Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(27): 6518-6528, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38942776

RESUMO

Protein structure has been well established to play a key role in determining function; however, intrinsically disordered proteins and regions (IDPs and IDRs) defy this paradigm. IDPs and IDRs exist as an ensemble of structures rather than a stable 3D structure yet play essential roles in many cell-signaling processes. Nearly all Ras superfamily GTPases are tethered to membranes by a lipid tail at the end of a flexible IDR. The sequence of the IDR is a key determinant of membrane localization, and interaction between the IDR and the membrane has been shown to affect signaling in RAS proteins through the modulation of dynamic membrane organization. Here, we utilized atomistic molecular dynamics simulations to study the membrane interaction, conformational dynamics, and lipid sorting of three IDRs from small GTPases Rheb, RhoA, and DiRas3 in model membranes representing their physiological target membranes. We found that complementarity between the lipidated IDR sequence and target membrane lipid composition is a determinant of conformational plasticity. We also show that electrostatic interactions between anionic lipids and basic residues on IDRs are correlated with sampling of semistable conformational substates, and lack of these interactions is associated with greater conformational diversity. Finally, we show that small GTPase IDRs with a polybasic domain alter local lipid composition by segregating anionic lipids and, in some cases, excluding other lipids from their immediate vicinity in favor of anionic lipids.


Assuntos
Proteínas Intrinsicamente Desordenadas , Simulação de Dinâmica Molecular , Proteína rhoA de Ligação ao GTP , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
2.
Med Sci (Paris) ; 37(4): 372-378, 2021 Apr.
Artigo em Francês | MEDLINE | ID: mdl-33908855

RESUMO

mTORC1 is a central player in cell growth, a process that is tightly regulated by the availability of nutrients and that controls various aspects of metabolism in the normal cell and in severe diseases such as cancers. mTORC1 is a large multiprotein complex, composed of the kinase subunit mTOR, of Ragulator, which attaches mTOR to the lysosome membrane, of the atypical Rag GTPases and the small GTPase RheB, whose nucleotide states directly dictate its localization to the lysosome and its kinase activity, and of RAPTOR, an adaptor that assembles the complex. The activity of the Rag GTPases is further controlled by the GATOR1 and folliculin complexes, which regulate their GTP/GDP conversion. Here, we review recent structures of important components of the mTORC1 machinery, determined by cryo-electron microscopy for the most part, which allow to reconstitute the architecture of active mTORC1 at near atomic resolution. Notably, we discuss how these structures shed new light on the roles of Rag GTPases and their regulators in mTORC1 regulation, and the perspectives that they open towards understanding the inner workings of mTORC1 on the lysosomal membrane.


TITLE: Une moisson de nouvelles structures de mTORC1 - Coup de projecteur sur les GTPases Rag. ABSTRACT: mTORC1 est un acteur central de la croissance cellulaire, un processus étroitement régulé par la disponibilité de nutriments et qui contrôle diverses étapes du métabolisme dans la cellule normale et au cours de maladies, comme les cancers. mTORC1 est un complexe multiprotéique de grande taille constitué de nombreuses sous-unités, parmi lesquelles deux types de GTPases, Rag et RheB, contrôlent directement sa localisation membranaire et son activité kinase. Dans cette revue, nous faisons le point sur une moisson de structures récentes, déterminées pour la plupart par cryo-microscopie électronique, qui sont en passe de reconstituer le puzzle de l'architecture de mTORC1. Nous discutons ce que ces structures révèlent sur le rôle des GTPases, et ce que leur connaissance ouvre comme perspectives pour comprendre comment mTORC1 fonctionne à la membrane du lysosome.


Assuntos
Proliferação de Células , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Estrutura Quaternária de Proteína , Microscopia Crioeletrônica , GTP Fosfo-Hidrolases/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Proto-Oncogênicas/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Regulatória Associada a mTOR/química , Serina-Treonina Quinases TOR/química , Proteínas Supressoras de Tumor/química
3.
Structure ; 28(8): 933-942.e4, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502382

RESUMO

The TSC complex is the cognate GTPase-activating protein (GAP) for the small GTPase Rheb and a crucial regulator of the mechanistic target of rapamycin complex 1 (mTORC1). Mutations in the TSC1 and TSC2 subunits of the complex cause tuberous sclerosis complex (TSC). We present the crystal structure of the catalytic asparagine-thumb GAP domain of TSC2. A model of the TSC2-Rheb complex and molecular dynamics simulations suggest that TSC2 Asn1643 and Rheb Tyr35 are key active site residues, while Rheb Arg15 and Asp65, previously proposed as catalytic residues, contribute to the TSC2-Rheb interface and indirectly aid catalysis. The TSC2 GAP domain is further stabilized by interactions with other TSC2 domains. We characterize TSC2 variants that partially affect TSC2 functionality and are associated with atypical symptoms in patients, suggesting that mutations in TSC1 and TSC2 might predispose to neurological and vascular disorders without fulfilling the clinical criteria for TSC.


Assuntos
Domínio Catalítico , Mutação de Sentido Incorreto , Proteína 2 do Complexo Esclerose Tuberosa/química , Esclerose Tuberosa/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
5.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-30647914

RESUMO

The mechanistic target of rapamycin (MTOR) is a giant protein kinase that, together with the accessory proteins Raptor and mLst8, forms a complex of over 1 MDa known as MTOR complex 1 (MTORC1). MTORC1, through its protein kinase activity, controls the accretion of cell mass through the regulation of gene transcription, mRNA translation, and protein turnover. MTORC1 is activated in an interdependent manner by insulin/growth factors and nutrients, especially amino acids, and is inhibited by stressors such as hypoxia and by the drug rapamycin. The action of insulin/growth factors converges on the small GTPase Rheb, which binds directly to the MTOR polypeptide in MTORC1 and, in its GTP-bound state, initiates kinase activation. Biochemical studies established that MTORC1 exists as a dimer of the MTOR/Raptor/mLst8 trimer, and progressive refinements in cryo-electron microscopy (cryo-EM) have enabled an increasingly clear picture of the architecture of MTORC1, culminating in a deep understanding of how MTORC1 interacts with and phosphorylates its best-known substrates-the eIF-4E binding protein/4E-BP, the p70 S6 kinase/S6K1B, and PRAS40/AKT1S1-and how this is inhibited by rapamycin. Most recently, Rheb-GTP has been shown to bind to MTORC1 in a cooperative manner at an allosteric site remote from the kinase domain that twists the latter into a catalytically competent configuration. Herein, we review the recent cryo-EM and associated biochemical studies of MTORC1 and seek to integrate these new results with the known physiology of MTORC1 regulation and signaling.


Assuntos
Microscopia Crioeletrônica , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Animais , Humanos
6.
Mol Med Rep ; 18(3): 2798-2806, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30015881

RESUMO

Endothelial cell autophagy has a protective role in inhibiting inflammation and preventing the development of atherosclerosis, which may be regulated by microRNA (miR)­155. The present study aimed to investigate the mechanisms of autophagy in the development of atherosclerosis. Human umbilical vein endothelial cells model in vitro and using oxidized low­density lipoprotein (ox­LDL) stimulated cells to simulate the atherosclerosis. MiR­155 mimics, miR­155 inhibitors, and a negative control were respectively transfected in human umbilical vein endothelial cells to analyzed alterations in the expression of miR­155. It was demonstrated that overexpression of miR­155 promoted autophagic activity in oxidized low­density lipoprotein­stimulated human umbilical vein endothelial cells, whereas inhibition of the expression of miR­155 reduced autophagic activity. Overexpression of miR­155 revealed that it regulated autophagy via the phosphatidylinositol­3 kinase (PI3K)/RAC­α serine/threonine­protein kinase (Akt)/mechanistic target of rapamycin pathway (mTOR) signaling pathway. A luciferase reporter assay demonstrated that miR­155 directly bound to the PI3K catalytic subunit a and Ras homolog enriched in brain 3'­untranslated region and inhibited its luciferase activity. Therefore, the results of the present study suggested that miR­155 promoted autophagy in vascular endothelial cells and that this may have occurred via targeting of the PI3K/Akt/mTOR pathway. Thus, miR­155 may be considered as a potential therapeutic target for the treatment of atherosclerosis.


Assuntos
Autofagia/efeitos dos fármacos , Lipoproteínas LDL/toxicidade , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regiões 3' não Traduzidas , Antagomirs/metabolismo , Sequência de Bases , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Fosfatidilinositol 3-Quinase/química , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
7.
Sci Rep ; 8(1): 5239, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588502

RESUMO

Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering.


Assuntos
Membrana Celular/metabolismo , Filogenia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Euglenozoários/genética , Euglenozoários/metabolismo , Infecções por Euglenozoa/parasitologia , Evolução Molecular , Humanos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química
8.
FEBS Lett ; 592(1): 130-146, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194576

RESUMO

Ras homolog enriched in brain (Rheb) is a small GTPase that regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) and, thereby, cell growth and metabolism. Here we show that cycling between the inactive GDP- and the active GTP-bound state modulates the backbone dynamics of a C-terminal truncated form, RhebΔCT, which is suggested to influence its interactions. We further investigated the interactions between RhebΔCT and the proposed Rheb-binding domain of the regulatory protein FKBP38. The observed weak interactions with the GTP-analogue- (GppNHp-) but not the GDP-bound state, appear to accelerate the GDP to GTP exchange, but only very weakly compared to a genuine GEF. Thus, FKBP38 is most likely not a GEF but a Rheb effector that may function in membrane targeting of Rheb.


Assuntos
Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteínas de Ligação a Tacrolimo/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
9.
Nature ; 552(7685): 368-373, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29236692

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, energy levels, and growth factors. It contains the atypical kinase mTOR and the RAPTOR subunit that binds to the Tor signalling sequence (TOS) motif of substrates and regulators. mTORC1 is activated by the small GTPase RHEB (Ras homologue enriched in brain) and inhibited by PRAS40. Here we present the 3.0 ångström cryo-electron microscopy structure of mTORC1 and the 3.4 ångström structure of activated RHEB-mTORC1. RHEB binds to mTOR distally from the kinase active site, yet causes a global conformational change that allosterically realigns active-site residues, accelerating catalysis. Cancer-associated hyperactivating mutations map to structural elements that maintain the inactive state, and we provide biochemical evidence that they mimic RHEB relieving auto-inhibition. We also present crystal structures of RAPTOR-TOS motif complexes that define the determinants of TOS recognition, of an mTOR FKBP12-rapamycin-binding (FRB) domain-substrate complex that establishes a second substrate-recruitment mechanism, and of a truncated mTOR-PRAS40 complex that reveals PRAS40 inhibits both substrate-recruitment sites. These findings help explain how mTORC1 selects its substrates, how its kinase activity is controlled, and how it is activated by cancer-associated mutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microscopia Crioeletrônica , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/ultraestrutura , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Modelos Moleculares , Mutação , Neoplasias/genética , Ligação Proteica , Domínios Proteicos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/ultraestrutura , Proteína Regulatória Associada a mTOR/química , Proteína Regulatória Associada a mTOR/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Sirolimo/metabolismo , Especificidade por Substrato , Proteína 1A de Ligação a Tacrolimo/metabolismo
10.
Biomolecules ; 7(4)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104218

RESUMO

Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that controls multiple cellular processes upon various intracellular and extracellular stimuli. Since its first discovery, extensive studies have been conducted both in yeast and animal species including humans. Those studies have revealed that TOR forms two structurally and physiologically distinct protein complexes; TOR complex 1 (TORC1) is ubiquitous among eukaryotes including animals, yeast, protozoa, and plants, while TOR complex 2 (TORC2) is conserved in diverse eukaryotic species other than plants. The studies have also identified two crucial regulators of mammalian TORC1 (mTORC1), Ras homolog enriched in brain (RHEB) and RAG GTPases. Of these, RAG regulates TORC1 in yeast as well and is conserved among eukaryotes with the green algae and land plants as apparent exceptions. RHEB is present in various eukaryotes but sporadically missing in multiple taxa. RHEB, in the budding yeast Saccharomyces cerevisiae, appears to be extremely divergent with concomitant loss of its function as a TORC1 regulator. In this review, we summarize the evolutionarily conserved functions of the key regulatory subunits of TORC1 and TORC2, namely RAPTOR, RICTOR, and SIN1. We also delve into the evolutionary conservation of RHEB and RAG and discuss the conserved roles of these GTPases in regulating TORC1.


Assuntos
Evolução Molecular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Sequência Conservada/genética , Eucariotos/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 2 de Rapamicina/química , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Plantas , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Saccharomyces cerevisiae/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...