Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biochem Pharmacol ; 194: 114822, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748820

RESUMO

BACKGROUND: Platelets from septic patients exhibit increased reactivity. However, the underlying mechanism of sepsis-induced platelet hyperactivity is still not completely understood. OBJECTIVE: P2Y12 is a central receptor for platelet activation. In this study, we investigated the role of platelet P2Y12 in platelet hyperactivity during sepsis. METHODS: We measured platelet P2Y12 expression and aggregation in response to ADP in septic patients and cecal ligation and puncture (CLP)-treated mice. We also detected the downstream signaling of P2Y12 in resting platelets from patients and mice with sepsis. The role of nucleotide-binding oligomerization domain 2 (NOD2)/RIP2/NF-κB/P65 pathway in sepsis-induced platelet P2Y12 high expression was also investigated. Finally, we compared the antiplatelet and antithrombotic effects of clopidogrel, prasugrel, and ticagrelor in experimental sepsis in mice and rats. RESULTS: Compared to healthy subjects, platelets from septic patients exhibit P2Y12 hyperactivity and higher P2Y12 expression. pAkt is enhanced and pVASP is impaired in resting platelets from the patients, indicating the constitutive activation of platelet P2Y12 receptor. Mouse sepsis model recapitulates the findings in septic patients. NOD2 deficiency attenuates sepsis-induced platelet P2Y12 high expression, hyperactivity, and thrombosis. Prasugrel and ticagrelor are potent P2Y12 inverse agonists, and exhibit superior antiplatelet and antithrombotic efficacy over clopidogrel in mice and rats with sepsis. CONCLUSIONS: NOD2 activation upregulates platelet P2Y12 expression, which is constitutively activated and contributes to platelet hyperactivity in septic status. Compared to clopidogrel, prasugrel and ticagrelor are potent P2Y12 inverse agonists with superior antiplatelet and antithrombotic efficacy in experimental sepsis.


Assuntos
Proteína Adaptadora de Sinalização NOD2/biossíntese , Ativação Plaquetária/fisiologia , Receptores Purinérgicos P2Y12/biossíntese , Sepse/metabolismo , Trombose/metabolismo , Regulação para Cima/fisiologia , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Cloridrato de Prasugrel/farmacologia , Cloridrato de Prasugrel/uso terapêutico , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
3.
Brain Res Bull ; 158: 20-30, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109527

RESUMO

Streptococcus pneumoniae is responsible for pneumococcal meningitis, with significant mortality and morbidity worldwide. Microglial inflammation plays a vital role in meningitis. The peptidoglycan sensor NOD2 (nucleotide-binding oligomerization domain 2) has been identified to promote microglia activation, but the role in autophagy following pneumococcal meningitis remains unclear. In the present study, we investigated the role of NOD2 in microglial inflammation and autophagy, as well as related signaling pathways, during S. pneumonia infection. NOD2 expression was knocked down by the injection of lentivirus-mediated short-hairpin RNA (shRNA). Our results revealed that NOD2 promotes microglial inflammation by increasing inflammatory mediators. We also showed that the TAK1-NF-κB pathway is involved in this process. In addition, NOD2 increased the expression of autophagy-related proteins and induced autophagosome formation. Rapamycin and 3-MA were utilized to assess the role of autophagy in microglial inflammation induced by S. pneumonia. We demonstrated that autophagy serves as a cellular defense mechanism to reduce inflammatory mediators. Similar to the in vitro results, NOD2 induced inflammation and autophagy in the brain in a mouse meningitis model. Moreover, NOD2 silencing significantly reduced brain edema and improved the neurological function of pneumococcal meningitis mice. Taken together, these data demonstrate that NOD2 promotes microglial inflammation and autophagy in murine pneumococcal meningitis, and the TAK1-NF-κB pathway is involved in microglial activation.


Assuntos
Autofagia/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Meningite Pneumocócica/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/deficiência , Animais , Linhagem Celular , Inflamação/metabolismo , Inflamação/patologia , Masculino , Meningite Pneumocócica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Proteína Adaptadora de Sinalização NOD2/antagonistas & inibidores , Proteína Adaptadora de Sinalização NOD2/biossíntese , Transdução de Sinais/fisiologia
4.
J Cancer Res Clin Oncol ; 145(6): 1405-1416, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30903318

RESUMO

PURPOSE: NOD1 and NOD2 (nucleotide-binding oligomerization domain)-receptors are intracellular receptors and belong to the family of pattern recognition receptors being present in both human and murine renal tubular cells. Besides, NOD1 has been proved to promote apoptosis, upon its overexpression. Hence, we aimed to investigate NOD1 and NOD2 expression in human clear cell renal cell carcinoma (ccRCC). METHODS: Tumor and corresponding adjacent healthy tissues from 41 patients with histopathological diagnosis of ccRCC as well as primary isolated renal tubular epithelial cells (TECs) and tumor tissue from a murine xenograft model using CAKI-1 ccRCC cells were analyzed. RESULTS: NOD1 and NOD2 mRNA was constitutively expressed in both tumor and adjacent healthy renal tissue, with NOD1 being significantly lower and in contrast NOD2 significantly higher expressed in tumor tissue compared to healthy tissues. Immunohistochemically, NOD1 was located not only in the cytoplasm, but also in the nucleus in ccRCC tissue whereas NOD2 was solely localized in the cytoplasm in both human ccRCC as well as in the healthy tubular system. Focusing on the vasculature, NOD2 displayed broader expression than NOD1. In primary TECs as well as CAKI-1 cells NOD1 and NOD2 was constitutively expressed and increasable upon LPS stimulation. In the mouse xenograft model, human NOD1 mRNA was significantly higher expressed compared to NOD2. In contrast hereto, we observed a shift towards lower mouse NOD1 compared to NOD2 mRNA expression. CONCLUSION: In view of reduced apoptosis-associated NOD1 expression in ccRCC tissue opposed to higher expression of NOD2 in tumor vasculature, inducibility of NOD expression in TECs as well as the detected shift of NOD1 and NOD2 expression in the mouse xenograft model, modulation of NOD receptors might, therefore, provide a molecular therapeutic approach in ccRCC.


Assuntos
Carcinoma de Células Renais/imunologia , Neoplasias Renais/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Xenoenxertos , Humanos , Imunidade Inata , Imuno-Histoquímica , Rim/irrigação sanguínea , Rim/imunologia , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/patologia , Túbulos Renais/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Gene ; 660: 128-135, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29572197

RESUMO

BACKGROUND: Allergic asthma is a chronically relapsing inflammatory airway disease with a complex pathophysiology. AIM: This study was undertaken to investigate the potential contribution of NOD2 signaling, proinflammatory cytokines, chitotriosidase (CHIT1) activity, oxidative stress and DNA damage to atopic asthma pathogenesis, as well as to explore their possible role as surrogate noninvasive biomarkers for monitoring asthma severity. METHODS: Sixty patients with atopic bronchial asthma who were divided according to asthma severity into 40 mild-moderate, 20 severe atopic asthmatics, in addition to thirty age-matched healthy controls were enrolled in this study. NOD2 expression in PBMCs was assessed by quantitative real-time RT-PCR. DNA damage indices were assessed by alkaline comet assay. Serum IgE, IL-17, IL-8 and 3-Nitrotyrosine levels were estimated by ELISA. Serum CHIT1and GST activities, as well as MDA levels, were measured. RESULTS: NOD2 mRNA relative expression levels were significantly decreased in atopic asthmatic cases relative to controls with lower values among severe atopic asthmatics. On the other hand, IL-17 and IL-8 serum levels, CHIT1 activity, DNA damage indices and oxidative stress markers were significantly increased in atopic asthmatic cases relative to controls with higher values among severe atopic asthmatics. The change in these parameters correlated significantly with the degree of decline in lung function. CONCLUSION: The interplay between NOD2 signaling, proinflammatory cytokines, CHIT1 activity, heightened oxidative stress and DNA damage orchestrates allergic airway inflammation and thus contributing to the pathogenesis of atopic asthma. These parameters qualified for measurement as part of new noninvasive biomarker panels for monitoring asthma severity.


Assuntos
Asma/sangue , Dano ao DNA , Regulação Enzimológica da Expressão Gênica , Leucócitos Mononucleares/enzimologia , Proteína Adaptadora de Sinalização NOD2/biossíntese , Estresse Oxidativo , Adulto , Asma/genética , Asma/metabolismo , Asma/patologia , Feminino , Hexosaminidases/sangue , Hexosaminidases/genética , Humanos , Imunoglobulina E/sangue , Inflamação/sangue , Inflamação/genética , Inflamação/patologia , Interleucina-17/sangue , Interleucina-17/genética , Interleucina-8/sangue , Interleucina-8/genética , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD2/genética , Oxirredução , Índice de Gravidade de Doença , Tirosina/análogos & derivados , Tirosina/sangue
6.
J Bone Miner Res ; 32(7): 1455-1468, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28337794

RESUMO

Peptidoglycan fragments released from gut microbiota can be delivered to the bone marrow and affect bone metabolism. We investigated the regulation of bone metabolism by muramyl dipeptide (MDP), which is a shared structural unit of peptidoglycans. Increased bone and mineral density by enhanced bone formation were observed in mice administered with MDP. Remarkably, pretreatment or posttreatment with MDP alleviated bone loss in RANKL-induced osteoporosis mouse models. MDP directly augmented osteoblast differentiation and bone-forming gene expression by Runx2 activation. Despite no direct effect, MDP indirectly attenuated osteoclast differentiation through downregulation of the RANKL/osteoprotegerin (OPG) ratio. MDP increased the expression of the MDP receptor, Nod2, and MDP-induced bone formation and osteoblast activation did not occur during Nod2 deficiency. Other Nod2 ligands also increased bone formation through the induction of Runx2, as MDP did. In conclusion, we suggest that MDP is a novel inducer of bone formation that could potentially be a new therapeutic molecule to protect against osteoporosis. © 2017 American Society for Bone and Mineral Research.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteogênese/efeitos dos fármacos , Peptidoglicano/química , Acetilmuramil-Alanil-Isoglutamina/química , Motivos de Aminoácidos , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/genética , Osteoprotegerina/biossíntese , Osteoprotegerina/genética , Ligante RANK/biossíntese , Ligante RANK/genética
7.
Mol Oral Microbiol ; 32(2): 131-141, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27004566

RESUMO

Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease.


Assuntos
Aorta/microbiologia , Citocinas/biossíntese , Células Endoteliais/microbiologia , Endotélio Vascular/microbiologia , Mediadores da Inflamação/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Streptococcus mutans/imunologia , Receptor 2 Toll-Like/imunologia , Aorta/citologia , Aorta/imunologia , Citocinas/imunologia , Células Endoteliais/imunologia , Endotélio Vascular/citologia , Humanos , Boca/microbiologia , Proteína Adaptadora de Sinalização NOD2/biossíntese , Transdução de Sinais , Streptococcus mutans/patogenicidade , Receptor 2 Toll-Like/biossíntese , Regulação para Cima
8.
Iran J Allergy Asthma Immunol ; 15(5): 355-362, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27917621

RESUMO

Host innate immunity can affect the clinical outcomes of Helicobacter pylori infection, including gastritis, gastric ulcer, gastric adenocarcinoma, and MALT lymphoma. Nucleotide binding oligomerization domain (NOD)-1 and -2 are two molecules of innate immunity which are involved in the host defense against H. pylori. This study aimed to evaluate the effect of the expression level of NOD1 and NOD2 on the susceptibility to gastric cancer as well as peptic ulcer in individuals with H. pylori infection. The gene expression levels of these molecules were compared in three groups of non-ulcer dyspepsia (NUD) as a control group (n=52); peptic ulcer disease (PUD), (n=53); and gastric cancer (GC), (n=39). Relative expression levels of NOD1 in patients with GC were higher than those of NUD and PUD (p<0.001 and P<0.001, respectively). Similarly in case of NOD1, PUD group showed higher level of expression than NUD group (p<0.01). However, there was no significant difference between H. pylori -positive and -negative patients in NUD, PUD, or GC groups. Moreover, the expression levels of NOD2 showed no significant difference among NUD, PUD, or GC groups, while among H. pylori-positive patients, it was higher in GC group than NUD  and PUD groups (p<0.05 and p<0.01, respectively). In addition, positive correlation coefficients were attained between NOD1 and NOD2 expressions in patients with NUD (R2 Linear=0.349, p<0.001), PUD (R2 Linear=0.695, p<0.001), and GC (R2 Linear=0.385, p<0.001). Collectively, the results suggest that the chronic activation of NOD1 and NOD2 receptors might play a role in the development of gastric cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteína Adaptadora de Sinalização NOD2/biossíntese , Úlcera Péptica/metabolismo , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Feminino , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Helicobacter pylori , Humanos , Masculino , Pessoa de Meia-Idade , Úlcera Péptica/patologia , Neoplasias Gástricas/patologia
9.
Postepy Hig Med Dosw (Online) ; 70: 10-3, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26864060

RESUMO

One of the susceptibility genes in Crohn's disease (CD) is CARD15. Our study examined the relationship between peripheral CARD15 expression and phenotype and duration of CD, treatment methods and inflammatory indices. Sixty patients with CD and 30 healthy volunteers as controls were enrolled in the study. Total RNA was isolated from peripheral blood mononuclear cells (PBMCs) with E.Z.N.A. Total RNA Kit (Omega Bio-tek) then quantitative real-time PCR was performed on the ABI Prism 7900 HT Real-Time PCR System. CARD15 gene expression in PBMCs in CD was significantly higher than in the control group. The highest level of gene expression was found in CD patients in the fourth decade of life. The mRNA level of the CARD15 gene was higher in patients with disease duration between 12 and 60 months. A positive correlation was found between erythrocyte sedimentation rate (ESR) and gene expression level. Gene expression increased with increasing level of C-reactive protein and ESR, but it was not statistically significant. CARD15 expression significantly decreased in CD patients treated with anti-TNFα agents compared to azathioprine or steroid treatment groups. Expression of the CARD15 gene in Crohn>s disease is higher than in healthy individuals. Disease duration and age of patients seem to be the most important factors influencing CARD15 expression.


Assuntos
Doença de Crohn/genética , Proteína Adaptadora de Sinalização NOD2/genética , Adulto , Fatores Etários , Idoso , Doença de Crohn/metabolismo , Feminino , Expressão Gênica , Predisposição Genética para Doença , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD2/biossíntese , Fenótipo , Biossíntese de Proteínas , Fatores de Tempo , Adulto Jovem
10.
Life Sci ; 149: 10-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874029

RESUMO

AIMS: Nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, which plays an important role in the innate immunity and inflammation. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. In this study, we sought to determine the role of NOD2 on cardiac I/R injury. MAIN METHODS: Mice were induced 30min ischemia followed by 24h of reperfusion. Histological examinations were performed on heart sections with Evans blue and triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (H&E) staining, immunohistochemistry and immunofluorescence staining. The messenger RNA (mRNA) expression and protein levels were detected by real-time polymerase chain reaction (RT-PCR) and western blot analysis respectively. KEY FINDINGS: I/R injury markedly upregulated NOD2 expression in heart tissue. Treatment of WT mice with NOD2 ligand (MDP) significantly increased infarct size, the number of apoptotic cells and inflammatory cells, as compared with wild-type mice after I/R injury. Furthermore, MDP enhanced I/R-induced cardiomyocyte apoptosis and inflammation in vitro, and these effects were attenuated by NOD2-siRNA. The mechanism of NOD2 on cardiac I/R injury is partly associated with JNK, p38MAPK and NF-κB signaling pathways. SIGNIFICANCE: NOD2 aggravates myocardial I/R injury by inducing cardiomyocyte apoptosis and inflammation through JNK, p38MAPK and NF-κB signaling pathways. This study provides insight into better understanding the molecular mechanism of NOD2, which may be served as a potential target for the treatment of myocardial I/R injury.


Assuntos
Apoptose/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína Adaptadora de Sinalização NOD2/biossíntese , Animais , Animais Recém-Nascidos , Células Cultivadas , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
11.
J Oral Pathol Med ; 45(4): 262-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26332444

RESUMO

OBJECTIVES: Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS: NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. RESULTS: The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. CONCLUSIONS: Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Ácido Diaminopimélico/análogos & derivados , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Proteína Adaptadora de Sinalização NOD2/agonistas , Oligopeptídeos/farmacologia , Antineoplásicos/farmacologia , Apoptose/fisiologia , Western Blotting , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ácido Diaminopimélico/farmacologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-8/biossíntese , Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/genética , RNA Mensageiro/biossíntese , Carcinoma de Células Escamosas de Cabeça e Pescoço
12.
Circulation ; 131(13): 1160-70, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25825396

RESUMO

BACKGROUND: Pattern recognition receptor nucleotide-binding oligomerization domain 2 (NOD2) is well investigated in immunity, but its expression and function in platelets has never been explored. METHOD AND RESULTS: Using reverse transcription polymerase chain reaction and Western blot, we show that both human and mouse platelets express NOD2, and its agonist muramyl dipeptide induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentrations of thrombin or collagen, and clot retraction, as well. These potentiating effects of muramyl dipeptide were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2 dependently. Using intravital microscopy, we found that muramyl dipeptide administration accelerated in vivo thrombosis in a FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express receptor-interacting protein 2, and provided evidence suggesting that mitogen activated-protein kinase and nitric oxide/soluble guanylyl cyclase/cGMP/protein kinase G pathways downstream of receptor-interacting protein mediate the role of NOD2 in platelets. Finally, muramyl dipeptide stimulates proinflammatory cytokine interleukin-1ß maturation and accumulation in human and mouse platelets NOD2 dependently. CONCLUSIONS: NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets that link thrombotic events to inflammation.


Assuntos
Plaquetas/metabolismo , Inflamação/sangue , Proteína Adaptadora de Sinalização NOD2/fisiologia , Ativação Plaquetária/fisiologia , Trombose/sangue , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Bacteriemia/sangue , Plaquetas/efeitos dos fármacos , Retração do Coágulo/fisiologia , GMP Cíclico/sangue , Dimerização , Hemostasia/fisiologia , Humanos , Interleucina-1beta/sangue , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Óxido Nítrico/sangue , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/sangue , Ativação Plaquetária/efeitos dos fármacos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Transdução de Sinais/fisiologia
13.
Biomed Res Int ; 2015: 408169, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922834

RESUMO

Background. Cholesteatoma is a destructive process of the middle ear resulting in erosion of the surrounding bony structures with consequent hearing loss, vestibular dysfunction, facial paralysis, or intracranial complications. The etiopathogenesis of cholesteatoma is controversial but is associated with recurrent ear infections. The role of intracellular innate immune receptors, the NOD-like receptors, and their associated signaling networks was investigated in cholesteatoma, since mutations in NOD-like receptor-related genes have been implicated in other chronic inflammatory disorders. Results. The expression of NOD2 mRNA and protein was significantly induced in cholesteatoma compared to the external auditory canal skin, mainly located in the epithelial layer of cholesteatoma. Microarray analysis showed significant upregulation for NOD2, not for NOD1, TLR2, or TLR4 in cholesteatoma. Moreover, regulation of genes in an interaction network of the NOD-adaptor molecule RIPK2 was detected. In addition to NOD2, NLRC4, and PYCARD, the downstream molecules IRAK1 and antiapoptotic regulator CFLAR showed significant upregulation, whereas SMAD3, a proapoptotic inducer, was significantly downregulated. Finally, altered regulation of inflammatory target genes of NOD signaling was detected. Conclusions. These results indicate that the interaction of innate immune signaling mediated by NLRs and their downstream target molecules is involved in the etiopathogenesis and growth of cholesteatoma.


Assuntos
Colesteatoma/genética , Inflamação/genética , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/biossíntese , Proteínas Adaptadoras de Sinalização CARD/biossíntese , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Colesteatoma/etiologia , Colesteatoma/patologia , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Inflamação/patologia , Análise em Microsséries , Proteína Adaptadora de Sinalização NOD2/genética , RNA Mensageiro/biossíntese , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Transdução de Sinais
14.
Mol Immunol ; 65(1): 77-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25647716

RESUMO

Peptidoglycan (PGN) is a major cell wall component of Gram-positive bacteria that contributes to the regulation of host immunity in the gastrointestinal tract (GIT). Although Gram-positive bacteria contain structurally distinct PGNs that are considered to differently interact with the GIT, PGN-binding proteins (PGN-BPs) in the GIT have been poorly understood. In the present study, we purified PGNs from Lactobacillus plantarum and Staphylococcus aureus (named as Lp.PGN and Sa.PGN, respectively) and identified Lp.PGN-BPs and Sa.PGN-BPs in the lysate of mouse GIT. Lp.PGN activated nucleotide-binding oligomerization domain (NOD) 1 and NOD2, whereas Sa.PGN activated NOD2, but not NOD1, implying that both PGNs retained the biological activity and were differently recognized by the host cells. PGN-BPs were isolated by precipitation with Lp.PGN or Sa.PGN and identified using LTQ-Orbitrap hybrid Fourier transform mass spectrometry. Three independent experiments demonstrated that 18 Lp.PGN-BPs and 6 Sa.PGN-BPs were reproducibly obtained with statistical significance (P<0.05). Both Lp.PGN and Sa.PGN bound to proteins which are related to cytoskeleton, microbial adhesion, and mucosal integrity. Lp.PGN selectively bound to proteins related to gene expression, chaperone, and antimicrobial function. However, Sa.PGN preferentially interacted with proteins involved in adherence and invasion of pathogens. Collectively, these results suggest that bacterial PGNs interact with the proteins regulating mucosal homeostasis and immunity in the gut and PGNs of commensals and pathogens might be also differentially recognized in the GIT.


Assuntos
Parede Celular/metabolismo , Trato Gastrointestinal/imunologia , Peptidoglicano/metabolismo , Proteínas/metabolismo , Animais , Linhagem Celular , Parede Celular/imunologia , Feminino , Células HEK293 , Humanos , Lactobacillus plantarum/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteína Adaptadora de Sinalização NOD2/biossíntese , Peptidoglicano/imunologia , Ligação Proteica , Staphylococcus aureus/imunologia
15.
J Immunol ; 194(1): 349-57, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25429073

RESUMO

The biochemical mechanism by which mutations in nucleotide-binding oligomerization domain containing 2 (NOD2) cause Blau syndrome is unknown. Several studies have examined the effect of mutations associated with Blau syndrome in vitro, but none has looked at the implication of the mutations in vivo. To test the hypothesis that mutated NOD2 causes alterations in signaling pathways downstream of NOD2, we created a Nod2 knock-in mouse carrying the most common mutation seen in Blau syndrome, R314Q (corresponding to R334Q in humans). The endogenous regulatory elements of mouse Nod2 were unaltered. R314Q mice showed reduced cytokine production in response to i.p. and intravitreal muramyl dipeptide (MDP). Macrophages from R314Q mice showed reduced NF-κB and IL-6 responses, blunted phosphorylation of MAPKs, and deficient ubiquitination of receptor-interacting protein 2 in response to MDP. R314Q mice expressed a truncated 80-kDa form of NOD2 that was most likely generated by a posttranslational event because there was no evidence for a stop codon or alternative splicing event. Human macrophages from two patients with Blau syndrome also showed a reduction of both cytokine production and phosphorylation of p38 in response to MDP, indicating that both R314Q mice and cells from patients with Blau syndrome show reduced responses to MDP. These data indicate that the R314Q mutation when studied with the Nod2 endogenous regulatory elements left intact is associated with marked structural and biochemical changes that are significantly different from those observed from studies of the mutation using overexpression, transient transfection systems.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Artrite/genética , Macrófagos/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD2/genética , Sinovite/genética , Uveíte/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Acetilmuramil-Alanil-Isoglutamina/imunologia , Animais , Linhagem Celular , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Interleucina-6/biossíntese , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , NF-kappa B/biossíntese , Proteína Adaptadora de Sinalização NOD2/biossíntese , Fosforilação/genética , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Sarcoidose , Transdução de Sinais/genética , Ubiquitinação
16.
Inflammation ; 38(1): 1-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25125146

RESUMO

The myeloid differentiation factor 88 (MyD88) plays a pivotal role in Toll-like receptor (TLR)- and interleukin-1 receptor (IL-1R)-induced osteoclastogenesis. We examined the role of MyD88 on p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation and nucleotide-binding oligomerization domain (Nod) induction by lipopolysaccharide (LPS) and IL-1 beta, and their effect on receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) production in bone marrow stromal cell (BMSC). RANKL, Nod1, Nod2, NF-κB, and p38 protein levels were determined by Western blot. Nod2 was stimulated with muramyl dipeptide (MDP) prior to TLR4 stimulation with LPS. MyD88 deficiency markedly inhibited RANKL expression after LPS stimulation and increased OPG messenger RNA (mRNA) production. Also, MyD88 was necessary for NF-κB and p38 MAPK activation. MDP alone did not induce RANKL and OPG expressions; however, when combined with LPS, their expressions were significantly increased (p < 0.05). Our results support that MyD88 signaling has a pivotal role in osteoclastogenesis thought NF-κB and p38 activation. Nod2 and especially Nod1 levels were influenced by MyD88.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fator 88 de Diferenciação Mieloide/biossíntese , Osteoprotegerina/biossíntese , Ligante RANK/biossíntese , Receptores de Interleucina-1/biossíntese , Receptores Toll-Like/biossíntese , Animais , Células Cultivadas , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteína Adaptadora de Sinalização NOD2/biossíntese , Transdução de Sinais/fisiologia
17.
Inflammation ; 38(1): 348-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25326182

RESUMO

We investigated the plasma concentration of the novel regulatory cytokine IL-35 and intracytosolic pattern recognition receptors nucleotide-binding oligomerization domain (NOD)-like receptors in granulocytes and explored their potential implication in disease severity monitoring of allergic asthma. The expression of circulating IL-35 and other pro-inflammatory mediators in asthmatic patients or control subjects were evaluated using enzyme-linked immunosorbent assay (ELISA). The intracellular expressions of NOD1 and NOD2 in CCR3+ granulocytes were assessed using flow cytometry. Plasma concentrations of IL-35, IL-17A, basophil activation marker basogranulin, and eosinophilic airway inflammation biomarker periostin were significantly elevated in allergic asthmatic patients compared to non-atopic control subjects (all probability (p) <0.05). Both granulocyte markers exhibited significant and positive correlation with plasma IL-35 concentration in asthmatic patients (all p < 0.05). Significant positive correlation was also identified between plasma concentrations of IL-35 and periostin with disease severity score in asthmatic patients (both p < 0.05). The basophil activation allergenicity test was positive in allergic asthmatic patients but not in control subjects. Despite significantly elevated eosinophil count in allergic asthmatic patients, downregulation of NOD2 in CCR3+ granulocytes was observed in these patients (both p < 0.05). A negative correlation between plasma concentrations of tumor necrosis factor family member LIGHT and soluble herpesvirus entry mediator was observed in patients with elevated plasma concentration of IL-35 (p < 0.05). Aberrant expression of NOD2 in granulocytes may be contributed to the impaired innate immunity predisposing allergic asthma. IL-35 may serve as a potential surrogate biomarker for disease severity of allergic asthma.


Assuntos
Asma/metabolismo , Hipersensibilidade/metabolismo , Interleucinas/biossíntese , Proteína Adaptadora de Sinalização NOD2/biossíntese , Adolescente , Adulto , Asma/diagnóstico , Biomarcadores/metabolismo , Citocinas/biossíntese , Feminino , Regulação da Expressão Gênica , Granulócitos/metabolismo , Humanos , Hipersensibilidade/diagnóstico , Imunidade Inata/fisiologia , Masculino , Adulto Jovem
18.
Dev Comp Immunol ; 42(2): 244-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24099967

RESUMO

Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of innate immunity. In this study, a long-form PGRP, designated as gcPGRP6, was identified from grass carp Ctenopharyngodon idella. The deduced amino acid sequence of gcPGRP6 is composed of 464 residues with a conserved PGRP domain at the C-terminus. The gcPGRP6 gene consists of four exons and three introns, spacing approximately 2.7 kb of genomic sequence. Phylogenetic analysis demonstrated that gcPGRP6 is clustered closely with zebrafish PGLYRP6, and formed a long-type PGRP subfamily together with PGLYRP2 members identified in teleosts and mammals. Real-time PCR and Western blotting analyses revealed that gcPGRP6 is constitutively expressed in organs/tissues examined, and its expression was significantly induced in liver and intestine of grass carp in response to PGN stimulation and in CIK cells treated with lipoteichoic acid (LTA), polyinosinic polycytidylic acid (Poly I:C) and peptidoglycan (PGN). Immunofluorescence microscopy and Western blotting analyses revealed that gcPGRP6 is effectively secreted to the exterior of CIK cells. The over-expression of gcPGRP6 in CIK cells leads to the activation of NF-κB and the inhibition of intracellular bacterial growth. Moreover, cell lysates from CIK cells transfected with pTurbo-gcPGRP6-GFP plasmid display the binding activity towards Lys-type PGN from Staphylococcus aureus and DAP-type PGN from Bacillus subtilis. Furthermore, proinflammatory cytokine IL-2 and intracellular PGN receptor NOD2 had a significantly increased expression in CIK cells overexpressed with gcPGRP6. It is demonstrated that the PGRP6 in grass carp has a role in binding PGN, in inhibiting the growth of intracellular bacteria, and in activating NF-κB, as well as in regulating innate immune genes.


Assuntos
Carpas/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Infecções por Enterobacteriaceae/imunologia , NF-kappa B/imunologia , Sequência de Aminoácidos , Animais , Bacillus subtilis/imunologia , Sequência de Bases , Carpas/genética , Proteínas de Transporte/farmacocinética , Linhagem Celular , Clonagem Molecular , Edwardsiella tarda/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Intestinos/imunologia , Lipopolissacarídeos/imunologia , Fígado/imunologia , Dados de Sequência Molecular , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/imunologia , Peptidoglicano/imunologia , Filogenia , Poli I-C/imunologia , Ligação Proteica , Staphylococcus aureus/imunologia , Ácidos Teicoicos/imunologia
19.
Biochem Biophys Res Commun ; 440(4): 551-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24099766

RESUMO

We previously showed that Staphylococcus aureus and Pseudomonas aeruginosa stimulate IL-8 expression in human conjunctival epithelial cells through different signal transduction pathways. As in some cell types both the bacteria may induce the release of prostaglandin E2 (PGE2) and PGE2 may affect the expression of IL-8, we aimed at investigating whether in human conjunctival cells infected with S. aureus or P. aeruginosa the activation of IL-8 transcription was mediated by PGE2 and which were the underlying molecular mechanisms. We found that S. aureus, but not P. aeruginosa, triggered IL-8 activation by increasing COX-2 expression and PGE2 levels in a time-dependent manner. Overexpression of nucleotide-binding oligomerization domain-2 (NOD2) resulted to be essential in the enhancement of IL-8 induced by S. aureus. It dramatically activated c-jun NH2-terminal kinase (JNK) pathway which in turn led to COX2 upregulation and ultimately to IL-8 transcription. The full understanding of the S. aureus-induced biochemical processes in human conjunctival epithelium will bring new insight to the knowledge of the molecular mechanisms involved in conjunctiva bacterial infections and develop novel treatment aiming at phlogosis modulation.


Assuntos
Túnica Conjuntiva/imunologia , Conjuntivite Bacteriana/imunologia , Dinoprostona/biossíntese , Interleucina-8/biossíntese , Proteína Adaptadora de Sinalização NOD2/fisiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Linhagem Celular , Túnica Conjuntiva/microbiologia , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Interleucina-8/genética , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/genética , Pseudomonas aeruginosa , Ativação Transcricional
20.
Lab Invest ; 93(10): 1128-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23958879

RESUMO

Nucleotide-binding oligomerization domain-2 (NOD2, also designated CARD15), a member of the NOD-leucine-rich repeat (LRR) protein family (also called the CATERPILLAR family), is upregulated in atheroma lesions and has an important role in regulating the intracellular recognition of bacterial components by immune cells. However, the effect of NOD2 on cardiac hypertrophy induced by a pathological stimulus has not been determined. Here, we investigated the effects of NOD2 deficiency on cardiac hypertrophy induced by aortic banding (AB) in mice. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. NOD2 expression was upregulated in cardiomyocytes after aortic banding surgery in wild-type (WT) mice. NOD2 deficiency promoted cardiac hypertrophy and fibrosis 4 weeks after AB. Further, the enhanced activation of TLR4 and the MAPKs, NF-κB and TGF-ß/Smad pathways were found in NOD2-knockout (KO) mice compared with WT mice. Our results suggest that NOD2 attenuates cardiac hypertrophy and fibrosis via regulation of multiple pathways.


Assuntos
Cardiomegalia/metabolismo , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Miocárdio/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Cardiomegalia/etiologia , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Núcleo Celular , Progressão da Doença , Fibrose , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Distribuição Aleatória , Proteínas Smad/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...