Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Biol Chem ; 297(3): 101080, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403696

RESUMO

TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Moléculas de Adesão Celular/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Microscopia de Força Atômica/métodos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Complexo Shelterina/metabolismo , Complexo Shelterina/fisiologia , Telômero/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
2.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31000523

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with strong immunosuppressive activity that promote tumor growth. In this study, we describe a mechanism by which cancer cells control MDSCs in human cancers by upregulating TRF2, a protein required for telomere stability. Specifically, we showed that the TRF2 upregulation in cancer cells has extratelomeric roles in activating the expression of a network of genes involved in the biosynthesis of heparan sulfate proteoglycan, leading to profound changes in glycocalyx length and stiffness, as revealed by atomic force microscopy. This TRF2-dependent regulation facilitated the recruitment of MDSCs, their activation via the TLR2/MyD88/IL-6/STAT3 pathway leading to the inhibition of natural killer recruitment and cytotoxicity, and ultimately tumor progression and metastasis. The clinical relevance of these findings is supported by our analysis of cancer cohorts, which showed a correlation between high TRF2 expression and MDSC infiltration, which was inversely correlated with overall patient survival.


Assuntos
Glicocálix/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Evasão Tumoral/fisiologia , Animais , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Glicocálix/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/fisiologia , Células NIH 3T3 , Neoplasias/genética , Neoplasias/mortalidade , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Evasão Tumoral/genética
3.
Exp Gerontol ; 120: 88-94, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30876950

RESUMO

Mouse models have been widely used in the research of human diseases. Aging, just as cancer, is influenced by the interaction of various genetic and environmental factors. Currently, aging could be induced by many mechanism, including telomere dysfunction, oxidase stress, DNA damage and epigenetic changes. Many of these genetic pathways are also shared by aging and cancer. The mouse models generated to study these pathways might manifest either aging or cancer phenotypes, sometimes both, which in deed has worked as a good model system in understanding the correlation between aging and cancer. Here, we reviewed these mouse models that were generated to model aging or cancer. These mouse models might help us put those related pathways in context and discover essential interactions in cancer and aging regulation.


Assuntos
Envelhecimento , Neoplasias/etiologia , Telômero/fisiologia , Animais , Dano ao DNA , Modelos Animais de Doenças , Inflamação/complicações , Camundongos , Progéria/etiologia , Telomerase/genética , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
4.
Int J Hematol ; 107(6): 646-655, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550946

RESUMO

In order to maintain the homeostasis of the hematopoietic system, hematopoietic stem cells (HSCs) need to be maintained while slowly dividing over their lifetime. However, repeated cell divisions lead to the gradual accumulation of DNA damage and ultimately impair HSC function. Since telomeres are particularly fragile when subjected to replication stress, cells have several defense machinery to protect telomeres. Moreover, HSCs must protect their genome against possible DNA damage, while maintaining telomere length. A group of proteins called the shelterin complex are deeply involved in this two-way role, and it is highly resistant to the replication stress to which HSCs are subjected. Most shelterin-deficient experimental models suffer acute cytotoxicity and severe phenotypes, as each shelterin component is essential for telomere protection. The Tin2 point mutant mice show a dyskeratosis congenita (DC) like phenotype, and the Tpp1 deletion impairs the hematopoietic system. POT1/Pot1a is highly expressed in HSCs and contributes to the maintenance of the HSC pool during in vitro culture. Here, we discuss the role of shelterin molecules in HSC regulation and review current understanding of how these are regulated in the maintenance of the HSC pool and the development of hematological disorders.


Assuntos
Hematopoese/genética , Células-Tronco Hematopoéticas , Proteínas de Ligação a Telômeros/fisiologia , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Aminopeptidases/genética , Animais , Divisão Celular/genética , Dano ao DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Disceratose Congênita , Deleção de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Mutação , Serina Proteases/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/deficiência
5.
Nat Commun ; 8(1): 1480, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29133872

RESUMO

In fruit flies, the male-specific fruitless (fru) gene product FruBM plays a central role in establishing the neural circuitry for male courtship behavior by orchestrating the transcription of genes required for the male-type specification of individual neurons. We herein identify the core promoter recognition factor gene Trf2 as a dominant modifier of fru actions. Trf2 knockdown in the sexually dimorphic mAL neurons leads to the loss of a male-specific neurite and a reduction in male courtship vigor. TRF2 forms a repressor complex with FruBM, strongly enhancing the repressor activity of FruBM at the promoter region of the robo1 gene, whose function is required for inhibiting the male-specific neurite formation. In females that lack FruBM, TRF2 stimulates robo1 transcription. Our results suggest that TRF2 switches its own role from an activator to a repressor of transcription upon binding to FruBM, thereby enabling the ipsilateral neurite formation only in males.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Corte , Feminino , Técnicas de Silenciamento de Genes , Masculino , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Neuritos/fisiologia , Regiões Promotoras Genéticas/genética , Receptores Imunológicos/genética , Proteínas Repressoras/fisiologia , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia , Proteínas Roundabout
6.
Genes Dev ; 31(7): 639-647, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428263

RESUMO

Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans.


Assuntos
Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Telômero/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Animais , Comportamento Animal , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Neurônios/citologia , Transmissão Sináptica/genética
7.
Genes Dev ; 31(6): 567-577, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381410

RESUMO

Telomeres are specialized nucleoprotein structures that protect chromosome ends from DNA damage response (DDR) and DNA rearrangements. The telomeric shelterin protein TRF2 suppresses the DDR, and this function has been attributed to its abilities to trigger t-loop formation or prevent massive decompaction and loss of density of telomeric chromatin. Here, we applied stochastic optical reconstruction microscopy (STORM) to measure the sizes and shapes of functional human telomeres of different lengths and dysfunctional telomeres that elicit a DDR. Telomeres have an ovoid appearance with considerable plasticity in shape. Examination of many telomeres demonstrated that depletion of TRF2, TRF1, or both affected the sizes of only a small subset of telomeres. Costaining of telomeres with DDR markers further revealed that the majority of DDR signaling telomeres retained a normal size. Thus, DDR signaling at telomeres does not require decompaction. We propose that telomeres are monitored by the DDR machinery in the absence of telomere expansion and that the DDR is triggered by changes at the molecular level in structure and protein composition.


Assuntos
Dano ao DNA , Telômero/ultraestrutura , Cromatina/fisiologia , Imunofluorescência , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Proteína 1 de Ligação a Repetições Teloméricas/análise , Proteína 1 de Ligação a Repetições Teloméricas/imunologia , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
8.
Genes Dev ; 31(6): 578-589, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381412

RESUMO

Telomeres are protected by shelterin, a six-subunit protein complex that represses the DNA damage response (DDR) at chromosome ends. Extensive data suggest that TRF2 in shelterin remodels telomeres into the t-loop structure, thereby hiding telomere ends from double-stranded break repair and ATM signaling, whereas POT1 represses ATR signaling by excluding RPA. An alternative protection mechanism was suggested recently by which shelterin subunits TRF1, TRF2, and TIN2 mediate telomeric chromatin compaction, which was proposed to minimize access of DDR factors. We performed superresolution imaging of telomeres in mouse cells after conditional deletion of TRF1, TRF2, or both, the latter of which results in the complete loss of shelterin. Upon removal of TRF1 or TRF2, we observed only minor changes in the telomere volume in most of our experiments. Upon codeletion of TRF1 and TRF2, the telomere volume increased by varying amounts, but even those samples exhibiting small changes in telomere volume showed DDR at nearly all telomeres. Upon shelterin removal, telomeres underwent 53BP1-dependent clustering, potentially explaining at least in part the apparent increase in telomere volume. Furthermore, chromatin accessibility, as determined by ATAC-seq (assay for transposase-accessible chromatin [ATAC] with high-throughput sequencing), was not substantially altered by shelterin removal. These results suggest that the DDR induced by shelterin removal does not require substantial telomere decompaction.


Assuntos
Dano ao DNA , Telômero/ultraestrutura , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Animais , Células Cultivadas , Cromatina/fisiologia , Camundongos , Microscopia de Fluorescência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia
9.
Oncotarget ; 7(29): 46615-46627, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27366950

RESUMO

Telomere stability is a hallmark of immortalized cells, including cancer cells. While the telomere length is maintained in most cases by the telomerase, the activity of a protein complex called Shelterin is required to protect telomeres against unsuitable activation of the DNA damage response pathway. Within this complex, telomeric repeat binding factor 2 (TRF2) plays an essential role by blocking the ataxia telangiectasia-mutated protein (ATM) signaling pathway at telomeres and preventing chromosome end fusion. We showed that TRF2 was phosphorylated in vitro and in vivo on serine 323 by extracellular signal-regulated kinase (ERK1/2) in both normal and cancer cells. Moreover, TRF2 and activated ERK1/2 unexpectedly interacted in the cytoplasm of tumor cells and human tumor tissues. The expression of non-phosphorylatable forms of TRF2 in melanoma cells induced the DNA damage response, leading to growth arrest and tumor reversion. These findings revealed that the telomere stability is under direct control of one of the major pro-oncogenic signaling pathways (RAS/RAF/MEK/ERK) via TRF2 phosphorylation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Animais , Apoptose , Linhagem Celular , Feminino , Humanos , Camundongos , Fosforilação , Telômero/fisiologia
10.
Nat Commun ; 7: 10881, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941064

RESUMO

Repressor/activator protein 1 (RAP1) is a highly conserved telomere-interacting protein. Yeast Rap1 protects telomeres from non-homologous end joining (NHEJ), plays important roles in telomere length control and is involved in transcriptional gene regulation. However, a role for mammalian RAP1 in telomere end protection remains controversial. Here we present evidence that mammalian RAP1 is essential to protect telomere from homology directed repair (HDR) of telomeres. RAP1 cooperates with the basic domain of TRF2 (TRF2(B)) to repress PARP1 and SLX4 localization to telomeres. Without RAP1 and TRF2(B), PARP1 and SLX4 HR factors promote rapid telomere resection, resulting in catastrophic telomere loss and the generation of telomere-free chromosome fusions in both mouse and human cells. The RAP1 Myb domain is required to repress both telomere loss and formation of telomere-free fusions. Our results highlight the importance of the RAP1-TRF2 heterodimer in protecting telomeres from inappropriate processing by the HDR pathway.


Assuntos
Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Animais , Linhagem Celular , Reparo do DNA , Proteínas de Ligação a DNA , Fibroblastos/metabolismo , Instabilidade Genômica , Humanos , Camundongos , Transporte Proteico , Proteínas Recombinantes/genética , Complexo Shelterina , Telômero/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética
11.
Mol Cell Biochem ; 414(1-2): 201-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26906205

RESUMO

Telomere uncapping is thought to be the fundamental cause of replicative cellular senescence, but the cellular machineries mediating this process have not been fully understood. In the present study, we present the role of Sp1 transcription factor in the state of telomere uncapping using the TRF2(ΔBΔM)-induced senescence model in human diploid fibroblasts. We observed that the expression of Sp1 is down-regulated in the TRF2(ΔBΔM)-induced senescence, which was mediated by ATM and p38 MAPK. In addition, overexpression of Sp1 prevented the TRF2(ΔBΔM)-induced senescence. Among transcriptional targets of Sp1, expression levels of nuclear transport genes such as karyopherin α, Nup107, and Nup50 were down-regulated in the TRF2(ΔBΔM)-induced senescence, which was prevented by Sp1 overexpression. Moreover, inhibition of the nuclear transport by wheat germ agglutinin (an import inhibitor) and leptomycin B (an export inhibitor) induced premature senescence. These results suggest that Sp1 is an anti-senescence transcription factor in the telomere uncapping-induced senescence and that down-regulation of Sp1 leads to the senescence via down-regulation of the nuclear transport.


Assuntos
Senescência Celular/fisiologia , Diploide , Fator de Transcrição Sp1/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Fibroblastos/citologia , Humanos
12.
Mol Cell ; 57(4): 622-635, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25620558

RESUMO

The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase.


Assuntos
DNA Helicases/fisiologia , Modelos Genéticos , Fase S , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Animais , Células Cultivadas , DNA Helicases/química , DNA Helicases/metabolismo , Humanos , Metáfase , Camundongos , Estrutura Terciária de Proteína , Transporte Proteico , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
13.
Biochemistry ; 53(34): 5485-95, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25115914

RESUMO

A growing body of literature suggests that the homologous recombination/repair (HR) pathway cooperates with components of the shelterin complex to promote both telomere maintenance and nontelomeric HR. This may be due to the ability of both HR and shelterin proteins to promote strand invasion, wherein a single-stranded DNA (ssDNA) substrate base pairs with a homologous double-stranded DNA (dsDNA) template displacing a loop of ssDNA (D-loop). Rad51 recombinase catalyzes D-loop formation during HR, and telomere repeat binding factor 2 (TRF2) catalyzes the formation of a telomeric D-loop that stabilizes a looped structure in telomeric DNA (t-loop) that may facilitate telomere protection. We have characterized this functional interaction in vitro using a fluorescent D-loop assay measuring the incorporation of Cy3-labeled 90-nucleotide telomeric and nontelomeric substrates into telomeric and nontelomeric plasmid templates. We report that preincubation of a telomeric template with TRF2 inhibits the ability of Rad51 to promote telomeric D-loop formation upon preincubation with a telomeric substrate. This suggests Rad51 does not facilitate t-loop formation and suggests a mechanism whereby TRF2 can inhibit HR at telomeres. We also report a TRF2 mutant lacking the dsDNA binding domain promotes Rad51-mediated nontelomeric D-loop formation, possibly explaining how TRF2 promotes nontelomeric HR. Finally, we report telomere repeat binding factor 1 (TRF1) promotes Rad51-mediated telomeric D-loop formation, which may facilitate HR-mediated replication fork restart and explain why TRF1 is required for efficient telomere replication.


Assuntos
Rad51 Recombinase/fisiologia , Telômero , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Sequência de Bases , Ligação Competitiva , Catálise , Primers do DNA , DNA de Cadeia Simples/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Fluorescência , Técnicas In Vitro
14.
Cell Res ; 24(7): 870-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24810301

RESUMO

Subtelomeres consist of sequences adjacent to telomeres and contain genes involved in important cellular functions, as subtelomere instability is associated with several human diseases. Balancing between subtelomere stability and plasticity is particularly important for Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major variant surface antigen, variant surface glycoprotein (VSG), to evade the host immune response, and VSGs are expressed exclusively from subtelomeres in a strictly monoallelic fashion. Telomere proteins are important for protecting chromosome ends from illegitimate DNA processes. However, whether they contribute to subtelomere integrity and stability has not been well studied. We have identified a novel T. brucei telomere protein, T. brucei TRF-Interacting Factor 2 (TbTIF2), as a functional homolog of mammalian TIN2. A transient depletion of TbTIF2 led to an elevated VSG switching frequency and an increased amount of DNA double-strand breaks (DSBs) in both active and silent subtelomeric bloodstream form expression sites (BESs). Therefore, TbTIF2 plays an important role in VSG switching regulation and is important for subtelomere integrity and stability. TbTIF2 depletion increased the association of TbRAD51 with the telomeric and subtelomeric chromatin, and TbRAD51 deletion further increased subtelomeric DSBs in TbTIF2-depleted cells, suggesting that TbRAD51-mediated DSB repair is the underlying mechanism of subsequent VSG switching. Surprisingly, significantly more TbRAD51 associated with the active BES than with the silent BESs upon TbTIF2 depletion, and TbRAD51 deletion induced much more DSBs in the active BES than in the silent BESs in TbTIF2-depleted cells, suggesting that TbRAD51 preferentially repairs DSBs in the active BES.


Assuntos
Proteínas de Protozoários/fisiologia , Homeostase do Telômero/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Quebras de DNA de Cadeia Dupla , Rad51 Recombinase/metabolismo , Telômero , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
15.
Medicina (B Aires) ; 74(1): 69-76, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-24561847

RESUMO

Telomerase is the enzyme responsible for the maintenance of telomere length by adding guanine-rich repetitive sequences. Its activity can be seen in gametes, stem cells and tumor cells. In human somatic cells the proliferative potential is limited, reaching senescence after 50-70 cell divisions, because the DNA polymerase is not able to copy the DNA at the ends of chromosomes. By contrast, in most tumor cells the replicative potential is unlimited due to the maintenance of the telomeric length given by telomerase. Telomeres have additional proteins that regulate the binding of telomerase, likewise telomerase associates, with a protein complex that regulates its activity. This work focuses on the structure and function of the telomere/telomerase complex and how changes in its behavior lead to the development of different diseases, mainly cancer. Development of inhibitors of the telomere/telomerase complex could be a target with promising possibilities.


Assuntos
Neoplasias/genética , Telomerase/genética , Telômero/fisiologia , Animais , Divisão Celular/fisiologia , Senescência Celular/genética , Humanos , Neoplasias/enzimologia , Telomerase/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
16.
Medicina (B.Aires) ; 74(1): 69-76, ene.-feb. 2014. ilus
Artigo em Espanhol | BINACIS | ID: bin-131967

RESUMO

La telomerasa es la enzima responsable del mantenimiento de la longitud de los telómeros mediante la adición de secuencias repetitivas ricas en guanina, y su actividad se observa principalmente en gametos, células madre y células tumorales. En las células somáticas humanas el potencial de proliferación es limitado, alcanzando la senescencia luego de 50-70 divisiones celulares, debido a que la ADN polimerasa no es capaz de copiar el ADN en los extremos de los cromosomas. Por el contrario, en la mayoría de las células tumorales el potencial de replicación es ilimitado debido al mantenimiento de la longitud telomérica dado por la telomerasa. Los telómeros tienen proteínas adicionales que regulan la unión de la telomerasa. De la misma manera la telomerasa también se asocia con un complejo de proteínas que regulan su actividad. Este trabajo se centra en la estructura y función del complejo telómero/telomerasa y a cómo las alteraciones en su comportamiento conducen al desarrollo de diversas enfermedades, principalmente cáncer. El desarrollo de inhibidores del sistema telómero / telomerasa podría ser un blanco con posibilidades prometedoras.(AU)


Telomerase is the enzyme responsible for the maintenance of telomere length by adding guanine-rich repetitive sequences. Its activity can be seen in gametes, stem cells and tumor cells. In human somatic cells the proliferative potential is limited, reaching senescence after 50-70 cell divisions, because the DNA polymerase is not able to copy the DNA at the ends of chromosomes. By contrast, in most tumor cells the replicative potential is unlimited due to the maintenance of the telomeric length given by telomerase. Telomeres have additional proteins that regulate the binding of telomerase, likewise telomerase associates, with a protein complex that regulates its activity. This work focuses on the structure and function of the telomere/telomerase complex and how changes in its behavior lead to the development of different diseases, mainly cancer. Development of inhibitors of the telomere/telomerase complex could be a target with promising possibilities.(AU)


Assuntos
Animais , Humanos , Neoplasias/genética , Telomerase/genética , Telômero/fisiologia , Senescência Celular/genética , Divisão Celular/fisiologia , Neoplasias/enzimologia , Telomerase/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
17.
Medicina (B Aires) ; 74(1): 69-76, 2014.
Artigo em Espanhol | BINACIS | ID: bin-133732

RESUMO

Telomerase is the enzyme responsible for the maintenance of telomere length by adding guanine-rich repetitive sequences. Its activity can be seen in gametes, stem cells and tumor cells. In human somatic cells the proliferative potential is limited, reaching senescence after 50-70 cell divisions, because the DNA polymerase is not able to copy the DNA at the ends of chromosomes. By contrast, in most tumor cells the replicative potential is unlimited due to the maintenance of the telomeric length given by telomerase. Telomeres have additional proteins that regulate the binding of telomerase, likewise telomerase associates, with a protein complex that regulates its activity. This work focuses on the structure and function of the telomere/telomerase complex and how changes in its behavior lead to the development of different diseases, mainly cancer. Development of inhibitors of the telomere/telomerase complex could be a target with promising possibilities.


Assuntos
Neoplasias/genética , Telomerase/genética , Telômero/fisiologia , Animais , Senescência Celular/genética , Divisão Celular/fisiologia , Humanos , Neoplasias/enzimologia , Telomerase/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
18.
Eur J Cancer ; 48(18): 3465-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22704123

RESUMO

Gemcitabine is an effective anti-cancer agent against solid tumors. The pharmacological mechanism of gemcitabine is known as incorporation into DNA and thereby inhibition of DNA synthesis. When used in metronomic chemotherapy of cancer, the agent may inhibit angiogenesis. It is still uncertain whether the agent can inhibit tumor growth by a mechanism other than DNA incorporation. In this report, we show that gemcitabine causes telomere shortening by stabilizing TRF2 that is required for XPF-dependent telomere loss. Overexpression of TRF2 in the absence of gemcitabine also causes telomere shortening with simultaneous association of TRF2 with XPF/ERCC1. Our study provides a new mechanism by which gemcitabine exerts its anti-tumor activity.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Proteínas de Neoplasias/efeitos dos fármacos , Telômero/efeitos dos fármacos , Proteína 2 de Ligação a Repetições Teloméricas/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/fisiologia , Desoxicitidina/farmacologia , Endonucleases/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Meia-Vida , Células HeLa/efeitos dos fármacos , Humanos , Técnicas In Vitro , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Polimorfismo de Fragmento de Restrição , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica , Proteínas Recombinantes de Fusão/biossíntese , Telômero/ultraestrutura , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Gencitabina
19.
PLoS One ; 7(4): e34386, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536324

RESUMO

Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres.By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping.Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization.


Assuntos
Pontos de Checagem do Ciclo Celular , Nucleossomos/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Expressão Gênica , Humanos , Ligação Proteica , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
20.
J Biochem ; 149(1): 5-14, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937668

RESUMO

Unlimitedly proliferating cells need to acquire the telomere DNA maintenance mechanism, to counteract possible shortening through multiple rounds of replication and segregation of linear chromosomes. Most human cancer cells express telomerase whereas the other cells utilize the alternative lengthening of telomeres (ALT) pathway to elongate telomere DNA. It is suggested that ALT depends on the recombination between telomere repetitive DNAs. However, the molecular details remain unknown. Recent studies have provided evidence of special structures of telomere DNA and genes essential for the phenotypes of ALT cells. The molecular models of the ALT pathway should be validated to elucidate recombination-mediated telomere maintenance and promote the applications to anti-cancer therapy.


Assuntos
DNA/metabolismo , Recombinação Genética , Telômero/metabolismo , Hidrolases Anidrido Ácido , Animais , Proteínas de Ciclo Celular/fisiologia , DNA Helicases/fisiologia , Enzimas Reparadoras do DNA/fisiologia , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Complexo Shelterina , Telomerase/biossíntese , Telômero/genética , Proteínas de Ligação a Telômeros/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...