Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Nat Struct Mol Biol ; 31(5): 801-809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267598

RESUMO

Regulation of the assembly and turnover of branched actin filament networks nucleated by the Arp2/3 complex is essential during many cellular processes, including cell migration and membrane trafficking. Cortactin is important for actin branch stabilization, but the mechanism by which this occurs is unclear. Given this, we determined the structure of vertebrate cortactin-stabilized Arp2/3 actin branches using cryogenic electron microscopy. We find that cortactin interacts with the new daughter filament nucleated by the Arp2/3 complex at the branch site, rather than the initial mother actin filament. Cortactin preferentially binds activated Arp3. It also stabilizes the F-actin-like interface of activated Arp3 with the first actin subunit of the new filament, and its central repeats extend along successive daughter-filament subunits. The preference of cortactin for activated Arp3 explains its retention at the actin branch and accounts for its synergy with other nucleation-promoting factors in regulating branched actin network dynamics.


Assuntos
Citoesqueleto de Actina , Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Cortactina , Cortactina/metabolismo , Cortactina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Actinas/metabolismo , Actinas/química , Citoesqueleto de Actina/metabolismo , Animais , Microscopia Crioeletrônica , Modelos Moleculares , Humanos , Ligação Proteica , Proteína 3 Relacionada a Actina/metabolismo
2.
Nat Commun ; 14(1): 6894, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898612

RESUMO

Cortactin coactivates Arp2/3 complex synergistically with WASP-family nucleation-promoting factors (NPFs) and stabilizes branched networks by linking Arp2/3 complex to F-actin. It is poorly understood how cortactin performs these functions. We describe the 2.89 Å resolution cryo-EM structure of cortactin's N-terminal domain (Cort1-76) bound to Arp2/3 complex. Cortactin binds Arp2/3 complex through an inverted Acidic domain (D20-V29), which targets the same site on Arp3 as the Acidic domain of NPFs but with opposite polarity. Sequences N- and C-terminal to cortactin's Acidic domain do not increase its affinity for Arp2/3 complex but contribute toward coactivation with NPFs. Coactivation further increases with NPF dimerization and for longer cortactin constructs with stronger binding to F-actin. The results suggest that cortactin contributes to Arp2/3 complex coactivation with NPFs in two ways, by helping recruit the complex to F-actin and by stabilizing the short-pitch (active) conformation, which are both byproducts of cortactin's core function in branch stabilization.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Cortactina , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Cortactina/metabolismo , Actinas/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo
3.
Cell Tissue Res ; 393(3): 559-575, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37328709

RESUMO

Mammalian target of rapamycin (mTOR) is a crucial signaling protein regulating a range of cellular events. Numerous studies have reported that the mTOR pathway is related to spermatogenesis in mammals. However, its functions and underlying mechanisms in crustaceans remain largely unknown. mTOR exists as two multimeric functional complexes termed mTOR complex 1 (mTORC1) and mTORC2. Herein, we first cloned ribosomal protein S6 (rpS6, a downstream molecule of mTORC1) and protein kinase C (PKC, a downstream effector of mTORC2) from the testis of Eriocheir sinensis. The dynamic localization of rpS6 and PKC suggested that both proteins may be essential for spermatogenesis. rpS6/PKC knockdown and Torin1 treatment led to defects in spermatogenesis, including germ cell loss, retention of mature sperm and empty lumen formation. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was disrupted in the rpS6/PKC knockdown and Torin1 treatment groups, accompanied by changing in expression and distribution of junction proteins. Further study demonstrated that these findings may result from the disorganization of filamentous actin (F-actin) networks, which were mediated by the expression of actin-related protein 3 (Arp3) rather than epidermal growth factor receptor pathway substrate 8 (Eps8). In summary, our study illustrated that mTORC1/rpS6 and mTORC2/PKC regulated spermatogenesis via Arp3-mediated actin microfilament organization in E. sinensis.


Assuntos
Sêmen , Transdução de Sinais , Animais , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Sêmen/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Espermatogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Barreira Hematotesticular/metabolismo , Mamíferos/metabolismo
4.
Eur J Cell Biol ; 102(2): 151301, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36907023

RESUMO

The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.


Assuntos
Actinas , Família de Proteínas da Síndrome de Wiskott-Aldrich , Animais , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína 3 Relacionada a Actina/metabolismo
5.
Tissue Cell ; 81: 102028, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709695

RESUMO

Spermatogenesis is a complicated process that includes spermatogonia differentiation, spermatocytes meiosis, spermatids spermiogenesis and final release of spermatozoa. Actin-related protein 3 (Arp3) and epidermal growth factor receptor pathway substrate 8 (Eps8) are two actin binding proteins that regulate cell adhesion in seminiferous tubules during mammalian spermatogenesis. However, the functions of these two proteins during spermatogenesis in nonmammalian species, especially Crustacea, are still unknown. Here, we cloned es-Arp3 and es-Eps8 from the testis of Chinese mitten crab Eriocheir sinensis. es-Arp3 and es-Eps8 were located in spermatocytes, spermatids and spermatozoa. Knockdown of es-Arp3 and es-Eps8 in vivo caused morphological changes to seminiferous tubules including delayed spermatozoa release, shedding of germ cells and vacuoles. Filamentous-actin (F-actin) filaments network was disorganized due to deficiency of es-Arp3 and es-Eps8. Accompanying this, four junctional proteins (α-catenin, ß-catenin, pinin and ZO1) displayed abnormal expression levels as well as penetrating biotin signals in seminiferous tubules. We also used the Arp2/3 complex inhibitor CK666 to block es-Arp3 activity and supported es-Arp3 knockdown results. In summary, our study demonstrated for the first time that es-Arp3 and es-Eps8 are important for spermatogenesis via regulating microfilament-mediated cell adhesion in Eriocheir sinensis.


Assuntos
Barreira Hematotesticular , Espermatogênese , Animais , Masculino , Proteína 3 Relacionada a Actina/metabolismo , Barreira Hematotesticular/metabolismo , Espermatogênese/fisiologia , Testículo , Espermátides , Túbulos Seminíferos/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mamíferos/metabolismo
6.
J Allergy Clin Immunol Pract ; 11(4): 1261-1280.e8, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708766

RESUMO

BACKGROUND: Hereditary actin-related protein 2/3 complex subunit 1B deficiency is characterized clinically by ear, skin, and lung infections, bleeding, eczema, food allergy, asthma, skin vasculitis, colitis, arthritis, short stature, and lymphadenopathy. OBJECTIVE: We aimed to describe the clinical, laboratory, and genetic features of six patients from four Mexican families. METHODS: We performed exome sequencing in patients of four families with suspected actinopathy, collected their data from medical records, and reviewed the literature for reports of other patients with actin-related protein 2/3 complex subunit 1B deficiency. RESULTS: Six patients from four families were included. All had recurrent infections, mainly bacterial pneumonia, and cellulitis. A total of 67% had eczema whereas 50% had food allergies, failure to thrive, hepatomegaly, and bleeding. Eosinophilia was found in all; 84% had thrombocytopenia, 67% had abnormal-size platelets and anemia. Serum levels of IgG, IgA, and IgE were highly increased in most; IgM was normal or low. T cells were decreased in 67% of patients, whereas B and NK cells were increased in half of patients. Two of the four probands had compound heterozygous variants. One patient was successfully transplanted. We identified 28 other patients whose most prevalent features were eczema, recurrent infections, failure to thrive, bleeding, diarrhea, allergies, vasculitis, eosinophilia, platelet abnormalities, high IgE/IgA, low T cells, and high B cells. CONCLUSION: Actin-related protein 2/3 complex subunit 1B deficiency has a variable and heterogeneous clinical spectrum, expanded by these cases to include keloid scars and Epstein-Barr virus chronic hepatitis. A novel deletion in exon 8 was shared by three unrelated families and might be the result of a founder effect.


Assuntos
Eczema , Eosinofilia , Infecções por Vírus Epstein-Barr , Vasculite , Humanos , Proteína 2 Relacionada a Actina , Actinas , Insuficiência de Crescimento , Herpesvirus Humano 4 , Imunoglobulina A , Imunoglobulina E , Reinfecção , Proteína 3 Relacionada a Actina/metabolismo
7.
Eur J Neurosci ; 57(1): 64-77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382618

RESUMO

Obesity is a major health crisis in the modern society. Studies have shown that the consumption of a high-fat diet (HFD) induces hypothalamic inflammation and leptin resistance, which consequently favours body mass gain. Actin related protein 2/3 complex subunit 1 (ARPC1B), an actin-binding protein, is highly expressed in immune cells. Recent studies have shown that ARPC1B has a certain anti-inflammatory effect. While ARPC1B expression is decreased in the hypothalamus of mice fed a HFD, the role of ARPC1B in HFD-induced obesity remains unclear. Thus, we investigated whether ARPC1B up-regulation in the hypothalamic arcuate nucleus (ARC) could inhibit the development of obesity. Herein, ARPC1B overexpression lentiviral particles were stereotaxically injected into the ARC of male C57BL/6J mice (7 weeks old) fed with HFD. Overexpression of ARPC1B in the hypothalamic ARC attenuated HFD-induced ARC inflammation, reduced body-weight gain and feed efficiency. Furthermore, up-regulation of ARC ARPC1B improved the glucose tolerance and reduced subcutaneous/epididymal fat mass accumulation, which decreased the serum total cholesterol, serum triglyceride and leptin levels. In addition, upon ARPC1B overexpression in the hypothalamic ARC, intraperitoneal injection of leptin increased the phosphorylation level of signal transducer and activator of transcription 3 (STAT3), an important transcription factor for leptin's action, in the ARC of obese mice. Accordingly, we suggest that up-regulation of ARPC1B in the hypothalamic ARC may improve the HFD-induced hypothalamic inflammation and leptin resistance. Our findings demonstrate that ARPC1B is a promising target for the treatment of diet-induced obesity.


Assuntos
Dieta Hiperlipídica , Leptina , Animais , Masculino , Camundongos , Proteína 2 Relacionada a Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/farmacologia , Proteína 3 Relacionada a Actina/metabolismo , Núcleo Arqueado do Hipotálamo , Hipotálamo/metabolismo , Inflamação/metabolismo , Leptina/genética , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Regulação para Cima
8.
Sci Rep ; 12(1): 18205, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307477

RESUMO

Protein complex Arp2/3 has a conserved role in the nucleation of branched actin filaments. It is constituted of seven subunits, including actin-like subunits ARP2 and ARP3 plus five other subunits called Arp2/3 Complex Component 1 to 5, which are not related to actin. Knock-out plant mutants lacking individual plant ARP2/3 subunits have a typical phenotype of distorted trichomes, altered pavement cells shape and defects in cell adhesion. While knock-out mutant Arabidopsis plants for most ARP2/3 subunits have been characterized before, Arabidopsis plant mutants missing ARPC1 and ARPC3 subunits have not yet been described. Using CRISPR/Cas9, we generated knock-out mutants lacking ARPC1 and ARPC3 subunits. We confirmed that the loss of ARPC1 subunits results in the typical ARP2/3 mutant phenotype. However, the mutants lacking ARPC3 subunits resulted in plants with surprisingly different phenotypes. Our results suggest that plant ARP2/3 complex function in trichome shaping does not require ARPC3 subunit, while the fully assembled complex is necessary for the establishment of correct cell adhesion in the epidermis.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Arabidopsis , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Actinas/metabolismo , Sistemas CRISPR-Cas , Proteína 2 Relacionada a Actina/genética , Proteína 3 Relacionada a Actina/metabolismo
9.
Nature ; 609(7927): 597-604, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978196

RESUMO

A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.


Assuntos
Actomiosina , Condensados Biomoleculares , Caenorhabditis elegans , Oócitos , Citoesqueleto de Actina/metabolismo , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animais , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Emulsões/química , Emulsões/metabolismo , Oócitos/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
10.
Dev Cell ; 57(1): 47-62.e9, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34919802

RESUMO

When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.


Assuntos
Actinas/fisiologia , Leucócitos/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/genética
11.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068233

RESUMO

The blood-brain barrier (BBB) is critical to maintaining central nervous system (CNS) homeostasis. However, the effects of microgravity (MG) on the BBB remain unclear. This study aimed to investigate the influence of simulated MG (SMG) on the BBB and explore its potential mechanism using a proteomic approach. Rats were tail-suspended to simulate MG for 21 days. SMG could disrupt the BBB, including increased oxidative stress levels, proinflammatory cytokine levels, and permeability, damaged BBB ultrastructure, and downregulated tight junctions (TJs) and adherens junctions (AJs) protein expression in the rat brain. A total of 554 differentially expressed proteins (DEPs) induced by SMG were determined based on the label-free quantitative proteomic strategy. The bioinformatics analysis suggested that DEPs were mainly enriched in regulating the cell-cell junction and cell-extracellular matrix biological pathways. The inhibited Ras-related C3 botulinum toxin substrate 1 (Rac1)/Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 (Wave2)/actin-related protein 3 (Arp3) pathway and the decreased ratio of filamentous actin (F-actin) to globular actin contributed to BBB dysfunction induced by SMG. In the human brain microvascular endothelial cell (HBMECs), SMG increased the oxidative stress levels and proinflammatory cytokine levels, promoted apoptosis, and arrested the cell cycle phase. Expression of TJs and AJs proteins were downregulated and the distribution of F-actin was altered in SMG-treated HBMECs. The key role of the Rac1/Wave2/Arp3 pathway in BBB dysfunction was confirmed in HBMECs with a specific Rac1 agonist. This study demonstrated that SMG induced BBB dysfunction and revealed that Rac1/Wave2/Arp3 could be a potential signaling pathway responsible for BBB disruption under SMG. These results might shed a novel light on maintaining astronaut CNS homeostasis during space travel.


Assuntos
Proteína 3 Relacionada a Actina/metabolismo , Barreira Hematoencefálica/patologia , Regulação da Expressão Gênica , Proteoma/metabolismo , Simulação de Ausência de Peso/efeitos adversos , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina , Animais , Barreira Hematoencefálica/metabolismo , Masculino , Proteoma/análise , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Junções Íntimas
12.
Am J Physiol Renal Physiol ; 321(2): F179-F194, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180716

RESUMO

The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.


Assuntos
Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Aquaporina 2/metabolismo , Exocitose/fisiologia , Rim/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Membrana Celular/metabolismo , Endocitose/fisiologia , Células LLC-PK1 , Fosforilação , Transporte Proteico/fisiologia , Ratos , Suínos
13.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34106209

RESUMO

The mechanisms regulating the disassembly of branched actin networks formed by the Arp2/3 complex still remain to be fully elucidated. In addition, the impact of Arp3 isoforms on the properties of Arp2/3 are also unexplored. We now demonstrate that Arp3 and Arp3B isocomplexes promote actin assembly equally efficiently but generate branched actin networks with different disassembly rates. Arp3B dissociates significantly faster than Arp3 from the network, and its depletion increases actin stability. This difference is due to the oxidation of Arp3B, but not Arp3, by the methionine monooxygenase MICAL2, which is recruited to the actin network by coronin 1C. Substitution of Arp3B Met293 by threonine, the corresponding residue in Arp3, increases actin network stability. Conversely, replacing Arp3 Thr293 with glutamine to mimic Met oxidation promotes disassembly. The ability of MICAL2 to enhance network disassembly also depends on cortactin. Our observations demonstrate that coronin 1C, cortactin, and MICAL2 act together to promote disassembly of branched actin networks by oxidizing Arp3B-containing Arp2/3 complexes.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxirredutases/metabolismo , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína 3 Relacionada a Actina/genética , Cortactina/genética , Cortactina/metabolismo , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Microscopia de Fluorescência , Oxirredução , Oxirredutases/genética , Vaccinia virus/genética , Vaccinia virus/metabolismo
14.
FASEB J ; 35(5): e21521, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811691

RESUMO

Transendothelial migration (TEM) of neutrophils under blood flow is critical in the inflammatory cascade. However, the role of endothelial plasticity in this process is not fully understood. Therefore, we used an in vitro model to test the dynamics of human polymorphonuclear neutrophil (PMN) TEM across lipopolysaccharide-treated human umbilical vein endothelial cell (HUVEC) monolayers. Interestingly, shRNA-E-selectin knockdown in HUVECs destabilized endothelial junctional integrity by reducing actin branching and increasing stress fiber at cell-cell junctions. This process is accomplished by downregulating the activation of cortactin and Arp2/3, which in turn alters the adhesive function of VE-cadherin, enhancing PMN transmigration. Meanwhile, redundant P-selectins possess overlapping functions in E-selectin-mediated neutrophil adhesion, and transmigration. These results demonstrate, to our knowledge, for the first time, that E-selectins negatively regulate neutrophil transmigration through alterations in endothelial plasticity. Furthermore, it improves our understanding of the mechanisms underlying actin remodeling, and junctional integrity, in endothelial cells mediating leukocyte TEM.


Assuntos
Movimento Celular , Selectina E/metabolismo , Endotélio Vascular/fisiologia , Junções Intercelulares/fisiologia , Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial , Proteína 2 Relacionada a Actina/genética , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/genética , Proteína 3 Relacionada a Actina/metabolismo , Células Cultivadas , Selectina E/genética , Endotélio Vascular/citologia , Humanos , Neutrófilos/citologia , Pseudópodes
15.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468693

RESUMO

Chlamydia trachomatis is a medically significant human pathogen and is an epithelial-tropic obligate intracellular parasite. Invasion of nonprofessional phagocytes represents a crucial step in the infection process and has likely promoted the evolution of a redundant mechanism and routes of entry. Like many other viral and invasive bacterial pathogens, manipulation of the host cell cytoskeleton represents a focal point in Chlamydia entry. The advent of genetic techniques in C. trachomatis, such as creation of complete gene deletions via fluorescence-reported allelic exchange mutagenesis (FRAEM), is providing important tools to unravel the contributions of bacterial factors in these complex pathways. The type III secretion chaperone Slc1 directs delivery of at least four effectors during the invasion process. Two of these, TarP and TmeA, have been associated with manipulation of actin networks and are essential for normal levels of invasion. The functions of TarP are well established, whereas TmeA is less well characterized. We leverage chlamydial genetics and proximity labeling here to provide evidence that TmeA directly targets host N-WASP to promote Arp2/3-dependent actin polymerization. Our work also shows that TmeA and TarP influence separate, yet synergistic pathways to accomplish chlamydial entry. These data further support an appreciation that a pathogen, confined by a reductionist genome, retains the ability to commit considerable resources to accomplish bottle-neck steps during the infection process.IMPORTANCE The increasing genetic tractability of Chlamydia trachomatis is accelerating the ability to characterize the unique infection biology of this obligate intracellular parasite. These efforts are leading to a greater understanding of the molecular events associated with key virulence requirements. Manipulation of the host actin cytoskeleton plays a pivotal role throughout Chlamydia infection, yet a thorough understanding of the molecular mechanisms initiating and orchestrating actin rearrangements has lagged. Our work highlights the application of genetic manipulation to address open questions regarding chlamydial invasion, a process essential to survival. We provide definitive insight regarding the role of the type III secreted effector TmeA and how that activity relates to another prominent effector, TarP. In addition, our data implicate at least one source that contributes to the functional divergence of entry mechanisms among chlamydial species.


Assuntos
Actinas/genética , Proteínas de Bactérias/genética , Chlamydia trachomatis/genética , Citoesqueleto/metabolismo , Chaperonas Moleculares/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína 2 Relacionada a Actina/genética , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/genética , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Citoesqueleto/microbiologia , Citoesqueleto/ultraestrutura , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Chaperonas Moleculares/metabolismo , Polimerização , Transdução de Sinais , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
J Biol Chem ; 295(16): 5335-5349, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32169900

RESUMO

The actin cytoskeleton is extremely dynamic and supports diverse cellular functions in many physiological and pathological processes, including tumorigenesis. However, the mechanisms that regulate the actin-related protein 2/3 (ARP2/3) complex and thereby promote actin polymerization and organization in cancer cells are not well-understood. We previously implicated the proline-rich 11 (PRR11) protein in lung cancer development. In this study, using immunofluorescence staining, actin polymerization assays, and siRNA-mediated gene silencing, we uncovered that cytoplasmic PRR11 is involved in F-actin polymerization and organization. We found that dysregulation of PRR11 expression results in F-actin rearrangement and nuclear instability in non-small cell lung cancer cells. Results from molecular mechanistic experiments indicated that PRR11 associates with and recruits the ARP2/3 complex, facilitates F-actin polymerization, and thereby disrupts the F-actin cytoskeleton, leading to abnormal nuclear lamina assembly and chromatin reorganization. Inhibition of the ARP2/3 complex activity abolished irregular F-actin polymerization, lamina assembly, and chromatin reorganization due to PRR11 overexpression. Notably, experiments with truncated PRR11 variants revealed that PRR11 regulates F-actin through different regions. We found that deletion of either the N or C terminus of PRR11 abrogates its effects on F-actin polymerization and nuclear instability and that deletion of amino acid residues 100-184 or 100-200 strongly induces an F-actin structure called the actin comet tail, not observed with WT PRR11. Our findings indicate that cytoplasmic PRR11 plays an essential role in regulating F-actin assembly and nuclear stability by recruiting the ARP2/3 complex in human non-small cell lung carcinoma cells.


Assuntos
Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas/metabolismo , Células A549 , Sítios de Ligação , Humanos , Ligação Proteica , Multimerização Proteica , Proteínas/química , Proteínas/genética
17.
Immunol Cell Biol ; 98(2): 93-113, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698518

RESUMO

T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin-related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F-actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3-knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon-like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three-dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3-dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Movimento Celular/genética , Linfócitos T Citotóxicos/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteína 3 Relacionada a Actina/genética , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Interferente Pequeno , Análise de Célula Única , Linfócitos T Citotóxicos/citologia , Peixe-Zebra
18.
J Cell Biochem ; 121(2): 1934-1944, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31637768

RESUMO

PURPOSE: Long noncoding RNAs (lncRNAs) play an indispensable role in cancer progression. We aim at exploring the effect of AC009022.1 on colorectal cancer (CRC) development in this paper. METHODS: CRC tissues and matched normal tissues of 68 CRC patients were collected. HCT-116 and SW620 cells were transfected and grouped. The cell counting kit-8 assay, cell scratch test, and Transwell experiment were performed to sequentially detect cells proliferation, migration, and invasion. In vivo experiments were conducted. The Luciferase reporter gene assay was used. Gene expression was detected by quantitative reverse transcription polymerase chain reaction and Western blot analysis. RESULTS: AC009022.1 expression was abnormally elevated in CRC tissues and cells. High AC009022.1 expression in CRC patients was significantly associated with poor prognosis. Compared with the siNC group, HCT-116 and SW620 cells of siAC009022.1 group exhibited much lower OD450 value (P < .001) and invasive cell number (P < .01), and significantly higher relative wound width (P < .01). Much lower subcutaneous tumor volume and weight were found in the siAC009022.1 group compared with siNC group (P < .001). In CRC cells, AC009022.1 directly inhibited miR-497-5p expression while miR-497-5p directly hindered ACTR3B expression. Compared with HCT-116 and SW620 cells of oe-AC009022.1 group, those of oe-AC009022.1 + miR-497-5p-mimics group and oe-AC009022.1 + siACTR3B group had obviously lower OD450 value (P < .001) and invasion cell number (P < .01), and markedly higher relative wound width (P < .01). CONCLUSIONS: AC009022.1 enhanced CRC cell proliferation, migration, and invasion by promoting ACTR3B expression via suppressing miR-497-5p.


Assuntos
Proteína 3 Relacionada a Actina/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteína 3 Relacionada a Actina/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Elife ; 82019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31157616

RESUMO

When B cells encounter antigens on the surface of an antigen-presenting cell (APC), B cell receptors (BCRs) are gathered into microclusters that recruit signaling enzymes. These microclusters then move centripetally and coalesce into the central supramolecular activation cluster of an immune synapse. The mechanisms controlling BCR organization during immune synapse formation, and how this impacts BCR signaling, are not fully understood. We show that this coalescence of BCR microclusters depends on the actin-related protein 2/3 (Arp2/3) complex, which nucleates branched actin networks. Moreover, in murine B cells, this dynamic spatial reorganization of BCR microclusters amplifies proximal BCR signaling reactions and enhances the ability of membrane-associated antigens to induce transcriptional responses and proliferation. Our finding that Arp2/3 complex activity is important for B cell responses to spatially restricted membrane-bound antigens, but not for soluble antigens, highlights a critical role for Arp2/3 complex-dependent actin remodeling in B cell responses to APC-bound antigens.


Assuntos
Proteína 3 Relacionada a Actina/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Linfócitos B/imunologia , Sinapses Imunológicas/metabolismo , Ativação Linfocitária , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Actinas/metabolismo , Proteína 2 Semelhante a Angiopoietina , Animais , Camundongos Endogâmicos C57BL
20.
J Clin Invest ; 129(7): 2807-2823, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31063459

RESUMO

Phosphorylation of Dynamin-related protein1 (Drp1) represents an important regulatory mechanism for mitochondrial fission. Here we established the role of Drp1 Serine 600 (S600) phosphorylation on mitochondrial fission in vivo, and assessed the functional consequences of targeted elimination of the Drp1S600 phosphorylation site in progression of diabetic nephropathy (DN). We generated a knockin mouse in which S600 was mutated to alanine (Drp1S600A). We found that diabetic Drp1S600A mice exhibited improved biochemical and histological features of DN along with reduced mitochondrial fission and diminished mitochondrial ROS in vivo. Importantly, we observed that the effect of Drp1S600 phosphorylation on mitochondrial fission in the diabetic milieu was stimulus- but not cell type-dependent. Mechanistically, we showed that mitochondrial fission in high glucose conditions occurs through concomitant binding of phospho-Drp1S600 with mitochondrial fission factor (Mff) and actin-related protein 3 (Arp3), ultimately leading to accumulation of F-actin and Drp1 on the mitochondria. Taken together, these findings establish that a single phosphorylation site in Drp1 can regulate mitochondrial fission and progression of DN in vivo, and highlight the stimulus-specific consequences of Drp1S600 phosphorylation on mitochondrial dynamics.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Dinaminas/metabolismo , Mutação de Sentido Incorreto , Proteína 3 Relacionada a Actina/genética , Proteína 3 Relacionada a Actina/metabolismo , Substituição de Aminoácidos , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Dinaminas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...