Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skin Res Technol ; 29(6): e13337, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37357660

RESUMO

BACKGROUND: Radiation-induced skin injury, which may progress to fibrosis, is a severe side effect of radiotherapy in patients with cancer. However, currently, there is a lack of preventive or curative treatments for this injury. Meanwhile, the mechanisms underlying this injury remain poorly understood. Here, we elucidated whether autophagy is essential for the development of radiation-induced skin injury and the potential molecular pathways and mechanisms involved. METHODS AND RESULTS: We used the myofibroblast-specific Atg7 knockout (namely, conditional Atg7 knockout) mice irradiated with a single electron beam irradiation dose of 30 Gy. Vaseline-based 0.2% rapamycin ointment was topically applied once daily from the day of irradiation for 30 days. On day 30 post irradiation, skin tissues were harvested for further analysis. In vitro, human foreskin fibroblast cells were treated with rapamycin (100 nM) for 24 h and pretreated with 3-MA (5 mM) for 12 h. Macroscopic skin manifestations, histological changes, and fibrosis markers at the mRNA and protein expression levels were measured. Post irradiation, the myofibroblast-specific autophagy-deficient (Atg7Flox/Flox Cre+ ) mice had increased fibrosis marker (COL1A1, CTGF, TGF-ß1, and α-SMA) levels in the irradiated area and had more severe macroscopic skin manifestations than the control group (Atg7Flox/Flox Cre- ) mice. Treatment with an autophagy agonist rapamycin attenuated macroscopic skin injury scores and skin fibrosis marker levels with decreased epidermal thickness and dermal collagen deposition in Atg7Flox/Flox Cre+ mice compared with the vehicle control. Moreover, in vitro experiment results were consistent with the in vivo results. Together with studies at the molecular level, we found that these changes involved the Akt/mTOR pathway. In addition, this phenomenon might also relate to Nrf2-autophagy signaling pathway under oxidative stress conditions. CONCLUSION: In conclusion, Atg7 and autophagy-related mechanisms confer radioprotection, and reactivation of the autophagy process can be a novel therapeutic strategy to reduce and prevent the occurrence of radiodermatitis, particularly skin fibrosis, in patients with cancer.


Assuntos
Dermatopatias , Pele , Humanos , Camundongos , Animais , Autofagia/genética , Fibrose , Transdução de Sinais , Epiderme , Camundongos Knockout , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/farmacologia
2.
J Exp Clin Cancer Res ; 41(1): 200, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690866

RESUMO

BACKGROUND: The contribution of autophagy to cancer therapy resistance remains complex, mainly owing to the discrepancy of autophagy mechanisms in different therapy. However, the potential mechanisms of autophagy-mediated resistance to icotinib have yet to be elucidated. METHODS: The effect of autophagy in icotinib resistance was examined using a series of in vitro and in vivo assays. The results above were further verified in biopsy specimens of lung cancer patients before and after icotinib or gefitinib treatment. RESULTS: Icotinib increased ATG3, ATG5, and ATG7 expression, but without affecting Beclin-1, VPS34 and ATBG14 levels in icotinib-resistant lung cancer cells. Autophagy blockade by 3-MA or silencing Beclin-1 had no effects on resistance to icotinib. CQ effectively restored lung cancer cell sensitivity to icotinib in vitro and in vivo. Notably, aberrantly activated STAT3 and highly expressed FOXM1 were required for autophagy induced by icotinib, without the involvement of AMPK/mTOR pathway in this process. Alterations of STAT3 activity using genetic and/or pharmacological methods effectively affected FOXM1 and ATG7 levels increased by icotinib, with altering autophagy and icotinib-mediated apoptosis in resistant cells. Furthermore, silencing FOXM1 impaired up-regulated ATG7 induced by STAT3-CA and icotinib. STAT3/FOXM1 signalling blockade also reversed resistance to icotinib in vivo. Finally, we found a negative correlation between STAT3/FOXM1/ATG7 signalling activity and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) treatment efficacy in patients undergoing EGFR-TKIs treatment. CONCLUSIONS: Our findings support that STAT3/FOXM1/ATG7 signalling-induced autophagy is a novel mechanism of resistance to icotinib, and provide insights into potential clinical values of ATG7-dependent autophagy in icotinib treatment.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/farmacologia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Éteres de Coroa , Receptores ErbB/metabolismo , Proteína Forkhead Box M1/metabolismo , Humanos , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Bioengineered ; 13(3): 7328-7339, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35300572

RESUMO

Bladder cancer (BCa) is one of the most common cancers in men and is a major threat to the lives and health of older men. Many studies have shown that miR-7, as an important tumor suppressor gene, could directly inhibit some pathways involved in the development of cancer. MiR-7-5p, which was assessed in this study, consists of one arm of miR-7 and acts as a cancer suppressor gene in multiple cancer types. Autophagy, as a common biological process, plays dual roles in the process of cancer. Chemotherapy resistance is a problem in the treatment of BCa. In this study, the data showed that miR-7-5p was obviously down-regulated in BCa tissues and cells compared to their respective controls. In addition, miR-7-5p mimic effectively inhibited migration, invasion and autophagy both in vitro and in vivo. In the mechanistic study, miR-7-5p targeted autophagy-related gene ATG7 to inhibit its expression, which in turn inhibited autophagy. Finally, the migration of BCa cells was inhibited, and chemosensitivity was improved. Overall, our results provide evidence of the role of miR-7-5p as a cancer suppressor gene in BCa and provide new opportunities for the treatment of BCa.


Assuntos
Cisplatino , MicroRNAs , Idoso , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , MicroRNAs/metabolismo
4.
Lab Invest ; 99(9): 1266-1274, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30988371

RESUMO

The exact role of autophagy in breast cancers remains elusive. In this study, we explored the potential functions of autophagy-related 7 (Atg7) in breast cancer cell lines and tissues. Compared to normal breast tissue, a significantly lower expression of Atg7 was observed in triple-negative breast cancer (TNBC), but not other subtypes. A higher Atg7 expression was significantly associated with favorable clinicopathologic factors and better prognostic outcomes in patients with TNBC. Reflecting the clinical and pathologic observations, Atg7 was found to inhibit proliferation and migration, but promotes apoptosis in TNBC cell lines. Furthermore, Atg7 suppressed epithelial-mesenchymal transition through inhibiting aerobic glycolysis metabolism of TNBC cells. These findings provided novel molecular and clinical evidence of Atg7 in modulating the biological behavior of TNBC, thus warranting further investigation.


Assuntos
Proteína 7 Relacionada à Autofagia/metabolismo , Neoplasias de Mama Triplo Negativas , Apoptose/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia/análise , Proteína 7 Relacionada à Autofagia/farmacologia , Mama/química , Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
5.
Biochem Biophys Res Commun ; 508(2): 521-526, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30503495

RESUMO

Autophagy, a system for the bulk degradation of intracellular components, is essential for homeostasis and the healthy physiology and development of cells and tissues. Its deregulation is associated with human disease. Thus, methods to modulate autophagic activity are critical for analysis of its role in mammalian cells and tissues. Here we report a method to inhibit autophagy using a mutant variant of the protein ATG7, a ubiquitin E1-like enzyme essential for autophagosome formation. During autophagy, ATG7 activates the conjugation of LC3 (ATG8) with phosphatidylethanolamine (PE) and ATG12 with ATG5. Human ATG7 interactions with LC3 or ATG12 require a thioester bond involving the ATG7 cysteine residue at position 572. We generated TetOff cells expressing mutant ATG7 protein carrying a serine substitution of this critical cysteine residue (ATG7C572S). Because ATG7C572S forms stable intermediate complexes with LC3 or ATG12, its expression resulted in a strong blockage of the ATG-conjugation system and suppression of autophagosome formation. Consequently, ATG7C572S mutant protein can be used as an inhibitor of autophagy.


Assuntos
Proteína 12 Relacionada à Autofagia/química , Proteína 7 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/química , Autofagia/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/química , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/farmacologia , Células Cultivadas , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/farmacologia , Fosfatidiletanolaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...