Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(13): 7406-7423, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34214177

RESUMO

Heterochromatin binding protein HP1ß plays an important role in chromatin organization and cell differentiation, however the underlying mechanisms remain unclear. Here, we generated HP1ß-/- embryonic stem cells and observed reduced heterochromatin clustering and impaired differentiation. We found that during stem cell differentiation, HP1ß is phosphorylated at serine 89 by CK2, which creates a binding site for the pluripotency regulator KAP1. This phosphorylation dependent sequestration of KAP1 in heterochromatin compartments causes a downregulation of pluripotency factors and triggers pluripotency exit. Accordingly, HP1ß-/- and phospho-mutant cells exhibited impaired differentiation, while ubiquitination-deficient KAP1-/- cells had the opposite phenotype with enhanced differentiation. These results suggest that KAP1 regulates pluripotency via its ubiquitination activity. We propose that the formation of subnuclear membraneless heterochromatin compartments may serve as a dynamic reservoir to trap or release cellular factors. The sequestration of essential regulators defines a novel and active role of heterochromatin in gene regulation and represents a dynamic mode of remote control to regulate cellular processes like cell fate decisions.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/metabolismo , Heterocromatina/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Animais , Caseína Quinase II/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Cricetinae , Células-Tronco Embrionárias/citologia , Técnicas de Inativação de Genes , Humanos , Camundongos , Fosforilação , Serina/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/fisiologia
2.
J Invest Dermatol ; 141(12): 2944-2956.e6, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34186058

RESUMO

Almost half of the human microRNAs (miRNAs) are encoded in clusters. Although transcribed as a single unit, the levels of individual mature miRNAs often differ. The mechanisms underlying differential biogenesis of clustered miRNAs and the resulting physiological implications are mostly unknown. In this study, we report that the melanoma master transcription regulator MITF regulates the differential expression of the 99a/let-7c/125b-2 cluster by altering the distribution of RNA polymerase II along the cluster. We discovered that MITF interacts with TRIM28, a known inhibitor of RNA polymerase II transcription elongation, at the mIR-let-7c region, resulting in the pausing of RNA polymerase II activity and causing an elevation in mIR-let-7c expression; low levels of RNA polymerase II occupation over miR-99a and miR-125b-2 regions decreases their biogenesis. Furthermore, we showed that this differential expression affects the phenotypic state of melanoma cells. RNA-sequencing analysis of proliferative melanoma cells that express miR-99a and miR-125b mimics revealed a transcriptomic shift toward an invasive phenotype. Conversely, expression of a mIR-let-7c mimic in invasive melanoma cells induced a shift to a more proliferative state. We confirmed direct target genes of these miRNAs, including FGFR3, BAP1, Bcl2, TGFBR1, and CDKN1A. Our study demonstrates an MITF-governed biogenesis mechanism that results in differential expression of clustered 99a/let-7c/125b-2 miRNAs that control melanoma progression.


Assuntos
Adaptação Fisiológica/fisiologia , Melanoma/genética , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Melanoma/fisiopatologia , Camundongos , Fator de Transcrição Associado à Microftalmia/fisiologia , Transcrição Gênica , Proteína 28 com Motivo Tripartido/fisiologia
3.
Cytokine ; 134: 155180, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673994

RESUMO

The chemokine fractalkine is synthesized as a membrane-bound protein, but studies have shown that serum levels of soluble fractalkine are elevated in inflammatory and autoimmune diseases. Patients with autoimmune diseases also have increased serum levels of neuropeptide substance P (SP). The shedding activity of the ADAM family is induced by peroxynitrite, but that of SP is unclear. Treatment of human macrophages with SP upregulated levels of membrane-bound fractalkine. Interestingly, small interfering RNA (siRNA) for DUOX2 further increased membrane-bound fractalkine but decreased soluble fractalkine compared with cells treated with SP alone. SP induced nitric oxide 2/inducible nitric oxide synthase (NOS2/iNOS) mRNA and increased levels of nitrotyrosine, a biomarker of peroxynitrite, whereas transfection with DUOX2 siRNA blunted upregulation of nitrotyrosine. Most importantly, N(ω)-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor) decreased protein levels of nitrotyrosine and concomitantly increased expression of membrane-bound fractalkine after exposure to SP. As for the signaling pathway of TGFß1 (an inhibitor of iNOS mRNA expression), silencing of RNA for TAK-1 upregulated membrane-bound fractalkine, but silencing of RNA for the Smad family did not. Interfering RNA of transcription factor specificity protein 1 (Sp1) upregulated protein levels of TGFß1/LAP. Most importantly, double transfection with siRNA for Sp1 and TRIM28/TIF1ßor Fli-1 led to a significant increase in TGFß1/LAP levels and a corresponding reduction of NOS2/iNOS, which inhibited the shedding of membrane-bound fractalkine. In conclusion, TRIM28/TIF1ß and Fli-1 negatively regulate TGFß1 expression to upregulate the generation of peroxynitrite, leading to increased shedding of membrane-bound fractalkine induced by SP.


Assuntos
Quimiocina CX3CL1/metabolismo , Oxidases Duais/metabolismo , Macrófagos/metabolismo , Ácido Peroxinitroso/metabolismo , Proteína Proto-Oncogênica c-fli-1/fisiologia , Substância P/fisiologia , Proteína 28 com Motivo Tripartido/fisiologia , Humanos , Macrófagos/enzimologia , Proteínas de Membrana/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
Brain Res ; 1705: 43-47, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29522722

RESUMO

TRIM28 is an epigenetic co-repressor protein that mediates transcriptional silencing. TRIM28 participates, together with the large family of Kruppel-associated box domain zinc finger proteins (KRAB-ZFP) transcription factors, in the repression of transposable elements (TE). Recent advances indicate that TRIM28-based repression of TEs occurs in the mammalian brain and may provide beneficial effects through the regulation of transcriptional networks. Here, we provide an overview of TRIM28-related functions, highlighting the role of controlling TEs in neural progenitor cells and discuss how this mechanism may have contributed to the evolution of the complex human brain. Finally, we outline future considerations for the field.


Assuntos
Encéfalo/metabolismo , Elementos de DNA Transponíveis/genética , Proteína 28 com Motivo Tripartido/genética , Animais , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes , Humanos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/fisiologia
5.
Nucleic Acids Res ; 46(17): 8788-8802, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955894

RESUMO

During cell division, maintenance of chromatin features from the parental genome requires their proper establishment on its newly synthetized copy. The loss of epigenetic marks within heterochromatin, typically enriched in repetitive elements, endangers genome stability and permits chromosomal rearrangements via recombination. However, how histone modifications associated with heterochromatin are maintained across mitosis remains poorly understood. KAP1 is known to act as a scaffold for a repressor complex that mediates local heterochromatin formation, and was previously demonstrated to play an important role during DNA repair. Accordingly, we investigated a putative role for this protein in the replication of heterochromatic regions. We first found that KAP1 associates with several DNA replication factors including PCNA, MCM3 and MCM6. We then observed that these interactions are promoted by KAP1 phosphorylation on serine 473 during S phase. Finally, we could demonstrate that KAP1 forms a complex with PCNA and the histone-lysine methyltransferase Suv39h1 to reinstate heterochromatin after DNA replication.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Replicação do DNA/fisiologia , Heterocromatina/metabolismo , Proteína 28 com Motivo Tripartido/fisiologia , Animais , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Células K562 , Metiltransferases/metabolismo , Camundongos , Células NIH 3T3 , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...