orexinas/fisiologia , Anestésicos Inalatórios/farmacologia , Animais , Prosencéfalo Basal/metabolismo , Eletroencefalografia/métodos , Locus Cerúleo/metabolismo , Modelos Animais , Orexinas/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Behav Brain Res ; 400: 113047, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33279633

RESUMO

Dopamine D2 receptors (D2Rs) of the ventral pallidum (VP) play important role in motivational and learning processes, however, their potential role in triggering schizophrenic symptoms has not been investigated, yet. In the present experiments the effects of locally administered D2R agonist quinpirole were investigated on behavioral parameters related to sensorimotor gating, motor activity and food-motivated labyrinth learning. Two weeks after bilateral implantation of microcannulae into the VP, the acute (30 min) and delayed (3, 21 and 24 h) effects of quinpirole microinjection (1 µg/0.4 µL at both sides) were investigated in Wistar and schizophrenia model (Wisket substrain) rats in prepulse inhibition (PPI) and the reward-based Ambitus tests. Quinpirole administration did not modify the impaired sensorimotor gating in Wisket rats, but it led to significant deficit in Wistar animals. Regarding the locomotor activity in the Ambitus test, no effects of quinpirole were detected in either groups at the investigated time points. In contrast, quinpirole resulted in decreased exploratory and food-collecting activities in Wistar rats with 21 and 24 h delay. Though, impaired food-related motivation could be observed in Wisket rats, but quinpirole treatment did not result in further deterioration. In summary, our results showed that the VP D2R activation in Wistar rats induces symptoms similar to those observed in schizophrenia model Wisket rats. These data suggest that Wisket rats might have significant alterations in the functional activity of VP, which might be due to its enhanced dopaminergic activity.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Motivação/efeitos dos fármacos , Quimpirol/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Esquizofrenia , Filtro Sensorial/efeitos dos fármacos , Animais , Prosencéfalo Basal/metabolismo , Modelos Animais de Doenças , Agonistas de Dopamina/administração & dosagem , Masculino , Quimpirol/administração & dosagem , Ratos , Ratos Wistar , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia
9.
Neuroreport ; 31(17): 1242-1248, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33075002

RESUMO

Propofol anesthesia rapidly causes loss of consciousness, while the neural mechanism underlying this phenomenon is still unclear. Glutamatergic neurons in the basal forebrain play an important role in initiation and maintenance of wakefulness. Here, we selectively recorded the activity of glutamatergic neurons in vGlut-2-Cre mice. Propofol induced outward currents in a concentration-dependent manner. Bath application of propofol generated membrane hyperpolarization and suppressed the firing rates in these neurons. Propofol-induced stable outward currents persisted after blockade of the action potentials, implying a direct postsynaptic effect of propofol. Furthermore, propofol selectively increased the GABAergic inhibitory synaptic inputs via affecting the GABAARs, but did not affect the glutamatergic transmissions. Together, propofol inhibits the excitability of the glutamatergic neurons via direct influencing the membrane intrinsic properties and the inhibitory synaptic transmission. This inhibitory effect might provide a novel mechanism for the propofol-induced anesthesia.


Assuntos
Prosencéfalo Basal/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Propofol/farmacologia , Receptores de GABA-A/metabolismo , Animais , Prosencéfalo Basal/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos
10.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854421

RESUMO

TNFα is the main proinflammatory cytokine implicated in the pathogenesis of neurodegenerative disorders, but it also modulates physiological functions in both the developing and adult brain. In this study, we investigated a potential direct role of TNFα in determining phenotypic changes of a recently established cellular model of human basal forebrain cholinergic neuroblasts isolated from the nucleus basalis of Meynert (hfNBMs). Exposing hfNBMs to TNFα reduced the expression of immature markers, such as nestin and ß-tubulin III, and inhibited primary cilium formation. On the contrary, TNFα increased the expression of TNFα receptor TNFR2 and the mature neuron marker MAP2, also promoting neurite elongation. Moreover, TNFα affected nerve growth factor receptor expression. We also found that TNFα induced the expression of DNA-methylation enzymes and, accordingly, downregulated genes involved in neuronal development through epigenetic mechanisms, as demonstrated by methylome analysis. In summary, TNFα showed a dual role on hfNBMs phenotypic plasticity, exerting a negative influence on neurogenesis despite a positive effect on differentiation, through mechanisms that remain to be elucidated. Our results help to clarify the complexity of TNFα effects in human neurons and suggest that manipulation of TNFα signaling could provide a potential therapeutic approach against neurodegenerative disorders.


Assuntos
Prosencéfalo Basal/citologia , Núcleo Basal de Meynert/citologia , Metilação de DNA , Fator de Necrose Tumoral alfa/metabolismo , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Núcleo Basal de Meynert/efeitos dos fármacos , Núcleo Basal de Meynert/metabolismo , Linhagem Celular , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Fator de Crescimento Neural/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/farmacologia , Sequenciamento Completo do Genoma
11.
Ecotoxicol Environ Saf ; 203: 110975, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678756

RESUMO

Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aß) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress. These mechanisms, described to be altered by Mn in regions different than BF, could lead to the memory and learning process alteration produced after Mn exposure. The research performed shows that single and repeated Mn treatment of SN56 cholinergic neurons from BF induces P20S inhibition, increases Aß and pTau protein levels, produces HSP90 and HSP70 proteins expression alteration, and oxidative stress generation, being the last two effects mediated by NRF2 pathway alteration. The increment of Aß and pTau protein levels was mediated by HSPs and proteasome dysfunction. All these mechanisms mediated the cell decline observed after Mn treatment. Our results are relevant because they may assist to reveal the processes leading to the neurotoxicity and cognitive alterations observed after Mn exposure.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Prosencéfalo Basal/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Manganês/toxicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas tau/metabolismo , Animais , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Relação Dose-Resposta a Droga , Poluentes Ambientais/metabolismo , Manganês/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
12.
Int J Neuropsychopharmacol ; 23(9): 626-637, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32710782

RESUMO

BACKGROUND: During adolescence, neuronal circuits exhibit plasticity in response to physiological changes and to adapt to environmental events. Nigrostriatal dopaminergic pathways are in constant flux during development. Evidence suggests a relationship between early use of cannabinoids and psychiatric disorders characterized by altered dopaminergic systems, such as schizophrenia and addiction. However, the impact of adolescent exposure to cannabinoids on nigrostriatal dopaminergic pathways in adulthood remains unclear. The aim of this research was to determine the effects of repeated activation of cannabinoid receptors during adolescence on dopaminergic activity of nigrostriatal pathways and the mechanisms underlying this impact during adulthood. METHODS: Male Sprague-Dawley rats were treated with 1.2 mg/kg WIN 55212-2 daily from postnatal day 40 to 65. Then no-net flux microdialysis of dopamine in the dorsolateral striatum, electrophysiological recording of dopaminergic neuronal activity, and microdialysis measures of gamma-aminobutyric acid (GABA) and glutamate in substantia nigra par compacta were carried out during adulthood (postnatal days 72-78). RESULTS: Repeated activation of cannabinoid receptors during adolescence increased the release of dopamine in dorsolateral striatum accompanied by increased population activity of dopamine neurons and decreased extracellular GABA levels in substantia nigra par compacta in adulthood. Furthermore, perfusion of bicuculline, a GABAa antagonist, into the ventral pallidum reversed the increased dopamine neuron population activity in substantia nigra par compacta induced by adolescent cannabinoid exposure. CONCLUSIONS: These results suggest that adolescent exposure to cannabinoid agonists produces disinhibition of nigrostriatal dopamine transmission during adulthood mediated by decreased GABAergic input from the ventral pallidum.


Assuntos
Prosencéfalo Basal , Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Dopamina , Neurônios Dopaminérgicos , Antagonistas de Receptores de GABA-A/farmacologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Neostriado , Parte Compacta da Substância Negra , Receptores de Canabinoides/efeitos dos fármacos , Ácido gama-Aminobutírico , Fatores Etários , Animais , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/metabolismo , Benzoxazinas/administração & dosagem , Bicuculina/farmacologia , Agonistas de Receptores de Canabinoides/administração & dosagem , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Antagonistas de Receptores de GABA-A/administração & dosagem , Masculino , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
13.
Alcohol Clin Exp Res ; 44(8): 1529-1539, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573991

RESUMO

BACKGROUND: Norepinephrine has been suggested to regulate ethanol (EtOH)-related behaviors, but little is known about the effects of EtOH on norepinephrine release in mesocortical and mesolimbic brain areas that are targets of EtOH actions. METHODS: We used in vivo microdialysis to examine the effects of EtOH on extracellular norepinephrine concentrations in mesocorticolimbic brain regions of male Long Evans rats. We determined the effects of intravenous infusion of saline or EtOH in the medial prefrontal cortex (mPFC) and the basal forebrain. We also measured dialysate norepinephrine concentrations during operant self-administration of EtOH in the mPFC. RESULTS: Intravenous infusion (1 or 0.25 ml/min) of 1.0 g/kg EtOH stimulated an increase in dialysate norepinephrine in mPFC and in basal forebrain. In the basal forebrain, an infusion of 0.5 g/kg EtOH did not stimulate dialysate norepinephrine concentrations. In both regions, saline infusions did not increase dialysate norepinephrine concentrations. In the behavioral experiment, 1 week of experience with operant self-administration of sweetened EtOH resulted in an apparent reduction in basal dialysate norepinephrine concentrations in the mPFC relative to the sucrose control. Dialysate norepinephrine increased during the transfer from home cage to the operant chamber in all groups. CONCLUSIONS: We conclude that acute EtOH stimulates both the locus coeruleus (which projects to the mPFC) and the nucleus tractus solitarius (which projects to the basal forebrain) noradrenergic neurons. Additionally, limited EtOH self-administration experience alters dialysate norepinephrine in the mPFC in a manner consistent with a decrease in tonic norepinephrine release. Further studies are necessary to elucidate the mechanisms by which EtOH exerts these variable effects.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Norepinefrina/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Administração Intravenosa , Animais , Prosencéfalo Basal/metabolismo , Condicionamento Operante , Espaço Extracelular/metabolismo , Masculino , Microdiálise , Córtex Pré-Frontal/metabolismo , Ratos , Autoadministração
14.
Neurochem Res ; 45(8): 1791-1801, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32367385

RESUMO

GABA, the most abundant inhibitory neurotransmitter in the brain, is closely linked with sleep and wakefulness. As the largest area input to the ventral pallidum (VP), the nucleus accumbens (NAc) has been confirmed to play a pivotal role in promoting non-rapid eye movement (NREM) sleep through inhibitory projections from NAc adenosine A2A receptor-expressing neurons to VP GABAergic neurons which mostly express GABAA receptors. Although these studies demonstrate the possible role of VP GABAergic neurons in sleep-wake regulation, whether and how its modulate sleep-wake cycle is not completely clear. In our study, pharmacological manipulations were implemented in freely moving rats and then the EEG and the EMG were recorded to monitor the sleep-wake states. We found that microinjection of muscimol, a GABAA receptor agonist, into the VP increased NREM sleep in both light and dark period. Microinjection of bicuculline, a GABAA receptor antagonist, into the VP increased wakefulness in the light period. Collectively, our data identify the important role of VP GABAA receptor-expressing neurons in NREM sleep of rats which may help improve the understanding of the pathological sleep disorders.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Muscimol/farmacologia , Receptores de GABA-A/metabolismo , Fases do Sono/efeitos dos fármacos , Animais , Prosencéfalo Basal/metabolismo , Bicuculina/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Masculino , Ratos Sprague-Dawley , Vigília/efeitos dos fármacos
15.
Brain Behav ; 10(4): e01592, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32157827

RESUMO

INTRODUCTION: The mechanisms underlying sleep deprivation-induced memory impairments and relevant compensatory signaling pathways remain elusive. We tested the hypothesis that increased brain-derived neurotrophic factor (BDNF) expression in the basal forebrain following acute sleep deprivation was a compensatory mechanism to maintain fear memory performance. METHODS: Adult male Wistar rats were deprived of 6-hr total sleep from the beginning of the light cycle. The effects of sleep deprivation on BDNF protein expression and activation of downstream tropomyosin receptor kinase B (TrkB)/phospholipase C-γ1 (PLCγ1) signaling in the basal forebrain and fear memory consolidation were examined. BDNF or selective downstream TrkB receptor antagonist ANA-12 was further injected into the basal forebrain bilaterally to observe the changes in fear memory consolidation in response to modulation of the BDNF/TrkB signaling. RESULTS: Six hours of sleep deprivation-induced both short- and long-term fear memory impairments. Increased BDNF protein expression and TrkB and PLCγ1 phosphorylation in the basal forebrain were observed after sleep deprivation. Microinjection of BDNF into the basal forebrain partly reversed fear memory deficits caused by sleep deprivation, which were accompanied by increased BDNF protein levels and TrkB/PLCγ1 activation. After ANA-12 microinjection, sleep deprivation-induced activation of the BDNF/TrkB pathway was inhibited and impairments of fear memory consolidation were further aggravated. CONCLUSIONS: Acute sleep deprivation induces compensatory increase of BDNF expression in the basal forebrain. Microinjection of BDNF into the basal forebrain mitigates the fear memory impairments caused by sleep deprivation by activating TrkB/PLCγ1 signaling.


Assuntos
Azepinas/uso terapêutico , Prosencéfalo Basal/efeitos dos fármacos , Benzamidas/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Medo/fisiologia , Transtornos da Memória/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Privação do Sono/complicações , Animais , Azepinas/farmacologia , Prosencéfalo Basal/metabolismo , Benzamidas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor trkB/antagonistas & inibidores , Receptor trkB/metabolismo , Transdução de Sinais/fisiologia , Sono/fisiologia , Privação do Sono/metabolismo , Resultado do Tratamento
16.
Cell Rep ; 30(6): 2018-2027.e3, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049028

RESUMO

Projections from the nucleus accumbens to the ventral pallidum (VP) regulate relapse in animal models of addiction. The VP contains GABAergic (VPGABA) and glutamatergic (VPGlu) neurons, and a subpopulation of GABAergic neurons co-express enkephalin (VPPenk). Rabies tracing reveals that VPGlu and VPPenk neurons receive preferential innervation from upstream D1- relative to D2-expressing accumbens neurons. Chemogenetic stimulation of VPGlu neurons inhibits, whereas stimulation of VPGABA and VPPenk neurons potentiates cocaine seeking in mice withdrawn from intravenous cocaine self-administration. Calcium imaging reveals cell type-specific activity patterns when animals learn to suppress drug seeking during extinction training versus engaging in cue-induced cocaine seeking. During cued seeking, VPGABA neurons increase their overall activity, and VPPenk neurons are selectively activated around nose pokes for cocaine. In contrast, VPGlu neurons increase their spike rate following extinction training. These data show that VP subpopulations differentially encode and regulate cocaine seeking, with VPPenk and VPGABA neurons facilitating and VPGlu neurons inhibiting cocaine seeking.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Cocaína/uso terapêutico , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Animais , Cocaína/farmacologia , Humanos , Camundongos
17.
J Neuroendocrinol ; 32(1): e12830, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943420

RESUMO

Rapid nonclassical effects of 17ß-oestradiol (E2 ) on intracellular signalling have been identified in the basal forebrain, although the extent to which these actions may be different in males and females is unknown. Previous work has shown that E2 rapidly phosphorylates cAMP responsive element binding protein (CREB) via ΕRα in female cholinergic neurones. Using this indicator, the present study examined whether nonclassical actions of E2 occur in a sexually dimorphic manner within basal forebrain cholinergic neurones in mice. In addition, we investigated the expression and intracellular distribution of oestrogen receptor (ΕR)α in cholinergic neurones in female and male mice. Animals were gonadectomised and treated 2 weeks later with E2 . The number of CREB-expressing cholinergic neurones was not altered in any of the brain regions after E2 treatment in both males and females. However, E2 treatment rapidly (< 15 minutes) increased (P < 0.05) the number of cholinergic neurones expressing phosphorylated CREB (pCREB) in the substantia innominata and medial septum but not in the striatum in female mice. By contrast, E2 did not change pCREB expression in cholinergic neurones in male mice at any time point (15 minutes, 1 hour, 4 hours), irrespective of the neuroanatomical location. We also observed that, in females, more cholinergic neurones expressed nuclear ΕRα in all regions, whereas males showed more cholinergic neurones with cytoplasmic or both nuclear and cytoplasmic expression of ΕRα. Taken together, these results demonstrate a marked sex difference in the E2 -induced nonclassical effect and intracellular distribution of ΕRα in basal forebrain cholinergic neurones in vivo.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Masculino , Camundongos , Ovariectomia , Fosforilação/efeitos dos fármacos , Fatores Sexuais
18.
Brain Res ; 1731: 145921, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30148983

RESUMO

Cognitive impairment is a core feature of several neuropsychiatric and neurological disorders, including narcolepsy and age-related dementias. Current pharmacotherapeutic approaches to cognitive enhancement are few in number and limited in efficacy. Thus, novel treatment strategies are needed. The hypothalamic orexin (hypocretin) system, a central integrator of physiological function, plays an important role in modulating cognition. Several single- and dual-orexin receptor antagonists are available for various clinical and preclinical applications, but the paucity of orexin agonists has limited the ability to research their therapeutic potential. To circumvent this hurdle, direct intranasal administration of orexin peptides is being investigated as a prospective treatment for cognitive dysfunction, narcolepsy or other disorders in which deficient orexin signaling has been implicated. Here, we describe the possible mechanisms and therapeutic potential of intranasal orexin delivery. Combined with the behavioral evidence that intranasal orexin-A administration improves cognitive function in narcoleptic and sleep-deprived subjects, our neurochemical studies in young and aged animals highlights the capacity for intranasal orexin administration to improve age-related deficits in neurotransmission. In summary, we highlight prior and original work from our lab and from others that provides a framework for the use of intranasal orexin peptides in treating cognitive dysfunction, especially as it relates to age-related cognitive disorders.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/fisiopatologia , Orexinas/administração & dosagem , Orexinas/fisiologia , Administração Intranasal , Animais , Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
19.
Addict Biol ; 25(2): e12731, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30779268

RESUMO

Binge drinking and alcohol abuse are common during adolescence and cause lasting pathology. Preclinical rodent studies using the adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P]25 to P55) model of human adolescent binge drinking report decreased basal forebrain cholinergic (ie, ChAT+) neurons that persist into adulthood (ie, P56-P220). Recent studies link AIE-induced neuroimmune activation to cholinergic pathology, but the underlying molecular mechanisms contributing to the persistent loss of basal forebrain ChAT+ neurons are unknown. We report here that the AIE-induced loss of cholinergic neuron markers (ie, ChAT, TrkA, and p75NTR ), cholinergic neuron shrinkage, and increased expression of the neuroimmune marker pNF-κB p65 are restored by exercise exposure from P56 to P95 after AIE. Our data reveal that persistently reduced expression of cholinergic neuron markers following AIE is because of the loss of the cholinergic neuron phenotype most likely through an epigenetic mechanism involving DNA methylation and histone 3 lysine 9 dimethylation (H3K9me2). Adolescent intermittent ethanol caused a persistent increase in adult H3K9me2 and DNA methylation at promoter regions of Chat and H3K9me2 of Trka, which was restored by wheel running. Exercise also restored the AIE-induced reversal learning deficits on the Morris water maze. Together, these data suggest that AIE-induced adult neuroimmune signaling and cognitive deficits are linked to suppression of Chat and Trka gene expression through epigenetic mechanisms that can be restored by exercise. Exercise restoration of the persistent AIE-induced phenotypic loss of cholinergic neurons via epigenetic modifications is novel mechanism of neuroplasticity.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Neurônios Colinérgicos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Etanol/farmacologia , Atividade Motora/fisiologia , Animais , Prosencéfalo Basal/fisiopatologia , Consumo Excessivo de Bebidas Alcoólicas/genética , Modelos Animais de Doenças , Epigênese Genética/genética , Masculino , Ratos Wistar
20.
Brain Res ; 1731: 146461, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31526801

RESUMO

The orexin (hypocretin) system is multifaceted, and regulates sleep-wake cycles, nociception, endocrine function and reward-seeking behavior. We have established an important role for this system in motivation for drugs of abuse. The orexin-1 receptor (Ox1R) antagonist SB334867 (SB) reduces seeking of drug reward under conditions of high motivation. There is some evidence that the effects of systemic SB on reward seeking persist beyond the pharmacological availability of the drug, however the time course of these effects is not well characterized, nor is it known whether similar persistent effects are observed following intraparenchymal injections. Here, we used a behavioral economics paradigm, which allows for repeated testing of drug motivation across consecutive days, to examine the persistent effects of acute systemic and local treatment with SB on motivation for the short-acting µ-opioid receptor agonistremifentanil. Systemic injections of SB immediately prior to behavioral testing reduced motivation for remifentanil; this effect was sustained on a subsequent test at 24 h, but not on a third test at 48 h. When injected into ventral pallidum (VP) the effects of SB were more persistent, with reduced motivation observed for up to 48 h. We next made SB injections into VP 24 h prior to behavioral testing; this produced effects that persisted for at least 72 h post-treatment. Cued reinstatement of extinguished remifentanil seeking was also attenuated by pretreatment with SB 24 h earlier. These data indicate that the effects of SB on opioid seeking behavior persist beyond the bioavailability of the compound. These observations have important ramifications for the future clinical use of orexin receptor antagonists for the treatment of addiction.


Assuntos
Analgésicos Opioides/administração & dosagem , Prosencéfalo Basal/efeitos dos fármacos , Benzoxazóis/administração & dosagem , Motivação/efeitos dos fármacos , Naftiridinas/administração & dosagem , Remifentanil/administração & dosagem , Ureia/análogos & derivados , Animais , Prosencéfalo Basal/fisiologia , Condicionamento Operante , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Motivação/fisiologia , Ratos Sprague-Dawley , Recompensa , Ureia/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...