Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069291

RESUMO

The insulin-like growth factor axis is a multifaceted, complex system that comprises two ligands, IGF-I and IGF-II, receptors (IGF-1R, IGF-IIR, insulin receptor isoforms IR-A and B, and hybrid receptors) six high affinity IGF-binding proteins (IGFBPs 1-6), and IGFBP proteases [...].


Assuntos
Fator de Crescimento Insulin-Like II , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Ligação Proteica , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
2.
Bull Exp Biol Med ; 175(1): 157-161, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37336811

RESUMO

One of the potential causes of cancer recurrence is disruption of the cell-cell communication in the primary tumors that is realized, among other things, through secretion and uptake of exosomes by cells. Low expression of the IGFBP6 gene (insulin-like growth factor binding protein 6) is associated with a high recurrence rate and can serve as a prognostic marker of luminal breast cancer. The knockdown of the IGFBP6 gene leads to significant changes in lipid metabolism. We performed a quantitative analysis of both exosomes and proteins involved in the mechanism of their biogenesis. Changes in the expression profile of mRNAs and their proteins responsible for the synthesis and secretion of exosomes were revealed. We showed a decrease in the expression of the of the VPS28 gene mRNA (vacuolar protein sorting-associated protein 28) and the corresponding protein by 2.3 and 5.6 times, respectively. The secretion of exosomes by MDA-MB-231 cells with IGFBP6 knockdown decreased by 2 times. We discussed a mechanism of disruption of cell-cell communication.


Assuntos
Exossomos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Células MDA-MB-231 , Linhagem Celular Tumoral , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/genética
3.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902237

RESUMO

The lung is an accomplished organ for gas exchanges and directly faces the external environment, consequently exposing its large epithelial surface. It is also the putative determinant organ for inducing potent immune responses, holding both innate and adaptive immune cells. The maintenance of lung homeostasis requires a crucial balance between inflammation and anti-inflammation factors, and perturbations of this stability are frequently associated with progressive and fatal respiratory diseases. Several data demonstrate the involvement of the insulin-like growth factor (IGF) system and their binding proteins (IGFBPs) in pulmonary growth, as they are specifically expressed in different lung compartments. As we will discuss extensively in the text, IGFs and IGFBPs are implicated in normal pulmonary development but also in the pathogenesis of various airway diseases and lung tumors. Among the known IGFBPs, IGFBP-6 shows an emerging role as a mediator of airway inflammation and tumor-suppressing activity in different lung tumors. In this review, we assess the current state of IGFBP-6's multiple roles in respiratory diseases, focusing on its function in the inflammation and fibrosis in respiratory tissues, together with its role in controlling different types of lung cancer.


Assuntos
Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina , Neoplasias Pulmonares , Fibrose Pulmonar , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia
4.
Cancer Immunol Immunother ; 72(1): 1-20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35654889

RESUMO

Lactic acidosis has been reported in solid tumor microenvironment (TME) including glioblastoma (GBM). In TME, several signaling molecules, growth factors and metabolites have been identified to induce resistance to chemotherapy and to sustain immune escape. In the early phases of the disease, microglia infiltrates TME, contributing to tumorigenesis rather than counteracting its growth. Insulin-like Growth Factor Binding Protein 6 (IGFBP6) is expressed during tumor development, and it is involved in migration, immune-escape and inflammation, thus providing an attractive target for GBM therapy. Here, we aimed at investigating the crosstalk between lactate metabolism and IGFBP6 in TME and GBM progression. Our results show that microglia exposed to lactate or IGFBP6 significantly increased the Monocarboxylate transporter 1 (MCT1) expression together with genes involved in mitochondrial metabolism. We, also, observed an increase in the M2 markers and a reduction of inducible nitric oxide synthase (iNOS) levels, suggesting a role of lactate/IGFBP6 metabolism in immune-escape activation. GBM cells exposed to lactate also showed increased levels of IGFBP6 and vice-versa. Such a phenomenon was coupled with a IGFBP6-mediated sonic hedgehog (SHH) ignaling increase. We, finally, tested our hypothesis in a GBM zebrafish animal model, where we observed an increase in microglia cells and igfbp6 gene expression after lactate exposure. Our results were confirmed by the analysis of human transcriptomes datasets and immunohistochemical assay from human GBM biopsies, suggesting the existence of a lactate/IGFBP6 crosstalk in microglial cells, so that IGFBP6 expression is regulated by lactate production in GBM cells and in turn modulates microglia polarization.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Glioblastoma/patologia , Microglia/metabolismo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/uso terapêutico , Ácido Láctico/metabolismo , Ácido Láctico/uso terapêutico , Microambiente Tumoral , Peixe-Zebra/metabolismo , Linhagem Celular Tumoral , Proteínas Hedgehog , Neoplasias Encefálicas/patologia
5.
Anim Biotechnol ; 34(7): 2262-2272, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35714990

RESUMO

Growth is an important trait in aquaculture and the major genes that regulate it are Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs). In this study, the full-length coding sequences of IGF2 and IGFBP6 genes in the Indian catfish Clarias magur were cloned and characterized. The full-length cDNA sequences of IGF2 and IGFBP6 were 885 bp (ORF 642 bp) and 928 bp (ORF 600 bp), encoding 213 and 199 amino acids, respectively. Bioinformatics analyses revealed that the magur IGF2 and IGFBP6 proteins are hydrophilic and secretory in nature. Sequence alignment with other teleosts and mammalian orthologues shows conservation of the functional domains. Gene expression analysis in 6 individuals each of high (298 ± 5.0 g) and low (210 ± 6.0 g) growth performing families showed significantly (p < 0.05) higher expression (2.5-3 fold) of IGF2, and lower expression (∼2.5 fold) of IGFBP6 in liver and muscle of fast-growing fish. This study suggests that IGF2 could be playing a major role in the growth regulation of magur. These genes and their expression patterns could be developed into growth-associated markers for magur and other catfishes.


Assuntos
Peixes-Gato , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina , Humanos , Animais , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Peixes-Gato/genética , Perfilação da Expressão Gênica , Fígado/metabolismo , Clonagem Molecular , Mamíferos/genética , Mamíferos/metabolismo
6.
Aging (Albany NY) ; 13(23): 25055-25071, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905501

RESUMO

Primary myelofibrosis is a Ph-negative chronic myeloproliferative neoplasm characterized by bone marrow fibrosis and associated with the involvement of several pathways, in addition to bone marrow microenvironment alterations, mostly driven by the activation of the cytokine receptor/JAK2 pathway. Identification of driver mutations has led to the development of targeted therapy for myelofibrosis, contributing to reducing inflammation, although this currently does not translate into bone marrow fibrosis remission. Therefore, understanding the clear molecular cut underlying this pathology is now necessary to improve the clinical outcome of patients. The present study aims to investigate the involvement of IGFBP-6/sonic hedgehog /Toll-like receptor 4 axis in the microenvironment alterations of primary myelofibrosis. We observed a significant increase in IGFBP-6 expression levels in primary myelofibrosis patients, coupled with a reduction to near-normal levels in primary myelofibrosis patients with JAK2V617F mutation. We also found that both IGFBP-6 and purmorphamine, a SHH activator, were able to induce mesenchymal stromal cells differentiation with an up-regulation of cancer-associated fibroblasts markers. Furthermore, TLR4 signaling was also activated after IGFBP-6 and purmorphamine exposure and reverted by cyclopamine exposure, an inhibitor of the SHH pathway, confirming that SHH is involved in TLR4 activation and microenvironment alterations. In conclusion, our results suggest that the IGFBP-6/SHH/TLR4 axis is implicated in alterations of the primary myelofibrosis microenvironment and that IGFBP-6 may play a central role in activating SHH pathway during the fibrotic process.


Assuntos
Medula Óssea/metabolismo , Proteínas Hedgehog/metabolismo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Mielofibrose Primária/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Western Blotting , Medula Óssea/patologia , Estudos de Casos e Controles , Diferenciação Celular , Citocinas/metabolismo , Conjuntos de Dados como Assunto , Humanos , Mielofibrose Primária/etiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
7.
Anim Sci J ; 91(1): e13422, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32648312

RESUMO

The aim of this study was to identify factors that regulate ruminal epithelial insulin-like growth factor-binding protein (IGFBP) expression and determine its role in rumen epithelial cell proliferation. Primary bovine rumen epithelial cells (BREC) were incubated with short-chain fatty acids (SCFAs) at pH 7.4 or 5.6, lactate, lipopolysaccharide (LPS), insulin-like growth factor-I (IGF-I), -II (IGF-II), or recombinant bovine IGFBP2 (rbIGFBP2). The mRNA expression levels of IGFBP in BREC were analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation rate of BREC was analyzed using a WST-1 assay. IGFBP2 gene expression tended to be lower with SCFA treatment (p < .1), and IGFBP6 gene expression was significantly lower with SCFA treatment (p < .05). IGFBP3 and IGFBP6 gene expression tended to be higher with d-Lactate treatment (p < .1). IGFBP3 gene expression was significantly higher (p < .05) with LPS treatment. BREC treated with IGF-I grew more rapidly than vehicle control-treated cells (p < .01); however, recombinant bovine rbIGFBP2 inhibited IGF-I-induced proliferation. IGF-II and/or rbIGFBP2 did not affect BREC proliferation. Taken together, SCFA treatment decreased IGFBP2 and IGFBP6 expression in rumen epithelial cells, and lower expression of these IGFBP might promote rumen epithelial cell proliferation by facilitating IGF-I.


Assuntos
Proliferação de Células/genética , Células Epiteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rúmen/citologia , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ácidos Graxos Voláteis/farmacologia , Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia
8.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580339

RESUMO

Recently, insulin-like growth factor binding protein 6 (IGFBP-6) has been shown to play a putative role in the immune system, as monocyte-derived dendritic cells (Mo-DCs) are stimulated by hyperthermia to express IGFBP-6 at both the mRNA and protein levels. However, the presence of IGFBP-6 in extracellular vesicles (EVs) and whether other pro-inflammatory stimuli can induce IGFBP-6 expression in Mo-DCs are not known yet. In this brief report, we show that hyperthermia (39 °C) induces IGFBP-6 secretion associated with microvesicles and exosomes as early as 3 h. Moreover, free IGFBP-6 is found in conditioned media (CM) of hyperthermia- and H2O2-treated Mo-DCs, but not in CM obtained from monocytes similarly treated. These results show that diverse inflammatory stimuli can induce IGFBP-6 association with EVs and secretion in conditioned medium, indicating a role for IGFBP-6 in communication between immune cells.


Assuntos
Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Hipertermia/fisiopatologia , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Monócitos/metabolismo , Estresse Oxidativo , Células Cultivadas , Células Dendríticas/patologia , Humanos , Monócitos/patologia
9.
J Atheroscler Thromb ; 27(10): 1068-1085, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32037372

RESUMO

AIMS: To investigate the differentially expressed genes (DEGs) and molecular interaction in unstable atherosclerotic carotid plaques. METHODS: Gene expression datasets GSE41571, GSE118481, and E-MTAB-2055 were analyzed. Co-regulated DEGs in at least two datasets were analyzed with the enrichment of Gene Ontology Biological Process (GO-BP), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) networks, interrelationships between miRNAs/transcriptional factors, and their target genes and drug-gene interactions. The expression of notable DEGs in human carotid artery plaques and plasma was further identified. RESULTS: The GO-BP enrichment analysis revealed that genes associated with inflammatory response, and extracellular matrix organization were altered. The KEGG enrichment analysis revealed that upregulated DEGs were enriched in the tuberculous, lysosomal, and chemokine signaling pathways, whereas downregulated genes were enriched in the focal adhesion and PI3K/Akt signaling pathway. Collagen type I alpha 2 chain (COL1A2), adenylate cyclase 3 (ADCY3), C-X-C motif chemokine receptor 4 (CXCR4), and TYRO protein tyrosine kinase binding protein (TYROBP) might play crucial roles in the PPI networks. In drug-gene interactions, colonystimulating factor-1 receptor had the most drug interactions. Insulin-like growth factor binding protein 6 (IGFBP6) was markedly downregulated in unstable human carotid plaques and plasma. Under a receiver operating characteristic curve analysis, plasma IGFBP6 had a significant discriminatory power (AUC, 0.894; 95% CI, 0.810-0.977), with a cutoff value of 142.08 ng/mL. CONCLUSIONS: The genes COL1A2, ADCY3, CXCR4, and TYROBP are promising targets for the prevention of unstable carotid plaque formation. IGFBP6 may be an important biomarker for predicting vulnerable plaques.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Regulação para Baixo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenilil Ciclases/metabolismo , Idoso , Área Sob a Curva , Artérias Carótidas/metabolismo , Estenose das Carótidas/metabolismo , Colágeno Tipo I/metabolismo , Biologia Computacional/métodos , Constrição Patológica/metabolismo , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação , Masculino , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Mapeamento de Interação de Proteínas , Curva ROC , Receptores CXCR4/metabolismo , Transcriptoma
10.
Food Funct ; 11(1): 572-584, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31853533

RESUMO

It is unclear if guar gum can alleviate colorectal cancer (CRC). We evaluated the effect of guar gum (unmodified) on the mortality, colon status, serous tumor necrosis factor-alpha (TNF-α) concentration, and gut microbial and colonic epithelial cell gene expression profiles in CRC mice and performed omics analyses to compare these with those of Ganoderma lucidum polysaccharide (GLP), whose main component is ß-glucan (>90%). We found that guar gum had a CRC alleviating effect. However, it showed a 20% higher mortality rate, shorter colon length, worse colon status, larger number and size of tumors, higher concentration of serous TNF-α and upregulation of epithelial cell genes (Il10, Cytl1, Igkv7-33, Ighv1-14, Igfbp6 and Foxd3) compared to that of GLP. The higher relative abundance of Akkermansia, the alteration of microbial metabolic pathways, especially those involving chaperones and folding catalysts, fatty acid biosynthesis, glycerophospholipid metabolism, glycolysis/gluconeogenesis, lipid biosynthesis and pyruvate metabolism, and the upregulation of specific genes (Mcpt2, Mcpt9, Des and Sostdc1) were also determined in animals fed a guar gum diet. The results suggested that the alleviating effect of guar gum (an inexpensive polysaccharide) on CRC was inferior to that of GLP (a more expensive polysaccharide). This could potentially be attributed to the increased presence of Akkermansia, the alteration of 10 microbial metabolic pathways and the upregulation of 4 epithelial cell genes.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Galactanos/administração & dosagem , Mananas/administração & dosagem , Gomas Vegetais/administração & dosagem , Reishi/química , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
Eur Cell Mater ; 38: 123-136, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31550047

RESUMO

The main challenge in tendon injury management is suboptimal tissue healing that fails to re-establish original tendon function. Tissue bioengineering is a promising approach for tendon therapy, with potential to improve its functional outcomes. However, evaluation criteria for tissue-engineered tendon are unclear due to the lack of specific markers of differentiated tendon. The study aim was to identify a panel of genes that characterised tendons in comparison to cartilage or muscles and validate those genes, both in human and key species used as models for tendon diseases. Gene expression profiling of rat tendon and cartilage in whole-tissue samples and primary tenocytes and chondrocytes was undertaken using two independent microarray platforms. Genes that demonstrated high expression correlation across two assays were validated by qRT-PCR in rat tendon relative to cartilage and muscle. Five genes demonstrating the highest tendon-related expression in the validation experiment (ASPN, ECM1, IGFBP6, TNMD, THBS4) were further evaluated by qRT-PCR in ovine, equine and human tissue. The group of tendon markers, identified by unbiased transcriptomic analysis of rat musculoskeletal tissues, demonstrated species-dependent profiles of expression. Insulin-like growth factor binding protein 6 (IGFBP6) was identified as the only universal tendon marker. Further investigation in equine tendon showed that IGFBP6 expression was not affected by ageing or tendon function but decreased in anatomical regions subjected to elevated compressive force. IGFBP6 is a robust cross-species marker of tendon phenotype and may find application in evaluation of tendon physiology and guided differentiation of permissive cells towards functional tenocytes.


Assuntos
Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Tendões/metabolismo , Transcriptoma , Animais , Biomarcadores/metabolismo , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Cavalos , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Ratos , Ovinos , Especificidade da Espécie , Tenócitos/metabolismo , Engenharia Tecidual/métodos
12.
Int J Cancer ; 145(10): 2827-2839, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31381136

RESUMO

Fibroblasts are among the most abundant stromal cells in the tumor microenvironment (TME), progressively differentiating into activated, motile, myofibroblast-like, protumorigenic cells referred to as Cancer-Associated Fibroblasts (CAFs). To investigate the mechanisms by which epithelial cells direct this transition, the early stages of tumorigenesis were exemplified by indirect cocultures of WI-38 or human primary breast cancer fibroblasts with human mammary epithelial cells expressing an inducible c-Myc oncogene (MCF10A-MycER). After c-Myc activation, the conditioned medium (CM) of MCF10A-MycER cells significantly enhanced fibroblast activation and mobilization. As this was accompanied by decreased insulin-like growth factor binding protein-6 (IGFBP-6) and increased insulin-like growth factor-1 and IGF-II (IGF-I, IGF-II) in the CM, IGFs were investigated as key chemotactic factors. Silencing IGFBP-6 or IGF-I or IGF-II expression in epithelial cells or blocking Insulin-like growth factor 1 receptor (IGF-1R) activity on fibroblasts significantly altered fibroblast mobilization. Exposure of WI-38 fibroblasts to CM from induced MCF10A-MycER cells or to IGF-II upregulated FAK phosphorylation on Tyr397 , as well as the expression of α-smooth muscle actin (α-SMA), features associated with CAF phenotype and increased cell migratory/invasive behavior. In three-dimensional (3D)-organotypic assays, WI-38 or human primary fibroblasts, preactivated with either CM from MCF10A-MycER cells or IGFs, resulted in a permissive TME that enabled nontransformed MCF10A matrix invasion. This effect was abolished by inhibiting IGF-1R activity. Thus, breast epithelial cell oncogenic activation and stromal fibroblast transition to CAFs are linked through the IGFs/IGF-1R axis, which directly promotes TME remodeling and increases tumor invasion.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral , Mama/patologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Feminino , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Invasividade Neoplásica/patologia , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
13.
Cell Commun Signal ; 16(1): 61, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231881

RESUMO

BACKGROUND: Glioblastomas (GBMs), the most common and most lethal of the primary brain tumors, are characterized by marked intra-tumor heterogeneity. Several studies have suggested that within these tumors a restricted population of chemoresistant glioma cells is responsible for recurrence. However, the gene expression patterns underlying chemoresistance are largely unknown. Numerous efforts have been made to block IGF-1R signaling pathway in GBM. However, those therapies have been repeatedly unsuccessful. This failure may not only be due to the complexity of IGF receptor signaling, but also due to complex cell-cell interactions in the tumor mass. We hypothesized that differential expression of proteins in the insulin-like growth factor (IGF) system underlie cell-specific differences in the resistance to temozolomide (TMZ) within GBM tumors. METHODS: Expression of IGF-1R was analyzed in cell lines, patient-derived xenograft cell lines and human biopsies by cell surface proteomics, flow cytometry, immunofluorescence and quantitative real time polymerase chain reaction (qRT-PCR). Using gain-of-function and loss-of-function strategies, we dissected the molecular mechanism responsible for IGF-binding protein 6 (IGFBP6) tumor suppressor functions both in in vitro and in vivo. Site direct mutagenesis was used to study IGFBP6-IGF2 interactions. RESULTS: We determined that in human glioma tissue, glioma cell lines, and patient-derived xenograft cell lines, treatment with TMZ enhances the expression of IGF1 receptor (IGF-1R) and IGF2 and decreases the expression of IGFBP6, which sequesters IGF2. Using chemoresistant and chemosensitive wild-type and transgenic glioma cells, we further found that a paracrine mechanism driven by IGFBP6 secreted from TMZ-sensitive cells abrogates the proliferation of IGF-1R-expressing TMZ-resistant cells in vitro and in vivo. In mice bearing intracranial human glioma xenografts, overexpression of IGFBP6 in TMZ-resistant cells increased survival. Finally, elevated expression of IGF-1R and IGF2 in gliomas associated with poor patient survival and tumor expression levels of IGFBP6 directly correlated with overall survival time in patients with GBM. CONCLUSIONS: Our findings support the view that proliferation of chemoresistant tumor cells is controlled within the tumor mass by IGFBP6-producing tumor cells; however, TMZ treatment eliminates this population and enriches the TMZ-resistant cell populationleading to accelerated growth of the entire tumor mass.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Comunicação Parácrina , Receptor IGF Tipo 1/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Comunicação Parácrina/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor IGF Tipo 1/genética , Temozolomida/farmacologia
14.
Bull Exp Biol Med ; 164(5): 650-654, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29577195

RESUMO

Protein IGFBP6 plays an important role in the pathogenesis of many malignant tumors, including breast cancer. The relationship between IGFBP6 protein and the expression of genes associated with the epithelial-mesenchymal transition is studied. Gene IGFBP6 knockdown does not trigger the epithelial-mesenchymal transition in MDA-MB-231 cells, but modifies significantly the expression of many genes involved in this process. A decrease of IGFBP6 expression can involve a decrease in the expression of N-cadherin and transcription factor Slug.


Assuntos
Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias da Mama/genética , Caderinas/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Modelos Biológicos
15.
Cell Mol Neurobiol ; 37(7): 1207-1216, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28044240

RESUMO

The insulin-like growth factor (IGF) system is linked to CNS pathological states. The functions of IGFs are modulated by a family of binding proteins termed insulin-like growth factor binding proteins (IGFBPs). Here, we demonstrate that IGFBP-6 may be associated with neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant upregulation of IGFBP-6 in neurons adjacent to the hematoma following ICH with the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing IGFBP-6 level was found to be accompanied by the upregulation of Bax, Bcl-2, and active caspase-3. Besides, IGFBP-6 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. Knocking down IGFBP-6 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, IGFBP-6 may play a role in promoting the brain secondary damage following ICH.


Assuntos
Apoptose/fisiologia , Hemorragia Cerebral/metabolismo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neurônios/metabolismo , Animais , Hemorragia Cerebral/patologia , Masculino , Neurônios/patologia , Células PC12 , Ratos , Ratos Sprague-Dawley
16.
Cell Mol Neurobiol ; 37(5): 889-898, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27650075

RESUMO

The insulin-like growth factor binding protein 6 (IGFBP6), as an inhibitor of IGF-II actions, plays an important role in inhibiting survival and migration of tumor cells. In our study, we intended to demonstrate the biological function of IGFBP6 in the development of glioma and its clinical significance. Firstly, Western blot and immunohistochemistry revealed that the expression of IGFBP6 inversely correlated with glioma grade. Secondly, multivariate analysis with the Cox proportional hazards model and Kaplan-Meier analysis indicated that IGFBP6 could be an independent prognostic factor for the survival of glioma patients. In addition, overexpression of IGFBP6 induced glioma cell apoptosis, and depletion of IGFBP6 had the opposite action. Finally, overexpression of IGFBP6 inhibited migration of glioma cells, and depletion of IGFBP6 had the opposite action. Together our findings suggest that IGFBP6 might be an important regulator and prognostic factor for glioma.


Assuntos
Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular , Glioma/metabolismo , Glioma/patologia , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
17.
Growth Horm IGF Res ; 30-31: 81-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27681092

RESUMO

IGFBP-6 binds IGF-II with higher affinity than IGF-I and it is a relatively specific inhibitor of IGF-II actions. More recently, IGFBP-6 has also been reported to have IGF-independent effects on cell proliferation, survival, differentiation and migration. IGFBP-6 binds to several ligands in the extracellular space, cytoplasm and nucleus. These interactions, together with activation of distinct intracellular signaling pathways, may contribute to its IGF-independent actions; for example, IGF-independent migration induced by IGFBP-6 involves interaction with prohibitin-2 and activation of MAP kinase pathways. A major challenge for the future is delineating the relative roles of the IGF-dependent and -independent actions of IGFBP-6, which may lead to the development of therapeutic approaches for diseases including cancer.


Assuntos
Diferenciação Celular , Movimento Celular , Proliferação de Células , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Sobrevivência Celular , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Fator de Crescimento Insulin-Like II/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proibitinas , Proteínas Repressoras/metabolismo , Transdução de Sinais
18.
Oncotarget ; 7(42): 68140-68150, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27623076

RESUMO

Insulin-like growth factor binding proteins (IGFBPs) play critical roles in carcinogenesis. This study assessed the impact of IGFBP6 on the progression of nasopharyngeal carcinoma (NPC). Using immunohistochemical analysis, we found that IGFBP6 was differentially expressed in primary malignant NPC tissues. Clinical samples were divided into two groups: IGFBP6(+) and IGFBP6(-). Five years of follow-up revealed that overall survival and distant metastasis-free survival rates were significantly higher in the IGFBP6(+) than IGFBP6(-) group. We also used real-time PCR, ELISA and western blot assays to measure IGFBP6 levels in five NPC cell lines (CNE1, CNE2, HONE1, HK1 and SUNE1). All the cell lines expressed IGFBP6, but at different levels, reflecting disease heterogeneity. In addition, exogenous expression of IGFBP6 inhibited CNE2 cell proliferation and invasion in vitro. IGFBP6 knockdown activated the GSK3ß/ß-catenin/cyclin D1 pathway and enhanced CNE2 tumor cell growth and metastasis in a mouse model. These results suggest that IGFBP6 may be an independent prognostic biomarker for NPC.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Nasofaríngeas/genética , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Estimativa de Kaplan-Meier , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/terapia , Metástase Neoplásica , Prognóstico , Interferência de RNA , Terapêutica com RNAi , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Ukr Biochem J ; 88(3): 66-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29235329

RESUMO

We have studied gene expression of insulin-like growth factor binding proteins in U87 glioma cells upon glutamine deprivation depending on the inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress. We have shown that exposure of control glioma cells upon glutamine deprivation leads to down-regulation of NOV/IGFBP9, WISP1 and WISP2 gene expressions and up-regulation of CYR61/IGFBP10 gene expression at the mRNA level. At the same time, the expression of IGFBP6 and IGFBP7 genes in control glioma cells was resistant to glutamine deprivation. It was also shown that the inhibition of IRE1 modifies the effect of glutamine deprivation on the expression of all studied genes. Thus, the inhibition of IRE1 signaling enzyme enhances the effect of glutamine deprivation on the expression of CYR61 and WISP1 genes and suppresses effect of the deprivation on WISP2 gene expression in glioma cells. Moreover, the inhibition of IRE1 introduces sensitivity of the expression of IGFBP6 and IGFBP7 genes to glutamine deprivation and removes this sensitivity to NOV gene. We have also demonstrated that the expression of all studied genes in glioma cells growing with glutamine is regulated by IRE1 signaling enzyme, because the inhibition of IRE1 significantly down-regulates IGFBP6 and NOV genes and up-regulates IGFBP7, CYR61, WISP1, and WISP2 genes as compared to control glioma cells. The present study demonstrates that glutamine deprivation condition affects most studied IGFBP and WISP gene expressions in relation to IRE1 signaling enzyme function and possibly contributes to slower glioma cell proliferation upon inhibition of IRE1.


Assuntos
Proteínas de Sinalização Intercelular CCN/genética , Endorribonucleases/genética , Regulação Neoplásica da Expressão Gênica , Glutamina/deficiência , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neuroglia/enzimologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Endorribonucleases/deficiência , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/genética , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Neuroglia/patologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
20.
Biochem Biophys Res Commun ; 464(1): 299-305, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26116772

RESUMO

Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration.


Assuntos
Tecido Adiposo/citologia , Meios de Cultivo Condicionados/farmacologia , Cemento Dentário/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/citologia , Tecido Adiposo/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Cemento Dentário/citologia , Cemento Dentário/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/antagonistas & inibidores , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA