Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 32(6): 1545-1552, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34006100

RESUMO

Ion mobility coupled to mass spectrometry (IM-MS) is widely used to study protein dynamics and structure in the gas phase. Increasing the energy with which the protein ions are introduced to the IM cell can induce them to unfold, providing information on the comparative energetics of unfolding between different proteoforms. Recently, a high-resolution cyclic IM-mass spectrometer (cIM-MS) was introduced, allowing multiple, consecutive tandem IM experiments (IMn) to be carried out. We describe a tandem IM technique for defining detailed protein unfolding pathways and the dynamics of disordered proteins. The method involves multiple rounds of IM separation and collision activation (CA): IM-CA-IM and CA-IM-CA-IM. Here, we explore its application to studies of a model protein, cytochrome C, and dimeric human islet amyloid polypeptide (hIAPP), a cytotoxic and amyloidogenic peptide involved in type II diabetes. In agreement with prior work using single stage IM-MS, several unfolding events are observed for cytochrome C. IMn-MS experiments also show evidence of interconversion between compact and extended structures. IMn-MS data for hIAPP shows interconversion prior to dissociation, suggesting that the certain conformations have low energy barriers between them and transition between compact and extended forms.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/química , Citocromos c/química , Espectrometria de Massas/métodos , Desdobramento de Proteína , Animais , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Citocromos c/metabolismo , Gases/química , Cavalos , Humanos , Espectrometria de Mobilidade Iônica/métodos , Íons
2.
Acta Pharmacol Sin ; 40(11): 1466-1479, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31316176

RESUMO

Recently, inhibitor of apoptosis proteins (IAPs) and some IAP antagonists were found to regulate autophagy, but the underlying mechanisms remain unclear. WX20120108 is an analogue of GDC-0152 (a known IAP antagonist) and displays more potent anti-tumor and autophagy-regulating activity in tumor cells, we investigated the regulatory mechanisms underlying WX20120108-induced autophagy. Using molecular docking and fluorescence polarization anisotropy (FPA) competitive assay, we first demonstrated that WX20120108, acting as an IAP antagonist, bound to the XIAP-BIR3, XIAP BIR2-BIR3, cIAP1 BIR3, and cIAP2 BIR3 domains with high affinities. In six cancer cell lines, WX20120108 inhibited the cell proliferation with potencies two to ten-fold higher than that of GDC-0152. In HeLa and MDA-MB-231 cells, WX20120108 induced caspase-dependent apoptosis and activated TNFα-dependent extrinsic apoptosis. On the other hand, WX20120108 induced autophagy in HeLa and MDA-MB-231 cells in dose- and time-dependent manners. We revealed that WX20120108 selectively activated Foxo3, evidenced by Foxo3 nuclear translocation in both gene modified cell line and HeLa cells, as well as the upregulated expression of Foxo3-targeted genes (Bnip3, Pik3c3, Atg5, and Atg4b), which played a key role in autophagy initiation. WX20120108-induced autophagy was significantly suppressed when Foxo3 gene was silenced. WX20120108 dose-dependently increased the generation of reactive oxygen species (ROS) in HeLa cells, and WX20120108-induced Foxo3 activation was completely blocked in the presence of catalase, a known ROS scavenger. However, WX20120108-induced ROS generation was not affected by cIAP1/2 or XIAP gene silencing. In conclusion, WX20120108-induced autophagy relies on activating ROS-Foxo3 pathway, which is independent of IAPs. This finding provides a new insight into the mechanism of IAP antagonist-mediated regulation of autophagy.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Benzimidazóis/farmacologia , Dipeptídeos/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/metabolismo , Proteína 3 com Repetições IAP de Baculovírus/química , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Benzimidazóis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
3.
Mol Cell ; 74(4): 701-712.e9, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30948266

RESUMO

Alternative 3' untranslated regions (3' UTRs) are widespread, but their functional roles are largely unknown. We investigated the function of the long BIRC3 3' UTR, which is upregulated in leukemia. The 3' UTR does not regulate BIRC3 protein localization or abundance but is required for CXCR4-mediated B cell migration. We established an experimental pipeline to study the mechanism of regulation and used mass spectrometry to identify BIRC3 protein interactors. In addition to 3'-UTR-independent interactors involved in known BIRC3 functions, we detected interactors that bind only to BIRC3 protein encoded from the mRNA with the long 3' UTR. They regulate several functions, including CXCR4 trafficking. We further identified RNA-binding proteins differentially bound to the alternative 3' UTRs and found that cooperative binding of Staufen and HuR mediates 3'-UTR-dependent complex formation. We show that the long 3' UTR is required for the formation of specific protein complexes that enable additional functions of BIRC3 protein beyond its 3'-UTR-independent functions.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/genética , Leucemia/genética , Complexos Multiproteicos/genética , Receptores CXCR4/genética , Regiões 3' não Traduzidas/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Proteína 3 com Repetições IAP de Baculovírus/química , Movimento Celular/genética , Proteínas do Citoesqueleto/genética , Proteína Semelhante a ELAV 1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia/patologia , Complexos Multiproteicos/química , Transporte Proteico , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
4.
Chem Rec ; 18(12): 1681-1700, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29893461

RESUMO

In addition to traditional drugs, such as enzyme inhibitors, receptor agonists/antagonists, and protein-protein interaction inhibitors as well as genetic technology, such as RNA interference and the CRISPR/Cas9 system, protein knockdown approaches using proteolysis-targeting chimeras (PROTACs) have attracted much attention. PROTACs, which induce selective degradation of their target protein via the ubiquitin-proteasome system, are useful for the down-regulation of various proteins, including disease-related proteins and epigenetic proteins. Recent reports have shown that chemical protein knockdown is possible not only in cells, but also in vivo and this approach is expected to be used as the therapeutic strategy for several diseases. Thus, this approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future. In this personal account, a history of chemical protein knockdown is introduced, and its features, recent progress in the epigenetics field, and future outlooks are discussed.


Assuntos
Epigenômica , Proteínas/metabolismo , Proteína 3 com Repetições IAP de Baculovírus/química , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteólise , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA