Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Pest Manag Sci ; 80(6): 3047-3055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319125

RESUMO

BACKGROUND: An urgent need to find new methods for crop protection remains open due to the withdrawal from the market of the most toxic pesticides and increasing consumer awareness. One of the alternatives that can be used in modern agriculture is the use of bifunctional compounds whose actions towards plant protection are wider than those of conventional pesticides. RESULTS: In this study, we present the investigation of the biological efficacy of nine dual-functional salts containing a systemic acquired resistance (SAR)-inducing anion and the benzethonium cation. A significant result of the presented study is the discovery of the SAR induction activity of benzethonium chloride, which was previously reported only as an antimicrobial agent. Moreover, the concept of dual functionality was proven, as the application of presented compounds in a given concentrations resulted both in the control of human and plant bacteria species and induction of SAR. CONCLUSION: The strategy presented in this article shows the capabilities of derivatization of common biologically active compounds into their ionic derivatives to obtain bifunctional salts. This approach may be an example of the design of potential new compounds for modern agriculture. It provides plants with two complementary actions allowing to provide efficient protection to plants, if one mode of action is ineffective. © 2024 Society of Chemical Industry.


Assuntos
Benzetônio , Líquidos Iônicos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Benzetônio/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cátions/farmacologia , Cátions/química , Proteção de Cultivos/métodos , Bactérias/efeitos dos fármacos
2.
Curr Opin Plant Biol ; 76: 102441, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696727

RESUMO

Spray-induced gene silencing (SIGS) is a powerful and eco-friendly method for crop protection. Based off the discovery of RNA uptake ability in many fungal pathogens, the application of exogenous RNAs targeting pathogen/pest genes results in gene silencing and infection inhibition. However, SIGS remains hindered by the rapid degradation of RNA in the environment. As extracellular vesicles are used by plants, animals, and microbes in nature to transport RNAs for cross-kingdom/species RNA interference between hosts and microbes/pests, nanovesicles and other nanoparticles have been used to prevent RNA degradation. Efforts examining the effect of nanoparticles on RNA stability and internalization have identified key attributes that can inform better nanocarrier designs for SIGS. Understanding sRNA biogenesis, cross-kingdom/species RNAi, and how plants and pathogens/pests naturally interact are paramount for the design of SIGS strategies. Here, we focus on nanotechnology advancements for the engineering of innovative RNA-based disease control strategies against eukaryotic pathogens and pests.


Assuntos
Proteção de Cultivos , Inativação Gênica , Animais , RNA Interferente Pequeno/genética , Proteção de Cultivos/métodos , Interferência de RNA , Plantas/metabolismo
3.
Plant Biotechnol J ; 21(4): 854-865, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36601704

RESUMO

Spray-induced gene silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea. AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP and DODMA, and examined for their ability to protect and deliver double stranded RNA (dsRNA). All three formulations enabled dsRNA delivery and uptake by B. cinerea. Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi-mediated protection against B. cinerea both on pre- and post-harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome RNA instability in SIGS for crop protection.


Assuntos
Proteção de Cultivos , RNA de Cadeia Dupla , RNA de Cadeia Dupla/genética , Proteção de Cultivos/métodos , Inativação Gênica , Interferência de RNA
4.
PLoS One ; 16(8): e0255638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370774

RESUMO

To what extent birds provide the ecosystem service of pest control in subsistence farms, and how this service might depend on retained natural habitats near farmlands is unexplored in West Africa. To fill this knowledge gap, we placed plasticine mimics of insect pests on experimentally grown crops on the Mambilla Plateau, South Eastern Nigeria. We recorded bird attacks on the mimics and the proportion of mimics removed by birds. We also determined the influence of distance of crops from forest fragments on both attack and removal rates. We placed 90 potted plants of groundnut (Arachis hypogea) and bambara nut (Vigna subterranea) along 15 transects running 4.5 km from forest edge into open grassland. Each plant had six of the 540 mimics in total placed on their leaves. We inspected the potted plants weekly for 12 weeks to record (i) the presence of bird beak marks on mimics, and (ii) the number of missing mimics. Once a week we collected all the mimics from the plants and counted the number of assumed beak marks. After counting we replaced the mimics on the plants, mark free. We found a strong positive correlation between the abundance of insectivorous birds and the mean number of missing mimics and/or bird attack marks on mimics. However, this positive effect of insectivorous bird abundance on prey mimic attack/removal became less strong the farther they were from a forest fragment. We found increased predation rates and abundance of insectivorous birds closer to forest fragments. Our data suggest that pest predation may be a key ecosystem service provided by insectivorous birds on Nigerian farmlands. Farmlands that are closer to forest fragments may experience a higher rate of pest control by insectivorous birds than those further away, suggesting that retaining forest fragments in the landscape may enhance pest control services in sub-Saharan subsistence farms.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , Proteção de Cultivos/métodos , Fazendas , Florestas , Controle de Insetos/métodos , Comportamento Predatório/fisiologia , Animais , Arachis , Produtos Agrícolas , Pradaria , Insetos , Nigéria , Compostos Orgânicos , Estações do Ano , Vigna
5.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299307

RESUMO

Crop yield is severely affected by biotic and abiotic stresses. Plants adapt to these stresses mainly through gene expression reprogramming at the transcriptional and post-transcriptional levels. Recently, the exogenous application of double-stranded RNAs (dsRNAs) and RNA interference (RNAi) technology has emerged as a sustainable and publicly acceptable alternative to genetic transformation, hence, small RNAs (micro-RNAs and small interfering RNAs) have an important role in combating biotic and abiotic stresses in plants. RNAi limits the transcript level by either suppressing transcription (transcriptional gene silencing) or activating sequence-specific RNA degradation (post-transcriptional gene silencing). Using RNAi tools and their respective targets in abiotic stress responses in many crops is well documented. Many miRNAs families are reported in plant tolerance response or adaptation to drought, salinity, and temperature stresses. In biotic stress, the spray-induced gene silencing (SIGS) provides an intelligent method of using dsRNA as a trigger to silence target genes in pests and pathogens without producing side effects such as those caused by chemical pesticides. In this review, we focus on the potential of SIGS as the most recent application of RNAi in agriculture and point out the trends, challenges, and risks of production technologies. Additionally, we provide insights into the potential applications of exogenous RNAi against biotic stresses. We also review the current status of RNAi/miRNA tools and their respective targets on abiotic stress and the most common responsive miRNA families triggered by stress conditions in different crop species.


Assuntos
Produtos Agrícolas/genética , Interferência de RNA , Animais , Produção Agrícola/métodos , Proteção de Cultivos/métodos , Inativação Gênica , Controle de Insetos , Insetos/genética , Insetos/patogenicidade , MicroRNAs/genética , Defesa das Plantas contra Herbivoria/genética , RNA de Cadeia Dupla/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Estresse Fisiológico/genética
6.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281265

RESUMO

The demonstration that spray-induced gene silencing (SIGS) can confer strong disease resistance, bypassing the laborious and time-consuming transgenic expression of double-stranded (ds)RNA to induce the gene silencing of pathogenic targets, was ground-breaking. However, future field applications will require fundamental mechanistic knowledge of dsRNA uptake, processing, and transfer. There is increasing evidence that extracellular vesicles (EVs) mediate the transfer of transgene-derived small interfering (si)RNAs in host-induced gene silencing (HIGS) applications. In this study, we establish a protocol for barley EV isolation and assess the possibilities for EVs regarding the translocation of sprayed dsRNA from barley (Hordeum vulgare) to its interacting fungal pathogens. We found barley EVs that were 156 nm in size, containing predominantly 21 and 19 nucleotide (nts) siRNAs, starting with a 5'-terminal Adenine. Although a direct comparison of the RNA cargo between HIGS and SIGS EV isolates is improper given their underlying mechanistic differences, we identified sequence-identical siRNAs in both systems. Overall, the number of siRNAs isolated from the EVs of dsRNA-sprayed barley plants with sequence complementarity to the sprayed dsRNA precursor was low. However, whether these few siRNAs are sufficient to induce the SIGS of pathogenic target genes requires further research. Taken together, our results raise the possibility that EVs may not be mandatory for the spray-delivered siRNA uptake and induction of SIGS.


Assuntos
Proteção de Cultivos/métodos , Hordeum/genética , Hordeum/microbiologia , RNA Interferente Pequeno/administração & dosagem , Família 3 do Citocromo P450/genética , Resistência à Doença/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/microbiologia , Inativação Gênica , Interações entre Hospedeiro e Microrganismos/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Interferência de RNA , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , RNA Interferente Pequeno/isolamento & purificação
7.
Adv Sci (Weinh) ; 8(9): 2004525, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977068

RESUMO

Agricultural chemicals have been widely utilized to manage pests, weeds, and plant pathogens for maximizing crop yields. However, the excessive use of these organic substances to compensate their instability in the environment has caused severe environmental consequences, threatened human health, and consumed enormous economic costs. In order to improve the utilization efficiency of these agricultural chemicals, one strategy that attracted researchers is to design novel eco-friendly nanoplatforms. To date, numerous advanced nanoplatforms with functional components have been applied in the agricultural field, such as silica-based materials for pesticides delivery, metal/metal oxide nanoparticles for pesticides/mycotoxins detection, and carbon nanoparticles for fertilizers delivery. In this review, the synthesis, applications, and mechanisms of recent eco-friendly nanoplatforms in the agricultural field, including pesticides and mycotoxins on-site detection, phytopathogen inactivation, pest control, and crops growth regulation for guaranteeing food security, enhancing the utilization efficiency of agricultural chemicals and increasing crop yields are highlighted. The review also stimulates new thinking for improving the existing agricultural technologies, protecting crops from biotic and abiotic stress, alleviating the global food crisis, and ensuring food security. In addition, the challenges to overcome the constrained applications of functional nanoplatforms in the agricultural field are also discussed.


Assuntos
Proteção de Cultivos/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Química Verde/métodos , Nanotecnologia/métodos , Controle Biológico de Vetores/métodos , Controle de Qualidade , Técnicas Biossensoriais , Fertilizantes , Humanos , Nanopartículas , Praguicidas
8.
Microbiol Res ; 248: 126752, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33839506

RESUMO

Botrytis cinerea is a plant pathogen causing the gray mold disease in a plethora of host plants. The control of the disease is based mostly on chemical pesticides, which are responsible for environmental pollution, while they also pose risks for human health. Furthermore, B. cinerea resistant isolates have been identified against many fungicide groups, making the control of this disease challenging. The application of biocontrol agents can be a possible solution, but requires deep understanding of the molecular mechanisms in order to be effective. In this study, we investigated the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, a new commercialized biopesticide, the pathogen B. cinerea and their plant host. Our analysis showed that this biocontrol agent reduced B. cinerea mycelial growth in vitro, and was able to suppress the disease incidence on cucumber plants. Moreover, treatment with B. subtilis led to induction of genes involved in plant immunity. RNA-seq analysis of B. cinerea transcriptome upon exposure to bacterial secretome, showed that genes coding for MFS and ABC transporters were highly induced. Deletion of the Bcmfs1 MFS transporter gene, using a CRISP/Cas9 editing method, affected its virulence and the tolerance of B. cinerea to bacterial secondary metabolites. These findings suggest that specific detoxification transporters are involved in these interactions, with crucial role in different aspects of B. cinerea physiology.


Assuntos
Bacillus subtilis/fisiologia , Botrytis/efeitos dos fármacos , Proteção de Cultivos/métodos , Cucumis sativus/microbiologia , Doenças das Plantas/prevenção & controle , Agentes de Controle Biológico/farmacologia , Botrytis/crescimento & desenvolvimento , Botrytis/fisiologia , Cucumis sativus/genética , Cucumis sativus/imunologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia
9.
Microbiol Res ; 248: 126751, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33839507

RESUMO

In this study, the seed endosphere of a bacterial wilt tolerant chilli cv. Firingi Jolokia was explored in order to find effective agents for bacterial wilt disease biocontrol. A total of 32 endophytic bacteria were isolated from freshly collected seeds and six isolates were selected based on R. solanacearum inhibition assay. These isolates were identified as Bacillus subtilis (KJ-2), Bacillus velezensis (KJ-4), Leuconostoc mesenteroides (KP-1), Lactococcus lactis (LB-3), Bacillus amyloliquefaciens (WK-2), and Bacillus subtilis (WK-3) by 16S rRNA gene sequencing. In the in planta R. solanacearum inhibition assay carried out by seedling root bacterization method, Bacillus subtilis (KJ-2) exhibited highest biocontrol efficacy of 86.6 % on 7th day post R. solanacearum inoculation and a minimum biocontrol efficacy of 52.9 % was noted for Leuconostoc mesenteroides (KP-1). GC-HRMS analysis detected several known antimicrobial compounds in the extract of the culture supernatant of Bacillus subtilis (KJ-2); which may contribute to inhibition of R. solanacearum. In the growth promotion assay conducted using these isolates, only two of them namely Bacillus subtilis (KJ-2) and Bacillus amyloliquefaciens (WK-2) showed growth promotion in true leafed tomato plants. All the selected seed endophytic isolates were able to control bacterial wilt of tomato at the seedling stage and Bacillus subtilis (KJ-2) was found to be most effective in controlling the disease. The results of the present study highlighted that seed endosphere of bacterial wilt tolerant cultivar is a rich source of R. solanacearum antagonizing bacterial isolates.


Assuntos
Antibiose , Bacillus/fisiologia , Capsicum/microbiologia , Proteção de Cultivos/métodos , Endófitos/fisiologia , Lactococcus/fisiologia , Doenças das Plantas/prevenção & controle , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Lactococcus/classificação , Lactococcus/genética , Lactococcus/isolamento & purificação , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sementes/microbiologia
10.
Sci Rep ; 11(1): 5271, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674750

RESUMO

Spodoptera frugiperda is a pest of economic importance for several crops with resistance reports to Bt crops and pesticides. Eco-friendly Bt biopesticides may be an alternative to chemical insecticides due to their selectivity and specificity. However, the efficacy of Bt biopesticides may be influenced by the association with other chemicals, such as adjuvants. This study evaluated the compatibility and toxicity of Bt biopesticides mixed with adjuvants for the control of S. frugiperda. The treatments included the association of Dipel SC and Dipel PM with adjuvants. Compatibility tests were used to evaluate the Bt mixture. Bt suspensions obtained from mixtures of Bt and adjuvants at 106 and 3 × 108 spores/mL-1 were used to evaluate S. frugiperda mortality and distilled water was used as the control. The addition of the adjuvant LI increased growth and sporulation, indicating compatibility with Bt biopesticides. The other adjuvants were toxic to reducing Bt growth and sporulation. Only the mixture of Bt with LI and Bt alone was effective to S. frugiperda. The addition of adjuvants to Bt biopesticide affect the Bt sporulation, growth and mortality.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Toxinas de Bacillus thuringiensis/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/farmacologia , Agentes de Controle Biológico/farmacologia , Endotoxinas/farmacologia , Inseticidas/farmacologia , Spodoptera/microbiologia , Animais , Bacillus thuringiensis/crescimento & desenvolvimento , Proteção de Cultivos/métodos , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Composição de Medicamentos/métodos , Gossypium/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Resistência a Inseticidas/efeitos dos fármacos
11.
Microbiol Res ; 248: 126734, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33690069

RESUMO

The diseases caused by phytopathogens account for huge economic losses in the agricultural sector. Paenibacillus polymyxa is one of the agriculturally important biocontrol agents and plant growth promoting bacterium. This study describes the antifungal potential of P. polymyxa HK4 against an array of fungal phytopathogens and its ability to stimulate seed germination of cumin and groundnut under in vitro conditions. The cumin and groundnut seeds bacterized with HK4 exhibited enhanced germination efficiency in comparison to controls. The use of HK4 as a soil inoculant significantly promoted the shoot length and fresh weight of groundnut plants in pot studies. The draft genome analysis of HK4 revealed the genetic attributes for motility, root colonization, antagonism, phosphate solubilization, siderophore production and production of volatile organic compounds. The bacterium HK4 harnessed several hydrolytic enzymes that may assist its competence in the rhizosphere. The PCR amplification and sequence analysis of the conserved region of the fusA gene amplicon revealed the ability of HK4 to produce fusaricidin. Furthermore, the LC-ESI-MS/MS of crude cell pellet extract of HK4 confirmed the presence of fusaricidin as a major antifungal metabolite. This study demonstrated the potential of HK4 as a biocontrol agent and a plant growth promoter.


Assuntos
Proteção de Cultivos/métodos , Cuminum/microbiologia , Paenibacillus polymyxa/genética , Doenças das Plantas/prevenção & controle , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Cuminum/crescimento & desenvolvimento , Depsipeptídeos/análise , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Fungos/efeitos dos fármacos , Fungos/fisiologia , Genoma Bacteriano , Genômica , Espectrometria de Massas , Paenibacillus polymyxa/química , Paenibacillus polymyxa/classificação , Paenibacillus polymyxa/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia
12.
Sci Rep ; 11(1): 1649, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462356

RESUMO

Climate models project greater weather variability over the coming decades. High yielding systems that can maintain stable crop yields under variable environmental scenarios are critical to enhance food security. However, the effect of adding a trophic level (i.e. herbivores) on the long-term stability of agricultural systems is not well understood. We used a 16-year dataset from an integrated soybean-beef cattle experiment to measure the impacts of grazing on the stability of key crop, pasture, animal and whole-system outcomes. Treatments consisted of four grazing intensities (10, 20, 30 and 40 cm sward height) on mixed black oat (Avena strigosa) and Italian ryegrass (Lolium multiflorum) pastures and an ungrazed control. Stability of both human-digestible protein production and profitability increased at moderate to light grazing intensities, while over-intensification or absence of grazing decreased system stability. Grazing did not affect subsequent soybean yields but reduced the chance of crop failure and financial loss in unfavorable years. At both lighter and heavier grazing intensities, tradeoffs occurred between the stability of herbage production and animal live weight gains. We show that ecological intensification of specialized soybean systems using livestock integration can increase system stability and profitability, but the probability of win-win outcomes depends on management.


Assuntos
Agricultura/métodos , Ração Animal , Criação de Animais Domésticos/métodos , Proteção de Cultivos/métodos , Glycine max/crescimento & desenvolvimento , Gado/fisiologia , Agricultura/economia , Agricultura/normas , Animais , Bovinos , Mudança Climática , Proteção de Cultivos/normas , Modelos Estatísticos , Glycine max/fisiologia
13.
J Environ Sci Health B ; 56(2): 117-121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33378228

RESUMO

The marsh slug, Deroceras laeve (Müller), is a generalist pest of agricultural crops. Slugs are mainly managed with synthetic pesticides that can also have high toxicity toward vertebrates and nontarget arthropods. Besides, they are not labeled for use in organic crop systems. Bordeaux mixture (BM) is an alternative product often used in organic crops for controlling plant diseases. The molluscicidal activity of BM has been reported; however, to our knowledge, no study has determined its efficacy to control D. laeve. This study aimed to determine the lethal (concentration- and time-mortality curves, and foliar persistence) and antifeedant (reduction in leaf consumption) effects of BM-treated cabbage leaves on D. laeve. The LC50 of BM was 28.15%, and the LT50 was 8.83 h. The BM LC25 reduced D. laeve leaf consumption by 3.31-fold. Furthermore, high control effectiveness (mortality > 90%) was attained until the 7th day after spraying. These findings reveal that BM reduces damage by killing D. laeve in a fast faction and by reducing foliar consumption. Therefore, BM can be an alternative to D. laeve management in both conventional and organic systems.


Assuntos
Cobre , Proteção de Cultivos/métodos , Gastrópodes , Moluscocidas , Controle de Pragas , Folhas de Planta/química , Animais , Brassica/química , Controle de Pragas/métodos
14.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302568

RESUMO

The threat caused by plants fungal and fungal-like pathogens is a serious problem in the organic farming of soft fruits. The European Commission regulations prohibit some commercially available chemical plant protection products, and instead recommend the use of natural methods for improving the microbial soil status and thus increasing resistance to biotic stresses caused by phytopathogens. The solution to this problem may be biopreparations based on, e.g., bacteria, especially those isolated from native local environments. To select proper bacterial candidates for biopreparation, research was provided to preliminarily ensure that those isolates are able not only to inhibit the growth of pathogens, but also to be metabolically effective. In the presented research sixty-five isolates were acquired and identified. Potentially pathogenic isolates were excluded from further research, and beneficial bacterial isolates were tested against the following plant pathogens: Botrytis spp., Colletotrichum spp., Phytophthora spp., and Verticillium spp. The eight most effective antagonists belonging to Arthrobacter, Bacillus, Pseudomonas, and Rhodococcus genera were subjected to metabolic and enzymatic analyses and a resistance to chemical stress survey, indicating to their potential as components of biopreparations for agroecology.


Assuntos
Antibiose , Bactérias/metabolismo , Proteção de Cultivos/métodos , Fungos Mitospóricos/patogenicidade , Rubus/microbiologia , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Metaboloma
15.
Sci Rep ; 10(1): 19496, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177527

RESUMO

The morphological identification of mites entails great challenges. Characteristics such as dorsal setae and aedeagus are widely used, but they show variations between populations, and the technique is time consuming and demands specialized taxonomic expertise that is difficult to access. A successful alternative has been to exploit a region of the mitochondrial cytochrome oxidase I (COI) gene to classify specimens to the species level. We analyzed the COI sequences of four mite species associated with cassava and classified them definitively by detailed morphological examinations. We then developed an identification kit based on the restriction fragment length polymorphism-polymerase chain reaction of subunit I of the COI gene focused on the three restriction enzymes AseI, MboII, and ApoI. This set of enzymes permitted the simple, accurate identification of Mononychellus caribbeanae, M. tanajoa, M. mcgregori, and Tetranychus urticae, rapidly and with few resources. This kit could be a vital tool for the surveillance and monitoring of mite pests in cassava crop protection programs in Africa, Asia, and Latin America.


Assuntos
Manihot/parasitologia , Reação em Cadeia da Polimerase/métodos , Tetranychidae/genética , Animais , Proteção de Cultivos/métodos , Enzimas de Restrição do DNA/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Polimorfismo de Fragmento de Restrição , Alinhamento de Sequência , Especificidade da Espécie , Tetranychidae/anatomia & histologia , Tetranychidae/enzimologia , Fatores de Tempo
16.
PLoS Pathog ; 16(10): e1008884, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33007049

RESUMO

Plant parasitic nematodes are microscopic pathogens that invade plant roots and cause extensive damage to crops. We have used a chemical biology approach to define mechanisms underpinning their parasitic behaviour: We discovered that reserpine, a plant alkaloid that inhibits the vesicular monoamine transporter (VMAT), potently impairs the ability of the potato cyst nematode Globodera pallida to enter the host plant root. We show this is due to an inhibition of serotonergic signalling that is essential for activation of the stylet which is used to access the host root. Prompted by this we identified core molecular components of G. pallida serotonin signalling encompassing the target of reserpine, VMAT; the synthetic enzyme for serotonin, tryptophan hydroxylase; the G protein coupled receptor SER-7 and the serotonin-gated chloride channel MOD-1. We cloned each of these molecular components and confirmed their functional identity by complementation of the corresponding C. elegans mutant thus mapping out serotonergic signalling in G. pallida. Complementary approaches testing the effect of chemical inhibitors of each of these signalling elements on discrete sub-behaviours required for parasitism and root invasion reinforce the critical role of serotonin. Thus, targeting the serotonin signalling pathway presents a promising new route to control plant parasitic nematodes.


Assuntos
Proteção de Cultivos/métodos , Interações Hospedeiro-Patógeno , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Serotonina/metabolismo , Transdução de Sinais , Solanum tuberosum/metabolismo , Animais , Solanum tuberosum/parasitologia
17.
Curr Biol ; 30(24): 4837-4845.e5, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33035486

RESUMO

Progress has been made in developing the maternally inherited endosymbiotic bacterium Wolbachia as a tool for protecting humans from mosquito-borne diseases. In contrast, Wolbachia-based approaches have not yet been developed for the protection of plants from insect pests and their associated diseases, with a major challenge being the establishment of artificial Wolbachia infections expressing desired characteristics in the hemipterans that transmit the majority of plant viruses. Here, we report stable introduction of Wolbachia into the brown planthopper, Nilaparvata lugens, the most destructive rice pest that annually destroys millions of hectares of staple crops. The Wolbachia strain wStri from the small brown planthopper, Laodelphax striatellus, was transferred to this new host, where it showed high levels of cytoplasmic incompatibility, enabling rapid invasion of laboratory populations. Furthermore, wStri inhibited infection and transmission of Rice ragged stunt virus and mitigated virus-induced symptoms in rice plants, opening up the development of Wolbachia-based strategies against major agricultural pests and their transmitted pathogens. VIDEO ABSTRACT.


Assuntos
Proteção de Cultivos/métodos , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Oryza/virologia , Wolbachia/patogenicidade , Animais , Estudos de Viabilidade , Hemípteros/virologia , Oryza/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Reoviridae/patogenicidade
18.
PLoS One ; 15(9): e0239808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986778

RESUMO

To mitigate the movement of non-native organisms with trade, phytosanitary systems have been implemented within and between countries. In some countries such as Cuba, little is known about the within-state plant health system. To facilitate the development of future trade partnership between Cuba and the United States, agencies need to understand the organizational structure and diagnostic capacity of the Cuban Plant Protection System, identify potential synergies between the United States and Cuban systems, and identify steps towards cooperation. This paper fills this critical void by presenting a descriptive analysis of the plant health system in Cuba. Information was integrated from available literature, informal interviews with Cuban experts, and workshops focused on Cuban policies, risk, and potential collaboration attended by Cuban and American experts. We identify the next practical steps in improving cooperation, including building trust and capacity. Mutual understanding of phytosanitary systems will be crucial for the regional economic and environmental stability of a post-embargo United States-Cuban relationship.


Assuntos
Produção Agrícola/métodos , Proteção de Cultivos/métodos , Cooperação Internacional , Controle de Pragas/métodos , Doenças das Plantas/prevenção & controle , Formulação de Políticas , Fortalecimento Institucional , Cuba , Previsões , Humanos , Confiança , Estados Unidos
19.
PLoS One ; 15(8): e0237318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804952

RESUMO

The mirid bug Lygus pratensis is an important pest of cotton, and is primarily managed through insecticide application. In this study, conducted in Xinjiang (China), we assessed the relative attractiveness of sunflower (Helianthus annuus) to L. pratensis adults in local cotton plots from 2015-2016 and quantified the associated contribution of inter-planted sunflower strips to suppress field-level L. pratensis populations from 2016-2017. Field-plot trials showed that among six combinations of two sunflower varieties (XKZ6 and SH363) and three planting dates (early-, middle- and late-planted), adult abundance of L. pratensis was highest on early-planted XKZ6 and attained 3.7-5.8 times higher levels than in neighboring cotton plots. In commercial cotton fields, the combined deployment of sunflower strips at field edges and the periodic application of insecticides directed to those strips was found to (1) reduce the mean abundance of L. pratensis population on cotton by 41.9-44.0%, (2) lower the rate of cotton leaf damage by 27.3-30.6% and boll damage by 44.8-46.0%, and (3) increase the number of mature bolls by 7.5%-8.0%. Our work emphasizes how sunflower can be an effective trap crop for L. pratensis and that the establishment of sunflower strips could contribute to its effective and environmentally-sound management in cotton crops.


Assuntos
Proteção de Cultivos/métodos , Produtos Agrícolas/parasitologia , Gossypium/parasitologia , Helianthus/parasitologia , Heterópteros/fisiologia , Animais , China , Comportamento Alimentar , Folhas de Planta/parasitologia
20.
PLoS One ; 15(6): e0233783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497087

RESUMO

Managing pests in carrot production is challenging. Endophytic microbes have been demonstrated to improve the health and productivity of many crops, but factors affecting endophyte dynamics in carrot is still not well understood. The goal of this study was to determine how crop management system and carrot genotype interact to affect the composition and potential of endophytes to mitigate disease caused by Alternaria dauci, an important carrot pathogen. Twenty-eight unique isolates were collected from the taproots of nine diverse genotypes of carrot grown in a long-term trial comparing organic and conventional management. Antagonistic activity was quantified using an in vitro assay, and potential for individual isolates to mitigate disease was evaluated in greenhouse trials using two carrot cultivars. Results confirm that carrot taproots are colonized by an abundant and diverse assortment of bacteria and fungi representing at least distinct 13 genera. Soils in the organic system had greater total organic matter, microbial biomass and activity than the conventional system and endophyte composition in taproots grown in this system were more abundant and diverse, and had greater antagonistic activity. Carrot genotype also affected endophyte abundance as well as potential for individual isolates to affect seed germination, seedling growth and tolerance to A. dauci. The benefits of endophytes on carrot growth were greatest when plants were subject to A. dauci stress, highlighting the importance of environmental conditions in the functional role of endophytes. Results of this study provide evidence that endophytes can play an important role in improving carrot performance and mediating resistance to A. dauci, and it may someday be possible to select for these beneficial plant-microbial relationships in carrot breeding programs. Implementing soil-building practices commonly used in organic farming systems has potential to promote these beneficial relationships and improve the health and productivity of carrot crops.


Assuntos
Alternaria/fisiologia , Produção Agrícola/métodos , Daucus carota/genética , Daucus carota/microbiologia , Endófitos/fisiologia , Genótipo , Doenças das Plantas/microbiologia , Proteção de Cultivos/métodos , Daucus carota/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Germinação , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...