Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 71: 103100, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484644

RESUMO

Th2-high asthma is characterized by elevated levels of type 2 cytokines, such as interleukin 13 (IL-13), and its prevalence has been increasing worldwide. Ferroptosis, a recently discovered type of programmed cell death, is involved in the pathological process of Th2-high asthma; however, the underlying mechanisms remain incompletely understood. In this study, we demonstrated that the serum level of malondialdehyde (MDA), an index of lipid peroxidation, positively correlated with IL-13 level and negatively correlated with the predicted forced expiratory volume in 1 s (FEV1%) in asthmatics. Furthermore, we showed that IL-13 facilitates ferroptosis by upregulating of suppressor of cytokine signaling 1 (SOCS1) through analyzing immortalized airway epithelial cells, human airway organoids, and the ovalbumin (OVA)-challenged asthma model. We identified that signal transducer and activator of transcription 6 (STAT6) promotes the transcription of SOCS1 upon IL-13 stimulation. Moreover, SOCS1, an E3 ubiquitin ligase, was found to bind to solute carrier family 7 member 11 (SLC7A11) and catalyze its ubiquitinated degradation, thereby promoting ferroptosis in airway epithelial cells. Last, we found that inhibiting SOCS1 can decrease ferroptosis in airway epithelial cells and alleviate airway hyperresponsiveness (AHR) in OVA-challenged wide-type mice, while SOCS1 overexpression exacerbated the above in OVA-challenged IL-13-knockout mice. Our findings reveal that the IL-13/STAT6/SOCS1/SLC7A11 pathway is a novel molecular mechanism for ferroptosis in Th2-high asthma, confirming that targeting ferroptosis in airway epithelial cells is a potential therapeutic strategy for Th2-high asthma.


Assuntos
Asma , Interleucina-13 , Animais , Humanos , Camundongos , Sistema y+ de Transporte de Aminoácidos , Asma/genética , Asma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Ovalbumina/uso terapêutico , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Células Th2/metabolismo , Células Th2/patologia
2.
Phytomedicine ; 115: 154827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37087792

RESUMO

BACKGROUND: The rising incidence of metabolic diseases due to chronic inflammation in the adipose tissue has been attributed to factors such as high fat diet (HFD). Previous studies have demonstrated that the total saponins from Panax japonicus (TSPJ) can reduce HFD-induced adipocyte inflammation, but the underlying mechanism remains unclear. In this work, we explored the molecular mechanism by which TSPJ reduces inflammation response in adipocytes. METHODS: We first established C57BL/6 mouse and 3T3-L1 adipocyte models. Lentiviruses packaged with the plasmids were injected into mice through the tail vein or into adipocytes to generate the in vivo and in vitro models with miR155 knockdown and overexpression. The mice were fed with HFD to trigger inflammation and administered TSPJ (25 mg/kg∙d and 75 mg/kg∙d) by gavage. The adipocytes were treated with palmitic acid (PA) to trigger inflammation response, then treated with TSPJ (25 µg/ml and 50 µg/ml). Finally, the expression of miR155, inflammatory factors, SOCS1, and NFκB pathway-related proteins was explored. RESULTS: TSPJ significantly inhibited the expression of inflammation-related genes and the miR155 expression in adipocytes both in vitro and in vivo. The dual luciferase reporter gene assay revealed that miR155 mediated the downregulation of SOCS1. TSPJ significantly inhibited and upregulated the phosphorylation of the NFκB protein and the SOCS1 proteins, respectively. CONCLUSION: TSPJ inhibits miR155 to upregulate the SOCS1 expression, which subsequently inhibits the NFκB signaling pathway, thereby mitigating the inflammatory response in the adipocytes of HFD mice.


Assuntos
MicroRNAs , Panax , Saponinas , Camundongos , Animais , Saponinas/metabolismo , Camundongos Endogâmicos C57BL , Adipócitos/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células 3T3-L1 , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Phytother Res ; 36(11): 4230-4243, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35817562

RESUMO

Wogonoside (WG) is a flavonoid chemical component extracted from Scutellaria baicalensis, which exerts therapeutic effects on liver diseases. Ferroptosis, a novel form of programmed cell death, regulates diverse physiological/pathological processes. In this study, we attempted to investigate a novel mechanism by which WG mitigates liver fibrosis by inducing ferroptosis in hepatic stellate cells (HSCs). A CCl4 -induced mouse liver fibrosis model and a rat HSC line were employed for in vivo and in vitro experiments, both treated with WG. Firstly, the levels of the fibrotic markers α-smooth muscle actin (α-SMA) and α1(I)collagen (COL1α1) were effectively decreased by WG in CCl4 -induced mice and HSC-T6 cells. Additionally, mitochondrial condensation and mitochondrial ridge breakage were observed in WG-treated HSC-T6 cells. Furthermore, ferroptotic events including depletion of SLC7A11, GPX4 and GSH, and accumulation of iron, ROS and MDA were discovered in WG-treated HSC-T6 cells. Intriguingly, these ferroptotic events did not appear in hepatocytes or macrophages. WG-elicited HSC ferroptosis and ECM reduction were dramatically abrogated by ferrostatin-1 (Fer-1), a ferroptosis inhibitor. Importantly, our results confirm that SOCS1/P53/SLC7A11 is a signaling pathway which promotes WG attenuation of liver fibrosis. On the contrary, WG mitigated liver fibrosis and inducted HSC-T6 cell ferroptosis were hindered by SOCS1 siRNA and pifithrin-α (PFT-α). These findings demonstrate that SOCS1/P53/SLC7A11-mediated HSC ferroptosis is associated with WG alleviating liver fibrosis, which provides a new clue for the treatment of liver fibrosis.


Assuntos
Ferroptose , Células Estreladas do Fígado , Animais , Camundongos , Ratos , Fígado , Cirrose Hepática/tratamento farmacológico , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/farmacologia , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo
4.
Br J Pharmacol ; 178(3): 564-581, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33227156

RESUMO

BACKGROUND AND PURPOSE: Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by chronic inflammation, oxidative stress and proteolytic activity in the aortic wall. Targeting JAK/signal transducer and activator of transcription (JAK/STAT) pathway is a promising strategy for chronic inflammatory diseases. We investigated the vasculo-protective role of suppressor of cytokine signalling-1 (SOCS1), the negative JAK/STAT regulator, in experimental AAA. EXPERIMENTAL APPROACH: A synthetic, cell permeable peptide (S1) mimic of SOCS1 kinase inhibitory domain to suppress STAT activation was evaluated in the well-established mouse model of elastase-induced AAA by monitoring changes in aortic diameter, cellular composition and gene expression in abdominal aorta. S1 function was further evaluated in cultured vascular smooth muscle cells (VSMC) and macrophages exposed to elastase or elastin-derived peptides. KEY RESULTS: S1 peptide prevented AAA development, evidenced by reduced incidence of AAA, aortic dilation and elastin degradation, partial restoration of medial VSMC and decreased inflammatory cells and oxidative stress in AAA tissue. Mechanistically, S1 suppressed STAT1/3 activation in aorta, down-regulated cytokines, metalloproteinases and altered the expression of cell differentiation markers by favouring anti-inflammatory M2 macrophage and contractile VSMC phenotypes. In vitro, S1 suppressed the expression of inflammatory and oxidative genes, reduced cell migration and reversed the phenotypic switch of macrophages and VSMC. By contrast, SOCS1 silencing promoted inflammatory response. CONCLUSION AND IMPLICATIONS: This preclinical study demonstrates the therapeutic potential of SOCS1-derived peptide to halt AAA progression by suppressing JAK/STAT-mediated inflammation and aortic dilation. S1 peptide may therefore be a valuable option for the treatment of AAA.


Assuntos
Aneurisma da Aorta Abdominal , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , Animais , Aorta Abdominal , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/prevenção & controle , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso , Transdução de Sinais
5.
Inflammation ; 41(4): 1557-1567, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29907905

RESUMO

Smoke inhalation leads to acute lung injury (ALI), a devastating clinical problem associated with high mortality rates. Suppressor of cytokine signaling-1 (SOCS-1) is a negative regulator of proinflammatory cytokine signaling. We have found that adenoviral gene transfer of SOCS-1 ameliorates smoke inhalation-induced lung injury in C57BL/6 mice. We also found that the release of adenosine triphosphate (ATP) was increased post smoke exposure, while oxidized ATP, an inhibitor of purinergic P2X7 receptor, suppressed smoke-induced NALP3 inflammasome assembly, caspase-1 activation, and K+ efflux. Similar to oxidized ATP, high protein level of SOCS-1 dampened the formation of NALP3 inflammasome and the activation of caspase-1 and IL-1ß induced by smoke exposure in mouse alveolar macrophages. In conclusion, SOCS-1 relieves smoke inhalation-induced pulmonary inflammation and injury by inhibiting NALP3 inflammasome formation.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Inflamassomos/antagonistas & inibidores , Pneumonia , Fumaça/efeitos adversos , Proteína 1 Supressora da Sinalização de Citocina/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 1 Supressora da Sinalização de Citocina/administração & dosagem , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , Proteínas Supressoras da Sinalização de Citocina
6.
J Am Soc Nephrol ; 28(2): 575-585, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27609616

RESUMO

Diabetes is the main cause of CKD and ESRD worldwide. Chronic activation of Janus kinase and signal transducer and activator of transcription (STAT) signaling contributes to diabetic nephropathy by inducing genes involved in leukocyte infiltration, cell proliferation, and extracellular matrix accumulation. This study examined whether a cell-permeable peptide mimicking the kinase-inhibitory region of suppressor of cytokine signaling-1 (SOCS1) regulatory protein protects against nephropathy by suppressing STAT-mediated cell responses to diabetic conditions. In a mouse model combining hyperglycemia and hypercholesterolemia (streptozotocin diabetic, apoE-deficient mice), renal STAT activation status correlated with the severity of nephropathy. Notably, compared with administration of vehicle or mutant inactive peptide, administration of the SOCS1 peptidomimetic at either early or advanced stages of diabetes ameliorated STAT activity and resulted in reduced serum creatinine level, albuminuria, and renal histologic changes (mesangial expansion, tubular injury, and fibrosis) over time. Mice treated with the SOCS1 peptidomimetic also exhibited reduced kidney leukocyte recruitment (T lymphocytes and classic M1 proinflammatory macrophages) and decreased expression levels of proinflammatory and profibrotic markers that were independent of glycemic and lipid changes. In vitro, internalized peptide suppressed STAT activation and target gene expression induced by inflammatory and hyperglycemic conditions, reduced migration and proliferation in mesangial and tubuloepithelial cells, and altered the expression of cytokine-induced macrophage polarization markers. In conclusion, our study identifies SOCS1 mimicking as a feasible therapeutic strategy to halt the onset and progression of renal inflammation and fibrosis in diabetic kidney disease.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Peptidomiméticos/uso terapêutico , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , Animais , Progressão da Doença , Masculino , Camundongos , Proteína 1 Supressora da Sinalização de Citocina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA