Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785360

RESUMO

Organic anion transporter 1 (OAT1/SLC22A6) is a drug transporter with numerous xenobiotic and endogenous substrates. The Remote Sensing and Signaling Theory suggests that drug transporters with compatible ligand preferences can play a role in "organ crosstalk," mediating overall organismal communication. Other drug transporters are well known to transport lipids, but surprisingly little is known about the role of OAT1 in lipid metabolism. To explore this subject, we constructed a genome-scale metabolic model using omics data from the Oat1 knockout mouse. The model implicated OAT1 in the regulation of many classes of lipids, including fatty acids, bile acids, and prostaglandins. Accordingly, serum metabolomics of Oat1 knockout mice revealed increased polyunsaturated fatty acids, diacylglycerols, and long-chain fatty acids and decreased ceramides and bile acids when compared with wildtype controls. Some aged knockout mice also displayed increased lipid droplets in the liver when compared with wildtype mice. Chemoinformatics and machine learning analyses of these altered lipids defined molecular properties that form the structural basis for lipid-transporter interactions, including the number of rings, positive charge/volume, and complexity of the lipids. Finally, we obtained targeted serum metabolomics data after short-term treatment of rodents with the OAT-inhibiting drug probenecid to identify potential drug-metabolite interactions. The treatment resulted in alterations in eicosanoids and fatty acids, further supporting our metabolic reconstruction predictions. Consistent with the Remote Sensing and Signaling Theory, the data support a role of OAT1 in systemic lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Animais , Técnicas de Inativação de Genes , Genômica , Aprendizado de Máquina , Camundongos , Proteína 1 Transportadora de Ânions Orgânicos/deficiência , Proteína 1 Transportadora de Ânions Orgânicos/genética
2.
Clin Transl Sci ; 10(5): 412-420, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28689374

RESUMO

Cisplatin is among the most widely used anticancer drugs and known to cause a dose-limiting nephrotoxicity, which is partially dependent on the renal uptake carrier OCT2. We here report a previously unrecognized, OCT2-independent pathway of cisplatin-induced renal injury that is mediated by the organic anion transporters OAT1 and OAT3. Using transporter-deficient mouse models, we found that this mechanism regulates renal uptake of a mercapturic acid metabolite of cisplatin that acts as a precursor of a potent nephrotoxin. The function of these two transport systems can be simultaneously inhibited by the tyrosine kinase inhibitor nilotinib through noncompetitive mechanisms, without compromising the anticancer properties of cisplatin. Collectively, our findings reveal a novel pathway that explains the fundamental basis of cisplatin-induced nephrotoxicity, with potential implications for its therapeutic management.


Assuntos
Cisplatino/toxicidade , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 1 Transportadora de Ânions Orgânicos/deficiência , Transportadores de Ânions Orgânicos Sódio-Independentes/deficiência , Fenótipo , Pirimidinas/farmacologia
3.
J Mol Neurosci ; 56(3): 730-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25725783

RESUMO

To investigate whether and how organic anion transporter 1 (OAT1) is involved in the process of Alzheimer's disease (AD), we crossbred OAT1 knockout mice with tg2576, the widely used AD model mice. Results here showed the heterozygous OAT1-deficient tg2576 mice developed a learning- and memory-related behavior deficiency and higher soluble Abeta amount in early stage (3 months old). Furthermore, the heterozygous mice brain slice also showed impaired long-term potentiation (LTP) and spontaneous excitatory postsynaptic currents (sEPSC). By crossbreeding heterozygous OAT1-deficient tg2576 mice with Thy-1 YFP mice, we got autofluoresced (layer 4/5 cortical neuron) heterozygous mice. By using two-photon microscope in the direct observation of mice brain in vivo or single photon confocal on slices, compared with control tg2576 mice, we found that the OAT1-deficient mice showed a higher spine numbers but with a much lesser maturity extent. Finally, by using glutamate uncaging method, we induced chemical LTP in brain slices and found that OAT1-deficient mice showed abnormal chemical-induced LTP, which meant that the deficient behavior may be caused by abnormal spine morphology and activity. Our results indicated OAT1 may be involved in AD process by regulating spine morphology and activity.


Assuntos
Espinhas Dendríticas/patologia , Potenciação de Longa Duração , Transtornos da Memória/genética , Proteína 1 Transportadora de Ânions Orgânicos/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores , Heterozigoto , Camundongos , Proteína 1 Transportadora de Ânions Orgânicos/deficiência
4.
Drug Metab Dispos ; 42(6): 1067-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671957

RESUMO

Atorvastatin is eliminated by CYP3A4 which follows carrier-mediated uptake into hepatocytes by OATP1B1, OATP1B3, and OATP2B1. Multiple clinical studies demonstrated that OATP inhibition by rifampin had a greater impact on atorvastatin systemic concentration than itraconazole-mediated CYP3A4 inhibition. If it is assumed that the blood and hepatocyte compartments are differentiated by the concentration gradient that is established by OATPs, and if the rate of uptake into the hepatocyte is rate-determining to the elimination of atorvastatin from the body, then it is hypothesized that blood concentrations may not necessarily reflect liver concentrations. In wild-type mice, rifampin had a greater effect on systemic exposure of atorvastatin than ketoconazole, as the blood area under the blood concentration-time curve increased 7- and 2-fold, respectively. In contrast, liver concentrations were affected more by ketoconazole than by rifampin, as liver levels increased 21- and 4-fold, respectively. Similarly, in Cyp3a knockout animals, 39-fold increases in liver concentrations were observed despite insignificant changes in the blood area under the blood concentration-time curve. Interestingly, blood and liver levels in Oatp1a/b knockout animals were similar to wild types, suggesting that Oatp1a/b knockout may be necessary but not sufficient to completely describe atorvastatin uptake in mice. Data presented in this work indicate that there is a substantial drug interaction when blocking atorvastatin metabolism, but the effects of this interaction are predominantly manifested in the liver and may not be captured when monitoring changes in the systemic circulation. Consequently, there may be a disconnect when trying to relate blood exposure to instances of hepatotoxicity because a pharmacokinetic-toxicity relationship may not be obvious from blood concentrations.


Assuntos
Sistema Enzimático do Citocromo P-450/deficiência , Ácidos Heptanoicos/sangue , Cetoconazol/farmacocinética , Fígado/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/deficiência , Pirróis/sangue , Rifampina/farmacocinética , Animais , Atorvastatina , Citocromo P-450 CYP3A , Interações Medicamentosas/fisiologia , Feminino , Células HEK293 , Ácidos Heptanoicos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout , Pirróis/metabolismo
5.
J Biol Chem ; 286(36): 31522-31, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21757732

RESUMO

The main kidney transporter of many commonly prescribed drugs (e.g. penicillins, diuretics, antivirals, methotrexate, and non-steroidal anti-inflammatory drugs) is organic anion transporter-1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478). Targeted metabolomics in knockouts have shown that OAT1 mediates the secretion or reabsorption of many important metabolites, including intermediates in carbohydrate, fatty acid, and amino acid metabolism. This observation raises the possibility that OAT1 helps regulate broader metabolic activities. We therefore examined the potential roles of OAT1 in metabolic pathways using Recon 1, a functionally tested genome-scale reconstruction of human metabolism. A computational approach was used to analyze in vivo metabolomic as well as transcriptomic data from wild-type and OAT1 knock-out animals, resulting in the implication of several metabolic pathways, including the citric acid cycle, polyamine, and fatty acid metabolism. Validation by in vitro and ex vivo analysis using Xenopus oocyte, cell culture, and kidney tissue assays demonstrated interactions between OAT1 and key intermediates in these metabolic pathways, including previously unknown substrates, such as polyamines (e.g. spermine and spermidine). A genome-scale metabolic network reconstruction generated some experimentally supported predictions for metabolic pathways linked to OAT1-related transport. The data support the possibility that the SLC22 and other families of transporters, known to be expressed in many tissues and primarily known for drug and toxin clearance, are integral to a number of endogenous pathways and may be involved in a larger remote sensing and signaling system (Ahn, S. Y., and Nigam, S. K. (2009) Mol. Pharmacol. 76, 481-490, and Wu, W., Dnyanmote, A. V., and Nigam, S. K. (2011) Mol. Pharmacol. 79, 795-805). Drugs may alter metabolism by competing for OAT1 binding of metabolites.


Assuntos
Redes e Vias Metabólicas , Metabolômica/métodos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Animais , Células Cultivadas , Genoma Humano , Genômica , Humanos , Camundongos , Camundongos Knockout , Proteína 1 Transportadora de Ânions Orgânicos/deficiência , Preparações Farmacêuticas
6.
J Biol Chem ; 286(1): 243-51, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20921221

RESUMO

The organic anion transporters OAT1 (SLC22A6, originally identified by us as NKT) and OAT3 (SLC22A8) are critical for handling many toxins, metabolites, and drugs, including antivirals (Truong, D. M., Kaler, G., Khandelwal, A., Swaan, P. W., and Nigam, S. K. (2008) J. Biol. Chem. 283, 8654-8663). Although microinjected Xenopus oocytes and/or transfected cells indicate overlapping specificities, the individual contributions of these transporters in the three-dimensional context of the tissues in which they normally function remain unclear. Here, handling of HIV antivirals (stavudine, tenofovir, lamivudine, acyclovir, and zidovudine) was analyzed with three-dimensional ex vivo functional assays using knock-out tissue. To investigate the contribution of OAT1 and OAT3 in various nephron segments, the OAT-selective fluorescent tracer substrates 5-carboxyfluorescein and 6-carboxyfluorescein were used. Although OAT1 function (uptake in oat3(-/-) tissue) was confined to portions of the cortex, consistent with a proximal tubular localization, OAT3 function (uptake in oat1(-/-) tissue) was apparent throughout the cortex, indicating localization in the distal as well as proximal nephron. This functional localization indicates a complex three-dimensional context, which needs to be considered for metabolites, toxins, and drugs (e.g. antivirals) handled by both transporters. These results also raise the possibility of functional differences in the relative importance of OAT1 and OAT3 in antiviral handling in developing and mature tissue. Because the HIV antivirals are used in pregnant women, the results may also help in understanding how these drugs are handled by developing organs.


Assuntos
Antivirais/metabolismo , Antivirais/farmacologia , Rim/crescimento & desenvolvimento , Rim/metabolismo , Técnicas de Cultura de Órgãos/métodos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Animais , Transporte Biológico , Embrião de Mamíferos , Feminino , Técnicas de Inativação de Genes , Rim/efeitos dos fármacos , Camundongos , Néfrons/efeitos dos fármacos , Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/deficiência , Proteína 1 Transportadora de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/deficiência , Transportadores de Ânions Orgânicos Sódio-Independentes/genética
7.
J Immunol ; 180(7): 4621-8, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18354185

RESUMO

To experimentally examine the hygiene hypothesis, here we studied the effect of chlamydial infection on the development of allergic responses induced by OVA and the involvement of NK cells in this process using a mouse model of airway inflammation. We found that prior Chlamydia muridarum infection can inhibit airway eosinophilic inflammation and mucus production induced by allergen sensitization and challenge. The inhibition was correlated with an alteration of allergen-driven cytokine-producing patterns of T cells. We demonstrated that NK cells were activated following chlamydial infection, showing both cell expansion and cytokine secretion. The in vivo depletion of NK cells using anti-NK Ab before OVA sensitization and challenge partially abolished the inhibitory effect of chlamydial infection, which was associated with a partial restoration of Th2 cytokine production. In contrast, the adoptive transfer of NK cells that were isolated from infected mice showed a significant inhibitory effect on allergic responses, similar to that observed in natural infection. The data suggest that the innate immune cells such as NK cells may play an important role in infection-mediated inhibition of allergic responses.


Assuntos
Chlamydia muridarum/imunologia , Hipersensibilidade/imunologia , Hipersensibilidade/prevenção & controle , Células Matadoras Naturais/imunologia , Alérgenos/imunologia , Animais , Separação Celular , Citocinas/biossíntese , Feminino , Hipersensibilidade/microbiologia , Hipersensibilidade/patologia , Camundongos , Camundongos Knockout , Muco/imunologia , Proteína 1 Transportadora de Ânions Orgânicos/deficiência , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/imunologia , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Ovalbumina/imunologia , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/microbiologia , Eosinofilia Pulmonar/patologia , Eosinofilia Pulmonar/prevenção & controle , Células Th2/imunologia , Células Th2/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...