Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Environ Toxicol ; 37(9): 2291-2301, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35689653

RESUMO

Exposure to silica nanoparticles (SiNPs) is related to the dysregulation of pulmonary surfactant that maintains lung stability and function. Nevertheless, there are limited studies concerning the interaction and influence between SiNPs and pulmonary surfactant, and the damage and mechanism are still unclear. Herein, we used A549 cells to develop an in vitro model, with which we investigated the effect of SiNPs exposure on the expression of pulmonary surfactant and the potential regulatory mechanism. The results showed that SiNPs were of cytotoxicity in regarding of reduced cell viability and promoted the production of excessive reactive oxygen species (ROS). Additionally, the JNK/c-Jun signaling pathway was activated, and the expression of surfactant protein A (SP-A) and surfactant protein B (SP-B) was decreased. After the cells being treated with N-acetyl-L-cysteine (NAC), we found that the ROS content was effectively downregulated, and the expression of proteins related to JNK and c-Jun signaling pathways was suppressed. In contrast, the expression of SP-A and SP-B was enhanced. Furthermore, we treated the cells with JNK inhibitor and c-Jun-siRNA and found that the expression of protein related to JNK and c-Jun signaling pathways, as well as SP-A and SP-B, changed in line with that of NAC treatment. These findings suggest that SiNPs exposure can upregulate ROS and activate the JNK/c-Jun signaling pathway in A549 cells, thereby inhibiting the expression of SP-A and SP-B proteins.


Assuntos
Pulmão , Nanopartículas , Proteína A Associada a Surfactante Pulmonar , Proteína B Associada a Surfactante Pulmonar , Dióxido de Silício , Células A549 , Acetilcisteína/farmacologia , Apoptose , Genes jun/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pulmão/metabolismo , Nanopartículas/toxicidade , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Dióxido de Silício/toxicidade
2.
Bioengineered ; 13(1): 834-843, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898355

RESUMO

The rise of bioinformatics based on computer medicine provides a new method to reveal the complex biological data. This experiment is to explore the impacts of lipopolysaccharide on fetal lung developmental maturity and expressions of lung surfactant protein B (SP-B) and lung surfactant protein C (SP-C) in rats with gestational diabetes mellitus (GDM), thereby discussing the mechanism of developmental disorders in rats. Forty-eight conceived female rats were experimental subjects. Twenty-eight rats were randomly selected to construct the GDM models. All conceived rats underwent section on the 21st day of pregnancy. The ultrastructure of alveolar type II epithelial cells and the morphology of lung tissue were observed under a microscope. The protein localization and expression of SP-B and SP-C were determined by immunohistochemistry; the protein levels of SP-B and SP-C were determined by Western blot. Blood glucose and body weight of the GDM group were higher than those of the control group; the number of alveoli and alveolar area in the GDM group was lower than those in the control group; the alveolar interval in the GDM group was significantly higher than that in the control group (P < 0.05). The average absorbance of SP-B and SP-C in fetal lung tissue was significantly lower in the GDM group than that in the control group (P < 0.01). Changes in fetal lung tissue structure of rats were related to SP-B and SP-C, which was one of the main factors that affected the maturation of fetal lung tissue.


Assuntos
Diabetes Gestacional/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/embriologia , Pulmão/patologia , Peptídeos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Animais , Peso Corporal , Estudos de Casos e Controles , Diabetes Gestacional/sangue , Diabetes Gestacional/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/ultraestrutura , Masculino , Peptídeos/genética , Gravidez , Proteína B Associada a Surfactante Pulmonar/genética , Distribuição Aleatória , Ratos
3.
ACS Chem Biol ; 16(12): 2864-2873, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34878249

RESUMO

Treatment of respiratory distress syndrome (RDS) with surfactant replacement therapy in prematurely born infants was introduced more than 30 years ago; however, the surfactant preparations currently in clinical use are extracts from animal lungs. A synthetic surfactant that matches the currently used nature-derived surfactant preparations and can be produced in a cost-efficient manner would enable worldwide treatment of neonatal RDS and could also be tested against lung diseases in adults. The major challenge in developing fully functional synthetic surfactant preparations is to recapitulate the properties of the hydrophobic lung surfactant proteins B (SP-B) and SP-C. Here, we have designed single polypeptides that combine properties of SP-B and SP-C and produced them recombinantly using a novel solubility tag based on spider silk production. These Combo peptides mixed with phospholipids are as efficient as nature-derived surfactant preparations against neonatal RDS in premature rabbit fetuses.


Assuntos
Peptídeos/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Escherichia coli , Humanos , Pulmão , Peptídeos/farmacologia , Fosfolipídeos/química , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Coelhos , Proteínas Recombinantes/farmacologia , Tensoativos
4.
BMC Pulm Med ; 21(1): 330, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686153

RESUMO

BACKGROUND: Optimal functionality of synthetic lung surfactant for treatment of respiratory distress syndrome in preterm infants largely depends on the quality and quantity of the surfactant protein B (SP-B) peptide mimic and the lipid mixture. B-YL peptide is a 41-residue sulfur-free SP-B mimic with its cysteine and methionine residues replaced by tyrosine and leucine, respectively, to enhance its oxidation resistance. AIM: Testing the structural and functional stability of the B-YL peptide in synthetic surfactant lipids after long-term storage. METHODS: The structural and functional properties of B-YL peptide in surfactant lipids were studied using three production runs of B-YL peptides in synthetic surfactant lipids. Each run was held at 5 °C ambient temperature for three years and analyzed with structural and computational techniques, i.e., MALDI-TOF mass spectrometry, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), secondary homology modeling of a preliminary B-YL structure, and tertiary Molecular Dynamic simulations of B-YL in surfactant lipids, and with functional methods, i.e., captive bubble surfactometry (CBS) and retesting in vivo surface activity in surfactant-deficient young adult rabbits. RESULTS: MALDI-TOF mass spectrometry showed no degradation of the B-YL peptide as a function of stored time. ATR-FTIR studies demonstrated that the B-YL peptide still assumed stable alpha-helical conformations in synthetic surfactant lipids. These structural findings correlated with excellent in vitro surface activity during both quasi-static and dynamic cycling on CBS after three years of cold storage and in vivo surface activity of the aged formulations with improvements in oxygenation and dynamic lung compliance approaching those of the positive control surfactant Curosurf®. CONCLUSIONS: The structure of the B-YL peptide and the in vitro and in vivo functions of the B-YL surfactant were each maintained after three years of refrigeration storage.


Assuntos
Proteína B Associada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Tensoativos/química , Animais , Estabilidade de Medicamentos , Metabolismo dos Lipídeos , Proteína B Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Coelhos , Tensoativos/metabolismo
5.
Physiol Rep ; 9(1): e14700, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33403805

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with diffuse inflammation, alveolar epithelial damage, and leakage of plasma proteins into the alveolar space, which together contribute to inactivation of pulmonary surfactant and respiratory failure. Exogenous surfactant delivery is therefore considered to hold potential for ARDS treatment, but clinical trials with natural derived surfactant or synthetic surfactant containing a surfactant protein C (SP-C) analogue have been negative. Synthetic surfactant CHF5633, containing analogues of SP-B and SP-C, may be effective against ARDS. The aim here was to compare treatment effects of CHF5633 and animal-derived surfactant poractant alfa in animal model of ARDS. ARDS was induced in adult New Zealand rabbits by mild lung lavages followed by injurious ventilation until respiratory failure (P/F ratio <26.7 kPa). The animals were then treated with intratracheal bolus of 200 mg/kg CHF5633 or poractant alfa (Curosurf® ), or air as control. The animals were subsequently ventilated for an additional 4 hr and respiratory parameters were recorded regularly. Postmortem, histological analysis, degree of lung edema, and levels of the cytokines TNFα, IL-6, and IL-8 in lung homogenates were evaluated. Both surfactant preparations improved lung function, reduced the levels of pro-inflammatory cytokines, and degree of lung edema to very similar degrees versus the controls. No significant differences in any of the analyzed parameters were observed between the CHF5633- and poractant alfa-treated groups. This study indicates that single dose of CHF5633 improves lung function and attenuates inflammation as effectively as poractant alfa in experimental ARDS caused by injurious ventilation.


Assuntos
Produtos Biológicos/farmacologia , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfatidilcolinas/farmacologia , Fosfolipídeos/farmacologia , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Modelos Animais de Doenças , Inflamação/patologia , Pulmão/patologia , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/farmacologia , Coelhos , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
6.
Mol Cell ; 81(1): 49-66.e8, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33242393

RESUMO

Breathing depends on pulmonary surfactant, a mixture of phospholipids and proteins, secreted by alveolar type II cells. Surfactant requires lamellar bodies (LBs), organelles containing densely packed concentric membrane layers, for storage and secretion. LB biogenesis remains mysterious but requires surfactant protein B (SP-B), which is synthesized as a precursor (pre-proSP-B) that is cleaved during trafficking into three related proteins. Here, we elucidate the functions and cooperation of these proteins in LB formation. We show that the N-terminal domain of proSP-B is a phospholipid-binding and -transfer protein whose activities are required for proSP-B export from the endoplasmic reticulum (ER) and sorting to LBs, the conversion of proSP-B into lipoprotein particles, and neonatal viability in mice. The C-terminal domain facilitates ER export of proSP-B. The mature middle domain, generated after proteolytic cleavage of proSP-B, generates the striking membrane layers characteristic of LBs. Together, our results lead to a mechanistic model of LB biogenesis.


Assuntos
Retículo Endoplasmático/metabolismo , Lipoproteínas/metabolismo , Complexos Multiproteicos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Lipoproteínas/química , Camundongos , Complexos Multiproteicos/química , Domínios Proteicos , Proteína B Associada a Surfactante Pulmonar/química
7.
J Mol Biol ; 433(3): 166749, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33309854

RESUMO

Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface.


Assuntos
Permeabilidade da Membrana Celular , Metabolismo dos Lipídeos , Lipídeos/química , Proteína B Associada a Surfactante Pulmonar/química , Proteína B Associada a Surfactante Pulmonar/metabolismo , Anticorpos Bloqueadores , Transporte Biológico , Biomarcadores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Imunofluorescência , Metabolismo dos Lipídeos/efeitos dos fármacos
8.
Nat Commun ; 11(1): 3929, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764559

RESUMO

Surfactant protein B (SP-B) deficiency is an autosomal recessive disorder that impairs surfactant homeostasis and manifests as lethal respiratory distress. A compelling argument exists for gene therapy to treat this disease, as de novo protein synthesis of SP-B in alveolar type 2 epithelial cells is required for proper surfactant production. Here we report a rationally designed adeno-associated virus (AAV) 6 capsid that demonstrates efficiency in lung epithelial cell transduction based on imaging and flow cytometry analysis. Intratracheal administration of this vector delivering murine or human proSFTPB cDNA into SP-B deficient mice restores surfactant homeostasis, prevents lung injury, and improves lung physiology. Untreated SP-B deficient mice develop fatal respiratory distress within two days. Gene therapy results in an improvement in median survival to greater than 200 days. This vector also transduces human lung tissue, demonstrating its potential for clinical translation against this lethal disease.


Assuntos
Terapia Genética/métodos , Vetores Genéticos , Parvovirinae/genética , Proteinose Alveolar Pulmonar/congênito , Proteína B Associada a Surfactante Pulmonar/deficiência , Animais , Animais Recém-Nascidos , Linhagem Celular , Dependovirus , Modelos Animais de Doenças , Feminino , Expressão Gênica , Células HEK293 , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Precursores de Proteínas/genética , Proteolipídeos/genética , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/metabolismo , Proteinose Alveolar Pulmonar/terapia , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/genética , Transdução Genética
9.
J Mol Biol ; 432(10): 3251-3268, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32135191

RESUMO

Surfactant protein B (SP-B) is essential in transferring surface-active phospholipids from membrane-based surfactant complexes into the alveolar air-liquid interface. This allows maintaining the mechanical stability of the surfactant film under high pressure at the end of expiration; therefore, SP-B is crucial in lung function. Despite its necessity, the structure and the mechanism of lipid transfer by SP-B have remained poorly characterized. Earlier, we proposed higher-order oligomerization of SP-B into ring-like supramolecular assemblies. In the present work, we used coarse-grained molecular dynamics simulations to elucidate how the ring-like oligomeric structure of SP-B determines its membrane binding and lipid transfer. In particular, we explored how SP-B interacts with specific surfactant lipids, and how consequently SP-B reorganizes its lipid environment to modulate the pulmonary surfactant structure and function. Based on these studies, there are specific lipid-protein interactions leading to perturbation and reorganization of pulmonary surfactant layers. Especially, we found compelling evidence that anionic phospholipids and cholesterol are needed or even crucial in the membrane binding and lipid transfer function of SP-B. Also, on the basis of the simulations, larger oligomers of SP-B catalyze lipid transfer between adjacent surfactant layers. Better understanding of the molecular mechanism of SP-B will help in the design of therapeutic SP-B-based preparations and novel treatments for fatal respiratory complications, such as the acute respiratory distress syndrome.


Assuntos
Fosfolipídeos/química , Proteína B Associada a Surfactante Pulmonar/química , Proteína B Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/química , Sítios de Ligação , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica
10.
Biochim Biophys Acta Biomembr ; 1862(6): 183216, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067963

RESUMO

Surfactant protein SP-B is absolutely required for the generation of functional pulmonary surfactant, a unique network of multilayered membranes, which stabilizes the respiratory air-liquid interface. It has been proposed that SP-B assembles into hydrophobic rings and tubes that facilitate the rapid transfer of phospholipids from membrane stores into the interface and the formation of multilayered films, ensuring the stability of the alveoli against physical forces leading to their collapse. To elucidate the molecular organization of SP-B-promoted multilamellar membrane structures, time-resolved Förster Resonance Energy Transfer (FRET) experiments between BODIPY-PC or BODIPY-derivatized SP-B (BODIPY/SP-B), as donor probes, and octadecylrhodamine B, as acceptor probe, were performed in liposomes containing SP-B or BODIPY/SP-B. Our results show that both SP-B and fluorescently labeled SP-B oligomers mediate the connection of adjacent bilayers. Furthermore, by applying rational models to the FRET data, we have been able to provide quantitative details of the structure of SP-B-induced multilayered membrane arrays at the nanometer scale, defining interactions between SP-B rings as key elements for connecting surfactant membranes. The data sustain the structural model and the mechanism of action of SP-B assemblies to sustain the crucial surfactant function.


Assuntos
Nanoestruturas/química , Alvéolos Pulmonares/química , Proteína B Associada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Animais , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Bicamadas Lipídicas/química , Lipossomos/química , Alvéolos Pulmonares/ultraestrutura , Proteína B Associada a Surfactante Pulmonar/metabolismo
11.
Pediatr Res ; 87(3): 511-517, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30776794

RESUMO

BACKGROUND: Current in vitro human lung epithelial cell models derived from adult tissues may not accurately represent all attributes that define homeostatic and disease mechanisms relevant to the pediatric lung. METHODS: We report methods for growing and differentiating primary Pediatric Human Lung Epithelial (PHLE) cells from organ donor infant lung tissues. We use immunohistochemistry, flow cytometry, quantitative RT-PCR, and single cell RNA sequencing (scRNAseq) analysis to characterize the cellular and transcriptional heterogeneity of PHLE cells. RESULTS: PHLE cells can be expanded in culture up to passage 6, with a doubling time of ~4 days, and retain attributes of highly enriched epithelial cells. PHLE cells can form resistant monolayers, and undergo differentiation when placed at air-liquid interface. When grown at Air-Liquid Interface (ALI), PHLE cells expressed markers of airway epithelial cell lineages. scRNAseq suggests the cultures contained 4 main sub-phenotypes defined by expression of FOXJ1, KRT5, MUC5B, and SFTPB. These cells are available to the research community through the Developing Lung Molecular Atlas Program Human Tissue Core. CONCLUSION: Our data demonstrate that PHLE cells provide a novel in vitro human cell model that represents the pediatric airway epithelium, which can be used to study perinatal developmental and pediatric disease mechanisms.


Assuntos
Separação Celular , Células Epiteliais/fisiologia , Pulmão/citologia , Doadores de Tecidos , Fatores Etários , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Queratina-5/genética , Queratina-5/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Fenótipo , Cultura Primária de Células , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , RNA-Seq , Análise de Célula Única
12.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480246

RESUMO

High surface tension at the alveolar air-liquid interface is a typical feature of acute and chronic lung injury. However, the manner in which high surface tension contributes to lung injury is not well understood. This study investigated the relationship between abnormal alveolar micromechanics, alveolar epithelial injury, intra-alveolar fluid properties and remodeling in the conditional surfactant protein B (SP-B) knockout mouse model. Measurements of pulmonary mechanics, broncho-alveolar lavage fluid (BAL), and design-based stereology were performed as a function of time of SP-B deficiency. After one day of SP-B deficiency the volume of alveolar fluid V(alvfluid,par) as well as BAL protein and albumin levels were normal while the surface area of injured alveolar epithelium S(AEinjure,sep) was significantly increased. Alveoli and alveolar surface area could be recruited by increasing the air inflation pressure. Quasi-static pressure-volume loops were characterized by an increased hysteresis while the inspiratory capacity was reduced. After 3 days, an increase in V(alvfluid,par) as well as BAL protein and albumin levels were linked with a failure of both alveolar recruitment and airway pressure-dependent redistribution of alveolar fluid. Over time, V(alvfluid,par) increased exponentially with S(AEinjure,sep). In conclusion, high surface tension induces alveolar epithelial injury prior to edema formation. After passing a threshold, epithelial injury results in vascular leakage and exponential accumulation of alveolar fluid critically hampering alveolar recruitability.


Assuntos
Células Epiteliais Alveolares/patologia , Líquido da Lavagem Broncoalveolar/química , Proteína B Associada a Surfactante Pulmonar/deficiência , Células Acinares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/ultraestrutura , Animais , Fenômenos Biomecânicos , Doxiciclina/farmacologia , Feminino , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Pulmão/ultraestrutura , Camundongos Knockout , Modelos Biológicos , Proteína B Associada a Surfactante Pulmonar/metabolismo , Relação Estrutura-Atividade , Tensão Superficial
13.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398818

RESUMO

Although lung surfactant protein B (SP-B) is an essential protein that plays a crucial role in breathing, the details of its structure and mechanism are not well understood. SP-B forms covalent homodimers, and in this work we use all-atom molecular dynamics simulations to study dimeric SP-B's structure and its behavior in promoting lipid structural transitions. Four initial system configurations were constructed based on current knowledge of SP-B's structure and mechanism, and the protein maintained a helicity consistent with experiment in all systems. Several SP-B-induced lipid reorganization behaviors were observed, and regions of the protein particularly important for these activities included SP-B's "central loop" and "hinge" regions. SP-B dimers with one subunit initially positioned in each of two adjacent bilayers appeared to promote close contact between two bilayers. When both subunits were initially positioned in the same bilayer, SP-B induced the formation of a defect in the bilayer, with water penetrating into the centre of the bilayer. Similarly, dimeric SP-B showed a propensity to interact with preformed interpores in the bilayer. SP-B dimers also promoted bilayer thinning and creasing. This work fleshes out the atomistic details of the dimeric SP-B structures and SP-B/lipid interactions that underlie SP-B's essential functions.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteína B Associada a Surfactante Pulmonar/química , Sequência de Aminoácidos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Proteica , Proteína B Associada a Surfactante Pulmonar/metabolismo , Relação Estrutura-Atividade
14.
Respir Res ; 20(1): 175, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382955

RESUMO

BACKGROUND: The amount of surfactant deposited in the lungs and its overall pulmonary distribution determine the therapeutic outcome of surfactant replacement therapy. Most of the currently available methods to determine the intrapulmonary distribution of surfactant are time-consuming and require surfactant labelling. Our aim was to assess the potential of Mass Spectrometry Imaging (MSI) as a label-free technique to qualitatively and quantitatively evaluate the distribution of surfactant to the premature lamb. METHODS: Twelve preterm lambs (gestational age 126-127d, term ~150d) were allocated in two experimental groups. Seven lambs were treated with an intratracheal bolus of the synthetic surfactant CHF5633 (200 mg/kg) and 5 lambs were managed with mechanical ventilation for 120 min, as controls. The right lung lobes of all lambs were gradually frozen while inflated to 20 cmH2O pressure for lung cryo-sections for MSI analysis. The intensity signals of SP-C analog and SP-B analog, the two synthetic peptides contained in the CHF5633 surfactant, were used to locate, map and quantify the intrapulmonary exogenous surfactant. RESULTS: Surfactant treatment was associated with a significant improvement of the mean arterial oxygenation and lung compliance (p < 0.05). Nevertheless, the physiological response to surfactant treatment was not uniform across all animals. SP-C analog and SP-B analog were successfully imaged and quantified by means of MSI in the peripheral lungs of all surfactant-treated animals. The intensity of the signal was remarkably low in untreated lambs, corresponding to background noise. The signal intensity of SP-B analog in each surfactant-treated animal, which represents the surfactant distributed to the peripheral right lung, correlated well with the physiologic response as assessed by the area under the curves of the individual arterial partial oxygen pressure and dynamic lung compliance curves of the lambs. CONCLUSIONS: Applying MSI, we were able to detect, locate and quantify the amount of exogenous surfactant distributed to the lower right lung of surfactant-treated lambs. The distribution pattern of SP-B analog correlated well with the pulmonary physiological outcomes of the animals. MSI is a valuable label-free technique which is able to simultaneously evaluate qualitative and quantitative drug distribution in the lung.


Assuntos
Pulmão/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Proteína B Associada a Surfactante Pulmonar/análise , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/análise , Proteína C Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/análise , Surfactantes Pulmonares/metabolismo , Animais , Animais Recém-Nascidos , Pulmão/efeitos dos fármacos , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/farmacologia , Fosfatidilcolinas/farmacologia , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/farmacologia , Ovinos , Distribuição Tecidual
15.
J Proteomics ; 207: 103466, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31357031

RESUMO

Pulmonary surfactant is a lipid-protein complex which coats lung alveoli. It displays the essential function of reducing surface tension at the air-liquid interface, avoiding alveolar collapse during expiration. The optimized biophysical properties of surfactant rely on its defined composition, constituted mainly by phospholipids and tiny amounts of lipid-associated specific proteins. Due to the highly hydrophobic nature of surfactant, organic solvents have been traditionally employed to obtain and characterize surfactant lipids and proteins, very likely leading to disruption of native interactions among its components. In the present work we have addressed the search of native protein complexes in pulmonary surfactant, which could have an essential role in the optimal function of the system. By solubilizing native lipid-protein membranes of surfactant with non-denaturing detergents, and with the use of a two-dimensional electrophoresis strategy, we have been able to detect the presence of supramolecular complexes composed of surfactant proteins SP-A, SP-B and SP-C. Furthermore, by co-immunoprecipitation assays, we have confirmed for the first time the existence of a direct interaction between SP-A and SP-B, an important feature which could explain the known functional cooperation of both proteins in several aspects of surfactant biology. SIGNIFICANCE: This paper deepens for the first time in the existence of complex interaction networks of surfactant proteins in native surfactant membranes. By the use of non-denaturing detergents, two-dimensional electrophoresis and immunoprecipitation, we have been able to make progress in the elucidation of native protein complexes in this essential system, that had been previously hindered by the classical purification protocols employing organic solvents. In this work, we have described the presence of interactions between SP-B and SP-A, two important proteins whose functional cooperation has been broadly reported in the literature. Pioneer determination of such native complexes could have potential implications for understanding the wide variety of roles of pulmonary surfactant system.


Assuntos
Complexos Multiproteicos/metabolismo , Alvéolos Pulmonares/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Animais , Suínos
16.
Commun Biol ; 2: 227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240265

RESUMO

Proper regulation of epigenetic states of chromatin is crucial to achieve tissue-specific gene expression during embryogenesis. The lung-specific gene products, surfactant proteins B (SP-B) and C (SP-C), are synthesized in alveolar epithelial cells and prevent alveolar collapse. Epigenetic regulation of these surfactant proteins, however, remains unknown. Here we report that MCRIP1, a regulator of the CtBP transcriptional co-repressor, promotes the expression of SP-B and SP-C by preventing CtBP-mediated epigenetic gene silencing. Homozygous deficiency of Mcrip1 in mice causes fatal respiratory distress due to abnormal transcriptional repression of these surfactant proteins. We found that MCRIP1 interferes with interactions of CtBP with the lung-enriched transcriptional repressors, Foxp1 and Foxp2, thereby preventing the recruitment of the CtBP co-repressor complex to the SP-B and SP-C promoters and maintaining them in an active chromatin state. Our findings reveal a molecular mechanism by which cells prevent inadvertent gene silencing to ensure tissue-specific gene expression during organogenesis.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Animais , Linhagem Celular Tumoral , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Epitélio/patologia , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/metabolismo , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/patologia
17.
Am J Respir Crit Care Med ; 200(7): 881-887, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002528

RESUMO

Rationale: Pulmonary alveolar proteinosis (PAP) is characterized by filling of the alveolar spaces by lipoprotein-rich material of ill-defined composition, and is caused by molecularly different and often rare diseases that occur from birth to old age.Objectives: To perform a quantitative lipidomic analysis of lipids and the surfactant proteins A, B, and C in lavage fluids from patients with proteinosis of different causes in comparison with healthy control subjects.Methods: During the last two decades, we have collected BAL samples from patients with PAP due to autoantibodies against granulocyte-macrophage colony-stimulating factor; genetic mutations in CSF2RA (colony-stimulating factor 2 receptor α-subunit), MARS (methionyl aminoacyl-tRNA synthetase), FARSB (phenylalanine-tRNA synthetase, ß-subunit), and NPC2 (Niemann-Pick disease type C2); and secondary to myeloid leukemia. Their lipid composition was quantified.Measurements and Main Results: Free cholesterol was largely increased by 60-fold and cholesteryl esters were increased by 24-fold. There was an excessive, more than 130-fold increase in ceramide and other sphingolipids. In particular, the long-chain ceramides d18:1/20:0 and d18:1/24:0 were elevated and likely contributed to the proapoptotic environment observed in PAP. Cellular debris lipids such as phosphatidylethanolamine and phosphatidylserine were only moderately increased, by four- to sevenfold. The surfactant lipid class phosphatidylcholine expanded 17-fold, lysophosphatidylcholine expanded 54-fold, and the surfactant proteins A, B, and C expanded 144-, 4-, and 17-fold, respectively. These changes did not differ among the various diseases that cause PAP.Conclusions: This insight into the alveolar lipidome may provide monitoring tools and lead to new therapeutic strategies for PAP.


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Proteinose Alveolar Pulmonar/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Adolescente , Adulto , Apoptose , Doenças Autoimunes/metabolismo , Líquido da Lavagem Broncoalveolar , Estudos de Casos e Controles , Ceramidas/metabolismo , Criança , Pré-Escolar , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Lactente , Leucemia Mieloide/complicações , Masculino , Metionina tRNA Ligase/genética , Pessoa de Meia-Idade , Fenilalanina-tRNA Ligase/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteinose Alveolar Pulmonar/etiologia , Proteinose Alveolar Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Esfingolipídeos/metabolismo , Proteínas de Transporte Vesicular/genética , Adulto Jovem
18.
Int J Cardiol ; 285: 53-58, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30857841

RESUMO

Circulating immature surfactant protein B (proSP-B) forms emerged as the most reliable lung-specific circulating marker for alveolar-capillary membrane (ACM) dysfunction and for the overall clinical status of heart failure (HF). Notably, in terms of HF hospitalization, immature SP-B overwhelms the prognostic role of other most frequently used clinical parameters such as those related to lung dysfunction. The strong prognostic value of circulating proSP-B in HF suggests more widespread and possible systemic effects. Thus, we assessed the plasma distribution of proSP-B evaluating whether it exists in a lipoprotein-bound form and its impact on lipoprotein structure and function. ProSP-B forms were detectable in high-density lipoprotein (HDL) only. To assess the impact of proSP-B on HDL, HDL from healthy subjects were enriched with proSP-B produced by a stably transfected CHO cell line that specifically expresses and releases the human proSP-B. After enrichment, HDL size and lipoprotein electrophoretic mobility, and protein composition did not show apparent differences. HDL antioxidant capacity (HOI), assessed as their ability to inhibit air-induced LDL oxidation, was impaired after proSP-B enrichment. HOI was also higher in HF patients with respect to age-matched control healthy subjects (p = 0.013). Circulating proSP-B, besides its potential role as a specific marker for ACM dysfunction in HF patients with diagnostic and prognostic value, binds to human HDL impairing their antioxidant capacity. These findings shed light on proSP-B as a molecule that contributes to the reduction of the defense against oxidative stress, a key mediator in the pathogenesis of HF.


Assuntos
Antioxidantes/metabolismo , Insuficiência Cardíaca/metabolismo , Lipoproteínas HDL/sangue , Estresse Oxidativo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Insuficiência Cardíaca/patologia , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Prognóstico
19.
Pediatr Res ; 85(3): 305-311, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30140069

RESUMO

BACKGROUND: Many premature infants with respiratory failure are deficient in surfactant, but the relationship to occurrence of bronchopulmonary dysplasia (BPD) is uncertain. METHODS: Tracheal aspirates were collected from 209 treated and control infants enrolled at 7-14 days in the Trial of Late Surfactant. The content of phospholipid, surfactant protein B, and total protein were determined in large aggregate (active) surfactant. RESULTS: At 24 h, surfactant treatment transiently increased surfactant protein B content (70%, p < 0.01), but did not affect recovered airway surfactant or total protein/phospholipid. The level of recovered surfactant during dosing was directly associated with content of surfactant protein B (r = 0.50, p < 0.00001) and inversely related to total protein (r = 0.39, p < 0.0001). For all infants, occurrence of BPD was associated with lower levels of recovered large aggregate surfactant, higher protein content, and lower SP-B levels. Tracheal aspirates with lower amounts of recovered surfactant had an increased proportion of small vesicle (inactive) surfactant. CONCLUSIONS: We conclude that many intubated premature infants are deficient in active surfactant, in part due to increased intra-alveolar metabolism, low SP-B content, and protein inhibition, and that the severity of this deficit is predictive of BPD. Late surfactant treatment at the frequency used did not provide a sustained increase in airway surfactant.


Assuntos
Displasia Broncopulmonar/prevenção & controle , Surfactantes Pulmonares/administração & dosagem , Respiração/efeitos dos fármacos , Peso ao Nascer , Esquema de Medicação , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro , Masculino , Fosfolipídeos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo
20.
PLoS One ; 13(9): e0203502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235245

RESUMO

OBJECTIVE: Surfactant Proteins (SPs) are well known from lung and form, along with phospholipids, a surface-active-layer at the liquid-air-interface of the alveolar lining. They play a major protective role by lowering surface tension, activating innate and adaptive immune defense at the lung mucosal interface, especially during infection. We analyzed the regulation of SPs in human and mouse articular chondrocytes, synoviocytes, and synovial fluid under healthy and inflammatory conditions, as well as in tissues of patients suffering from osteoarthritis and rheumatoid arthritis. METHODS: Immunohistochemistry, RT-PCR, qRT-PCR, ELISA, Western blotting were performed in cell cultures and tissue samples to determine localization, regulation, and concentration of SPs. RESULTS: All four SPs, were expressed by healthy human and mouse articular chondrocytes and synoviocytes and were also present in synovial fluid. Treatment with inflammatory mediators like IL-1ß and TNF-α led to short-term upregulation of individual SPs in vitro. In tissues from patients with osteoarthritis and rheumatoid arthritis, protein levels of all four SPs increased significantly compared to the controls used. CONCLUSION: These results show the distribution and amount of SPs in tissues of articular joints. They are produced by chondrocytes and synoviocytes and occur in measurable amounts in synovial fluid. All four SPs seem to be differently regulated under pathologic conditions. Their physiological functions in lowering surface tension and immune defense need further elucidation and make them potential candidates for therapeutic intervention.


Assuntos
Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/patologia , Cartilagem Articular/patologia , Linhagem Celular Transformada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/patologia , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...