Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cancer Res ; 81(10): 2760-2773, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34003775

RESUMO

Lynch syndrome is the most common cause of hereditary colorectal cancer and is secondary to germline alterations in one of four DNA mismatch repair (MMR) genes. Here we aimed to provide novel insights into the initiation of MMR-deficient (MMRd) colorectal carcinogenesis by characterizing the expression profile of MMRd intestinal stem cells (ISC). A tissue-specific MMRd mouse model (Villin-Cre;Msh2 LoxP/LoxP ) was crossed with a reporter mouse (Lgr5-EGFP-IRES-creERT2) to trace and isolate ISCs (Lgr5+) using flow cytometry. Three different ISC genotypes (Msh2-KO, Msh2-HET, and Msh2-WT) were isolated and processed for mRNA-seq and mass spectrometry, followed by bioinformatic analyses to identify expression signatures of complete MMRd and haplo-insufficiency. These findings were validated using qRT-PCR, IHC, and whole transcriptomic sequencing in mouse tissues, organoids, and a cohort of human samples, including normal colorectal mucosa, premalignant lesions, and early-stage colorectal cancers from patients with Lynch syndrome and patients with familial adenomatous polyposis (FAP) as controls. Msh2-KO ISCs clustered together with differentiated intestinal epithelial cells from all genotypes. Gene-set enrichment analysis indicated inhibition of replication, cell-cycle progression, and the Wnt pathway and activation of epithelial signaling and immune reaction. An expression signature derived from MMRd ISCs successfully distinguished MMRd neoplastic lesions of patients with Lynch syndrome from FAP controls. SPP1 was specifically upregulated in MMRd ISCs and colocalized with LGR5 in Lynch syndrome colorectal premalignant lesions and tumors. These results show that expression signatures of MMRd ISC recapitulate the initial steps of Lynch syndrome carcinogenesis and have the potential to unveil novel biomarkers of early cancer initiation. SIGNIFICANCE: The transcriptomic and proteomic profile of MMR-deficient intestinal stem cells displays a unique set of genes with potential roles as biomarkers of cancer initiation and early progression.


Assuntos
Carcinogênese/patologia , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA , Regulação Neoplásica da Expressão Gênica , Intestinos/fisiopatologia , Células-Tronco/patologia , Transcriptoma , Animais , Apoptose , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Homóloga a MutS/fisiologia , Prognóstico , Proteoma/análise , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Células-Tronco/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas
2.
Genes Dev ; 32(7-8): 524-536, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636371

RESUMO

Chromosomal deletion rearrangements mediated by repetitive elements often involve repeats separated by several kilobases and sequences that are divergent. While such rearrangements are likely induced by DNA double-strand breaks (DSBs), it has been unclear how the proximity of DSBs relative to repeat sequences affects the frequency of such events. We generated a reporter assay in mouse cells for a deletion rearrangement involving repeats separated by 0.4 Mb. We induced this repeat-mediated deletion (RMD) rearrangement with two DSBs: the 5' DSB that is just downstream from the first repeat and the 3' DSB that is varying distances upstream of the second repeat. Strikingly, we found that increasing the 3' DSB/repeat distance from 3.3 kb to 28.4 kb causes only a modest decrease in rearrangement frequency. We also found that RMDs are suppressed by KU70 and RAD51 and promoted by RAD52, CtIP, and BRCA1. In addition, we found that 1%-3% sequence divergence substantially suppresses these rearrangements in a manner dependent on the mismatch repair factor MSH2, which is dominant over the suppressive role of KU70. We suggest that a DSB far from a repeat can stimulate repeat-mediated rearrangements, but multiple pathways suppress these events.


Assuntos
Quebra Cromossômica , Deleção Cromossômica , Sequências Repetitivas de Ácido Nucleico , Animais , DNA/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Autoantígeno Ku/fisiologia , Camundongos , Proteína 2 Homóloga a MutS/fisiologia , Rad51 Recombinase/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia
3.
Nucleic Acids Res ; 45(17): 10068-10078, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973443

RESUMO

CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSß (Msh2-Msh3 heterodimer). To evaluate properties of MutSß that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSß, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSß. Msh3-/- cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3-/- cells provide a single, isogenic system to add back Msh3 and test key biochemical features of MutSß on expansions. Msh3 overexpression led to high expansion activity and elevated levels of MutSß complex, indicating that MutSß abundance drives expansions. An ATPase-defective Msh3 expressed at normal levels was as defective in expansions as Msh3-/- cells, indicating that Msh3 ATPase function is critical for expansions. Expression of two Msh3 polymorphic variants at normal levels showed no detectable change in expansions, suggesting these polymorphisms primarily affect Msh3 protein stability, not activity. In summary, CTG•CAG expansions are limited by the abundance of MutSß and rely heavily on Msh3 ATPase function.


Assuntos
Trifosfato de Adenosina/metabolismo , Reparo de Erro de Pareamento de DNA , Proteína 3 Homóloga a MutS/fisiologia , Expansão das Repetições de Trinucleotídeos/fisiologia , Substituição de Aminoácidos , Astrócitos , Neoplasias Encefálicas , Sistemas CRISPR-Cas , Linhagem Celular , Neoplasias Colorretais , Dimerização , Técnicas de Inativação de Genes , Genes Reporter , Vetores Genéticos , Humanos , Hidrólise , Proteína 2 Homóloga a MutS/fisiologia , Proteína 3 Homóloga a MutS/deficiência , Proteína 3 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Síndromes Neoplásicas Hereditárias , Mutação Puntual
4.
Mol Cell Biochem ; 412(1-2): 297-305, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26728996

RESUMO

The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an indicator of apoptosis, showed that MLH1 translocation only occurred in MMR proficient (SW480) cells upon induction of apoptosis further suggested a MSH2 dependent role of MLH1 in apoptosis. These data suggest a role of MLH1 in mediation of apoptosis in a MSH2-dependent manner. Taken together, our data supported an interdependence of mismatch repair proteins, particularly MLH1 and MSH2, in the mediation of apoptosis in human colorectal carcinoma cell lines.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Apoptose/fisiologia , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Proteína 2 Homóloga a MutS/fisiologia , Proteínas Nucleares/fisiologia , Antineoplásicos/uso terapêutico , Caspase 3/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Etoposídeo/uso terapêutico , Humanos , Proteína 1 Homóloga a MutL , Proteólise
5.
Blood ; 127(1): 102-12, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26385350

RESUMO

Somatic hypermutation and class-switch recombination of the immunoglobulin (Ig) genes occur in germinal center (GC) B cells and are initiated through deamination of cytidine to uracil by activation-induced cytidine deaminase (AID). Resulting uracil-guanine mismatches are processed by uracil DNA glycosylase (UNG)-mediated base-excision repair and MSH2-mediated mismatch repair (MMR) to yield mutations and DNA strand lesions. Although off-target AID activity also contributes to oncogenic point mutations and chromosome translocations associated with GC and post-GC B-cell lymphomas, the role of downstream AID-associated DNA repair pathways in the pathogenesis of lymphoma is unknown. Here, we show that simultaneous deficiency of UNG and MSH2 or MSH2 alone causes genomic instability and a shorter latency to the development of BCL6-driven diffuse large B-cell lymphoma (DLBCL) in a murine model. The additional development of several BCL6-independent malignancies in these mice underscores the critical role of MMR in maintaining general genomic stability. In contrast, absence of UNG alone is highly protective and prevents the development of BCL6-driven DLBCL. We further demonstrate that clonal and nonclonal mutations arise within non-Ig AID target genes in the combined absence of UNG and MSH2 and that DNA strand lesions arise in an UNG-dependent manner but are offset by MSH2. These findings lend insight into a complex interplay whereby potentially deleterious UNG activity and general genomic instability are opposed by the protective influence of MSH2, producing a net protective effect that promotes immune diversification while simultaneously attenuating malignant transformation of GC B cells.


Assuntos
Transformação Celular Neoplásica/patologia , Citidina Desaminase/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Proteína 2 Homóloga a MutS/fisiologia , Uracila-DNA Glicosidase/fisiologia , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Centro Germinativo , Técnicas Imunoenzimáticas , Switching de Imunoglobulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas Proto-Oncogênicas c-bcl-6 , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Hipermutação Somática de Imunoglobulina/genética , Cariotipagem Espectral , Células Tumorais Cultivadas
6.
Mol Cell ; 59(4): 603-14, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26212458

RESUMO

Ataxia telangiectasia-mutated and Rad3-related (ATR) protein kinase, a master regulator of DNA-damage response, is activated by RPA-coated single-stranded DNA (ssDNA) generated at stalled replication forks or DNA double-strand breaks (DSBs). Here, we identify the mismatch-binding protein MutSß, a heterodimer of MSH2 and MSH3, as a key player in this process. MSH2 and MSH3 form a complex with ATR and its regulatory partner ATRIP, and their depletion compromises the formation of ATRIP foci and phosphorylation of ATR substrates in cells responding to replication-associated DSBs. Purified MutSß binds to hairpin loop structures that persist in RPA-ssDNA complexes and promotes ATRIP recruitment. Mutations in the mismatch-binding domain of MSH3 abolish the binding of MutSß to DNA hairpin loops and its ability to promote ATR activation by ssDNA. These results suggest that hairpin loops might form in ssDNA generated at sites of DNA damage and trigger ATR activation in a process mediated by MutSß.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Proteína 2 Homóloga a MutS/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Células HEK293 , Recombinação Homóloga , Humanos , Proteína 2 Homóloga a MutS/química , Proteína 3 Homóloga a MutS , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
7.
J Cell Biol ; 209(1): 33-46, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25869665

RESUMO

In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa-Atr-Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects.


Assuntos
Dano ao DNA , Reparo de Erro de Pareamento de DNA , Animais , Apoptose , Linhagem Celular , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Embrionárias/fisiologia , Epistasia Genética , Humanos , Camundongos da Linhagem 129 , Proteína 2 Homóloga a MutS/fisiologia , Mutagênese
8.
Eur J Immunol ; 44(7): 1925-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24771041

RESUMO

Excision of uracil introduced into the immunoglobulin loci by AID is central to antibody diversification. While predominantly carried out by the UNG uracil-DNA glycosylase as reflected by deficiency in immunoglobulin class switching in Ung(-/-) mice, the deficiency is incomplete, as evidenced by the emergence of switched IgG in the serum of Ung(-/-) mice. Lack of switching in mice deficient in both UNG and MSH2 suggested that mismatch repair initiated a backup pathway. We now show that most of the residual class switching in Ung(-/-) mice depends upon the endogenous SMUG1 uracil-DNA glycosylase, with in vitro switching to IgG1 as well as serum IgG3, IgG2b, and IgA greatly diminished in Ung(-/-) Smug1(-/-) mice, and that Smug1 partially compensates for Ung deficiency over time. Nonetheless, using a highly MSH2-dependent mechanism, Ung(-/-) Smug1(-/-) mice can still produce detectable levels of switched isotypes, especially IgG1. While not affecting the pattern of base substitutions, SMUG1 deficiency in an Ung(-/-) background further reduces somatic hypermutation at A:T base pairs. Our data reveal an essential requirement for uracil excision in class switching and in facilitating noncanonical mismatch repair for the A:T phase of hypermutation presumably by creating nicks near the U:G lesion recognized by MSH2.


Assuntos
Switching de Imunoglobulina , Mutação , Uracila-DNA Glicosidase/fisiologia , Uracila/metabolismo , Animais , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Camundongos , Proteína 2 Homóloga a MutS/fisiologia
9.
Nucleic Acids Res ; 41(22): 10312-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038355

RESUMO

Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after DNA damage treatment. To explore the possible roles of other factors that regulate the ultraviolet (UV)-induced assembly of specialized DNA polymerases at arrested replication forks, we performed immunoprecipitation experiments combined with mass spectrometry and established that DNA polymerase kappa (Polκ) can partner with MSH2, an important mismatch repair protein associated with hereditary non-polyposis colorectal cancer. We found that depletion of MSH2 impairs PCNA monoubiquitination and the formation of foci containing Polκ and other TLS polymerases after UV irradiation of cells. Interestingly, expression of MSH2 in Rad18-deficient cells increased UV-induced Polκ and REV1 focus formation without detectable changes in PCNA monoubiquitination, indicating that MSH2 can regulate post-UV focus formation by specialized DNA polymerases in both PCNA monoubiquitination-dependent and -independent fashions. Moreover, we observed that MSH2 can facilitate TLS across cyclobutane pyrimidine dimers photoproducts in living cells, presenting a novel role of MSH2 in post-UV cellular responses.


Assuntos
Dano ao DNA , DNA/biossíntese , Proteína 2 Homóloga a MutS/fisiologia , Raios Ultravioleta , Animais , Linhagem Celular , Replicação do DNA , Proteínas de Ligação a DNA/análise , DNA Polimerase Dirigida por DNA/análise , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Camundongos , Proteína 2 Homóloga a MutS/metabolismo , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Dímeros de Pirimidina/metabolismo , Proteína de Replicação A/análise , Ubiquitina-Proteína Ligases , Ubiquitinação
10.
World J Surg Oncol ; 10: 264, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23231927

RESUMO

BACKGROUND: Vasoactive intestinal polypeptide secreting tumors(VIPomas) are rare endocrine tumors of the pancreas with an estimated incidence of 0.1 per million per year. The molecular mechanisms that mediate development of VIPomas are poorly investigated and require definition. METHODS: A genome- and gene expression analysis of specimens of a primary pancreatic VIPoma with hepatic metastases was performed. The primary tumor, the metastases, the corresponding healthy tissue of the liver, and the pancreas were compared with each other using oligonucleotide microarrays and loss of heterozygosity (LOH). RESULTS: The results revealed multiple LOH events and several differentially expressed genes. Our finding of LOH and downregulation was conspicuous in the microarray analysis for the mismatch repair gene MSH2 in the primary pancreatic VIPoma tumor, the hepatic metastasis but not in the corresponding healthy tissue. Further a strong overexpression of the chemokine CXCR4 was detected in the hepatic metastases compared to its pancreatic primary. With a review of the literature we describe the molecular insights of metastatic development in VIPoma. CONCLUSION: In VIPoma, defects in the mismatch repair system especially in MSH2 may contribute to carcinogenesis, and increased CXCR4 may be associated with liver metastasis.


Assuntos
Proteína 2 Homóloga a MutS/fisiologia , Neoplasias Pancreáticas/genética , Receptores CXCR4/fisiologia , Vipoma/genética , Idoso , Reparo de Erro de Pareamento de DNA/genética , Humanos , Perda de Heterozigosidade , Masculino , Repetições de Microssatélites , Proteína 2 Homóloga a MutS/genética , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia , Receptores CXCR4/genética , Vipoma/etiologia , Vipoma/patologia
11.
Nucleic Acids Res ; 40(20): 10324-33, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22941650

RESUMO

Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington's disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSß (MSH2-MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR expansions is a threshold effect, a narrow range of repeat units (∼30-40 in humans) at which mutation frequency rises dramatically and disease can initiate. The goal of this study was to identify factors that promote expansion of threshold-length CTG•CAG repeats in a human astrocytic cell line. siRNA knockdown of the MutSß subunits MSH2 or MSH3 impeded expansions of threshold-length repeats, while knockdown of the MutSα subunit MSH6 had no effect. Chromatin immunoprecipitation experiments indicated that MutSß, but not MutSα, was enriched at the TNR. These findings imply a direct role for MutSß in promoting expansion of threshold-length CTG•CAG tracts. We identified the class II deacetylase HDAC5 as a novel promoting factor for expansions, joining the class I deacetylase HDAC3 that was previously identified. Double knockdowns were consistent with the possibility that MutSß, HDAC3 and HDAC5 act through a common pathway to promote expansions of threshold-length TNRs.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Histona Desacetilases/fisiologia , Proteína 2 Homóloga a MutS/fisiologia , Expansão das Repetições de Trinucleotídeos , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Histona Desacetilases/genética , Humanos , Proteína 2 Homóloga a MutS/antagonistas & inibidores , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS
12.
Carcinogenesis ; 33(9): 1647-54, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22739024

RESUMO

The hMSH2(M688R) mismatch repair (MMR) gene mutation has been found in five large families from Tenerife, Spain, suggesting it is a Lynch syndrome or hereditary non-polyposis colorectal cancer (LS/HNPCC) founder mutation. In addition to classical LS/HNPCC tumors, these families present with a high incidence of central nervous system (CNS) tumors normally associated with Turcot or constitutional mismatch repair deficiency (CMMR-D) syndromes. Turcot and CMMR-D mutations may be biallelic, knocking out both copies of the MMR gene. The hMSH2(M688R) mutation is located in the ATP hydrolysis (ATPase) domain. We show that the hMSH2(M688R)-hMSH6 heterodimer binds to mismatched nucleotides but lacks normal ATP functions and inhibits MMR in vitro when mixed with the wild-type (WT) heterodimer. Another alteration that has been associated with LS/HNPCC, hMSH2(M688I)-hMSH6, displays no identifiable differences with the WT heterodimer. Interestingly, some extracolonic tumors from hMSH2(M688R) carriers may express hMSH2-hMSH6, yet display microsatellite instability (MSI). The functional analysis along with variability in tumor expression and the high incidence of CNS tumors suggests that hMSH2(M688R) may act as a dominant negative in some tissues, while the hMSH2(M688I) is most likely a benign polymorphism.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteína 2 Homóloga a MutS/genética , Mutação , Sequência de Aminoácidos , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/genética , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/análise , Proteína 2 Homóloga a MutS/fisiologia
13.
Mol Cell ; 43(4): 649-62, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21855803

RESUMO

Posttranslational modification of PCNA by ubiquitin plays an important role in coordinating the processes of DNA damage tolerance during DNA replication. The monoubiquitination of PCNA was shown to facilitate the switch between the replicative DNA polymerase with the low-fidelity polymerase eta (η) to bypass UV-induced DNA lesions during replication. Here, we show that in response to oxidative stress, PCNA becomes transiently monoubiquitinated in an S phase- and USP1-independent manner. Moreover, Polη interacts with mUb-PCNA at sites of oxidative DNA damage via its PCNA-binding and ubiquitin-binding motifs. Strikingly, while functional base excision repair is not required for this modification of PCNA or Polη recruitment to chromatin, the presence of hMsh2-hMsh6 is indispensable. Our findings highlight an alternative pathway in response to oxidative DNA damage that may coordinate the removal of oxidatively induced clustered DNA lesions and could explain the high levels of oxidized DNA lesions in MSH2-deficient cells.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Proteína 2 Homóloga a MutS/fisiologia , Estresse Oxidativo , Antígeno Nuclear de Célula em Proliferação/fisiologia , Proteínas de Arabidopsis , Linhagem Celular , Cromatina/metabolismo , DNA Polimerase beta/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Endopeptidases/metabolismo , Humanos , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteases Específicas de Ubiquitina , Ubiquitinação , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
14.
Carcinogenesis ; 32(7): 1085-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21551128

RESUMO

Loss of E-cadherin expression is a critical step in the development and progression of gynecological tumors. Study of the precise role of E-cadherin has been hampered by the lack of satisfactory mouse model for E-cadherin deficiency. Likewise, DNA mismatch repair (MMR) is implicated in gynecological tumorigenesis, but knockout of MMR in mice predominantly causes hematologic neoplasms. Here, we show that combined disruption of E-cadherin and DNA MMR pathways increases incidence of endometrioid tumors in mice. Twenty percent of mice knockout for Msh2 enzyme and hemizygous for E-cadherin [Msh2(-/-)/Cdh1(+/-)] developed endometrioid-like tumors in the ovary, uterus and genital area. Characteristic of these tumors was a complete loss of E-cadherin expression. Sequence analysis of E-cadherin promoter region demonstrated that the loss of E-cadherin expression is caused by inactivating mutations, implying that E-cadherin is a mutational target in Msh2-deficient mice. In addition, Msh2(-/-)/Cdh1(+/-) mice showed a reduction in overall survival as compared with their Msh2(-/-) counterparts due to the development of more aggressive lymphomas, suggesting a specific role of E-cadherin in lymphomagenesis. In conclusion, Msh2(-/-)/Cdh1(+/-) mice provide a good model of gynecological tumorigenesis and may be useful for testing molecular target-specific therapies.


Assuntos
Pareamento Incorreto de Bases , Caderinas/genética , Neoplasias do Endométrio/epidemiologia , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Neoplasias do Endométrio/genética , Feminino , Incidência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/fisiologia
15.
Bull Cancer ; 98(3): 305-22, 2011 Mar.
Artigo em Francês | MEDLINE | ID: mdl-21459711

RESUMO

The role of DNA repair pathways is to maintain cellular integrity. However, genetic instability is a driving force in the development of tumor cells and many tumors are characterized by the loss of functionality in one or several DNA repair pathways. However, if genetic instability trespasses a certain point, it will induce cell death. Therefore, the dysfunctionality of several DNA repair pathways could represent an Achille's heel for the tumor, if such pathways could be pharmacologically targeted. For instance, the inhibition of PARP1, a protein in the base excision repair pathway (BER) is sufficient to induce cell death in cancer cells bearing BRCA1 or BRCA2 mutations, which are essential proteins in the homologous recombination repair pathway (HR). This phenomenon called "synthetic letality" constitutes recent knowledge and we discuss here the possibility that this strategy might be applied to innovative treatment options in lung cancer. Further, several DNA repair proteins could be used in lung cancer as prognostic and/or predictive biomarkers of response to chemotherapy or radiation. Indeed, specific biomarkers of each DNA repair pathway do exist and could guide oncologists in therapeutic decisions (e.g. ERCC1 and cisplatin). Finally, pharmacologic modulation of DNA repair proteins might also be interesting as it might increase therapeutic efficacy of anticancer strategies (DNA-interacting chemotherapy and radiotherapy). Here, we will present the principal DNA repair pathways and associated biomarkers (ERCC1, MSH2, PARP1 and BRCA1/2), and discuss their status in non-small call lung cancer (NSCLC).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Reparo do DNA/fisiologia , Neoplasias Pulmonares/genética , Proteína BRCA1/fisiologia , Proteína BRCA2/fisiologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Morte Celular/genética , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Instabilidade Genômica/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteína 2 Homóloga a MutS/fisiologia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/fisiologia
16.
J Immunol ; 186(4): 2336-43, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21242524

RESUMO

In the absence of core nonhomologous end-joining (NHEJ) factors, Ab gene class-switch recombination (CSR) uses an alternative end-joining (A-EJ) pathway to recombine switch (S) region DNA breaks. Previous reports showing decreased S-junction microhomologies in MSH2-deficient mice and an exonuclease 1 (EXO1) role in yeast microhomology-mediated end joining suggest that mismatch repair (MMR) proteins might influence A-EJ-mediated CSR. We have directly investigated whether MMR proteins collectively or differentially influence the A-EJ mechanism of CSR by analyzing CSR in mice deficient in both XRCC4 and individual MMR proteins. We find CSR is reduced and that Igh locus chromosome breaks are reduced in the MMR/XRCC4 double-deficient B cells compared with B cells deficient in XRCC4 alone, suggesting MMR proteins function upstream of double-strand break formation to influence CSR efficiency in these cells. Our results show that MLH1, EXO1, and MSH2 are all important for efficient A-EJ-mediated CSR, and we propose that MMR proteins convert DNA nicks and point mutations into dsDNA breaks for both C-NHEJ and A-EJ pathways of CSR. We also find Mlh1-XRCC4(-) B cells have an increased frequency of direct S junctions, suggesting that MLH1 proteins may have additional functions that influence A-EJ-mediated CSR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Subpopulações de Linfócitos B/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/deficiência , Exodesoxirribonucleases/fisiologia , Switching de Imunoglobulina/genética , Proteína 2 Homóloga a MutS/fisiologia , Proteínas Nucleares/fisiologia , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína 1 Homóloga a MutL , Mutação Puntual
17.
PLoS One ; 5(6): e11182, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20567595

RESUMO

Mismatch repair of AID-generated dU:G mispairs is critical for class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The generation of a previously unavailable Msh2(-/-)Msh6(-/-) mouse has for the first time allowed us to examine the impact of the complete loss of MutSalpha on lymphomagenesis, CSR and SHM. The onset of T cell lymphomas and the survival of Msh2(-/-)Msh6(-/-) and Msh2(-/-)Msh6(-/-)Msh3(-/-) mice are indistinguishable from Msh2(-/-) mice, suggesting that MSH2 plays the critical role in protecting T cells from malignant transformation, presumably because it is essential for the formation of stable MutSalpha heterodimers that maintain genomic stability. The similar defects on switching in Msh2(-/-), Msh2(-/-)Msh6(-/-) and Msh2(-/-)Msh6(-/-)Msh3(-/-) mice confirm that MutSalpha but not MutSbeta plays an important role in CSR. Analysis of SHM in Msh2(-/-)Msh6(-/-) mice not only confirmed the error-prone role of MutSalpha in the generation of strand biased mutations at A:T bases, but also revealed an error-free role of MutSalpha when repairing some of the dU:G mispairs generated by AID on both DNA strands. We propose a model for the role of MutSalpha at the immunoglobulin locus where the local balance of error-free and error-prone repair has an impact in the spectrum of mutations introduced during Phase 2 of SHM.


Assuntos
Pareamento Incorreto de Bases , Citidina Desaminase/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteína 2 Homóloga a MutS/fisiologia , Mutação , Animais , Proteínas de Ligação a DNA/genética , Dimerização , Linfoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Homóloga a MutS/genética , Recombinação Genética
18.
Br J Cancer ; 102(6): 1068-73, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20160730

RESUMO

BACKGROUND: The target substrates of DNA mismatch recognising factors MutSalpha (MSH2+MSH6) and MutSbeta (MSH2+MSH3) have already been widely researched. However, the extent of their functional redundancy and clinical substance remains unclear. Mismatch repair (MMR)-deficient tumours are strongly associated with microsatellite instability (MSI) and the degree and type of MSI seem to be dependent on the MMR gene affected, and is linked to its substrate specificities. Deficiency in MSH2 and MSH6 is associated with both mononucleotide and dinucleotide repeat instability. Although no pathogenic MSH3 mutations have been reported, its deficiency is also suggested to cause low dinucleotide repeat instability. METHODS: To assess the substrate specificities and functionality of MutSalpha and MutSbeta we performed an in vitro MMR assay using three substrate constructs, GT mismatch, 1 and 2 nucleotide insertion/deletion loops (IDLs) in three different cell lines. RESULTS: Our results show that though MutSalpha alone seems to be responsible for GT and IDL1 repair, MutSalpha and MutSbeta indeed have functional redundancy in IDL2 repair and in contrast with earlier studies, MutSbeta seems to exceed MutSalpha. CONCLUSION: The finding is clinically relevant because the strong role of MutSbeta in IDL2 repair indicates MSH3 deficiency in tumours with low dinucleotide and no mononucleotide repeat instability.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/fisiologia , Repetições de Dinucleotídeos/genética , Proteína 2 Homóloga a MutS/fisiologia , Conformação de Ácido Nucleico , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células HCT116 , Células HeLa , Humanos , Mutação INDEL/genética , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS , Mutação de Sentido Incorreto/fisiologia , Spodoptera , Especificidade por Substrato
19.
Toxicology ; 268(1-2): 111-7, 2010 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-20025921

RESUMO

The DNA structure recognition protein MSH2 is an important protein in DNA mismatch repair due to its role in initiating the repair process. To examine the potential interactions between mismatch repair and base excision repair (BER) we have examined the effect of MSH2 knockdown on 6-thioguanine (6-TG), temozolomide (TMZ) and methylmethane sulphonate (MMS) induced toxicity in BER proficient and deficient cell lines. An shRNA expression vector containing Msh2 target sequences was designed and used to transfect mouse embryonic fibroblasts lacking either alkylpurine DNA N-glycosylase (Mpg) or endonuclease III homologue (Nth1). Significant knockdown of Msh2 gene expression was achieved with three different target sequences, with the highest level being shown by Msh2(283). Clonal selection resulted in differing levels of knockdown in Mpg(-/-) cells: (69.0+/-12.1% from 5 cell clones). Transfection of the Msh2(283) sequence in Mpg+/+, Nth1+/+ and Nth1(-/-) cells resulted in average knockdowns of 45.1+/-40.5% (3 clones), 58.0+/-21.4% (5 clones) and 74.9+/-14.8% (3 clones), respectively. Msh2 knockdown resulted in increased resistance to 6-TG in BER (MPG and NTH1) proficient and deficient cell lines with similar levels of knockdown (84+/-4%) but increased resistance to TMZ only in Mpg+/+ and Nth1(-/-) cell lines and not Mpg(-/-) or Nth1+/+ cells as assessed by an MTT assay. Msh2 knockdown had no effect on sensitivity to MMS induced toxicity. In a clonogenic assay, Msh2 silenced Mpg+/+, Mpg(-/-), Nth1+/+ and Nth1(-/-) cells were more resistant to TMZ. These results confirm previous studies showing that MSH2 is a key protein in influencing 6-TG and O(6)-methylguanine induced toxicity but also suggest that the effect of this protein depends upon the presence of other proteins in different DNA repair pathways.


Assuntos
Alquilantes/toxicidade , DNA Glicosilases/metabolismo , Técnicas de Silenciamento de Genes , Proteína 2 Homóloga a MutS/fisiologia , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Primers do DNA , Camundongos , Camundongos Knockout , Proteína 2 Homóloga a MutS/genética
20.
PLoS One ; 4(10): e7488, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19834615

RESUMO

Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage.


Assuntos
Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Translocação Genética , Alelos , Catálise , Dano ao DNA , Reparo do DNA , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Diploide , Epistasia Genética , Heterozigoto , Modelos Biológicos , Mutação de Sentido Incorreto , Fenótipo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...