Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 927
Filtrar
1.
Se Pu ; 42(5): 410-419, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736384

RESUMO

Protein A affinity chromatographic materials are widely used in clinical medicine and biomedicine because of their specific interactions with immunoglobulin G (IgG). Both the characteristics of the matrix, such as its structure and morphology, and the surface modification method contribute to the affinity properties of the packing materials. The specific, orderly, and oriented immobilization of protein A can reduce its steric hindrance with the matrix and preserve its bioactive sites. In this study, four types of affinity chromatographic materials were obtained using agarose and polyglycidyl methacrylate (PGMA) spheres as substrates, and multifunctional epoxy and maleimide groups were used to fix protein A. The effects of the ethylenediamine concentration, reaction pH, buffer concentration, and other conditions on the coupling efficiency of protein A and adsorption performance of IgG were evaluated. Multifunctional epoxy materials were prepared by converting part of the epoxy groups of the agarose and PGMA matrices into amino groups using 0.2 and 1.6 mol/L ethylenediamine, respectively. Protein A was coupled to the multifunctional epoxy materials using 5 mmol/L borate buffer (pH 8) as the reaction solution. When protein A was immobilized on the substrates by maleimide groups, the agarose and PGMA substrates were activated with 25% (v/v) ethylenediamine for 16 h to convert all epoxy groups into amino groups. The maleimide materials were then converted into amino-modified materials by adding 3 mg/mL 3-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) dissolved in dimethyl sulfoxide (DMSO) and then suspended in 5 mmol/L borate buffer (pH 8). The maleimide groups reacted specifically with the C-terminal of the sulfhydryl group of recombinant protein A to achieve highly selective fixation on both the agarose and PGMA substrates. The adsorption performance of the affinity materials for IgG was improved by optimizing the bonding conditions of protein A, such as the matrix type, matrix particle size, and protein A content, and the adsorption properties of each affinity material for IgG were determined. The column pressure of the protein A affinity materials prepared using agarose or PGMA as the matrix via the maleimide method was subsequently evaluated at different flow rates. The affinity materials prepared with PGMA as the matrix exhibited superior mechanical strength compared with the materials prepared with agarose. Moreover, an excellent linear relationship between the flow rate and column pressure of 80 mL/min was observed for this affinity material. Subsequently, the effect of the particle size of the PGMA matrix on the binding capacity of IgG was investigated. Under the same protein A content, the dynamic binding capacity of the affinity materials on the PGMA matrix was higher when the particle size was 44-88 µm than when other particle sizes were used. The properties of the affinity materials prepared using the multifunctional epoxy and maleimide-modified materials were compared by synthesizing affinity materials with different protein A coupling amounts of 1, 2, 4, 6, 8, and 10 mg/mL. The dynamic and static binding capacities of each material for bovine IgG were then determined. The prepared affinity material was packed into a chromatographic column to purify IgG from bovine colostrum. Although all materials showed specific adsorption selectivity for IgG, the affinity material prepared by immobilizing protein A on the PGMA matrix with maleimide showed significantly better performance and achieved a higher dynamic binding capacity at a lower protein grafting amount. When the protein grafting amount was 15.71 mg/mL, the dynamic binding capacity of bovine IgG was 32.23 mg/mL, and the dynamic binding capacity of human IgG reached 54.41 mg/mL. After 160 cycles of alkali treatment, the dynamic binding capacity of the material reached 94.6% of the initial value, indicating its good stability. The developed method is appropriate for the production of protein A affinity chromatographic materials and shows great potential in the fields of protein immobilization and immunoadsorption material synthesis.


Assuntos
Cromatografia de Afinidade , Proteína Estafilocócica A , Cromatografia de Afinidade/métodos , Proteína Estafilocócica A/química , Adsorção , Imunoglobulina G/química , Ácidos Polimetacrílicos/química , Sefarose/química
2.
Sci Rep ; 14(1): 8714, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622266

RESUMO

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Assuntos
Cromatografia , Proteína Estafilocócica A , Proteína Estafilocócica A/química , Ligantes , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Proteínas de Plantas/metabolismo , Cromatografia de Afinidade/métodos
3.
J Chromatogr A ; 1722: 464890, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598892

RESUMO

The rapidly growing market of monoclonal antibodies (mAbs) within the biopharmaceutical industry has incentivised numerous works on the design of more efficient production processes. Protein A affinity chromatography is regarded as one of the best processes for the capture of mAbs. Although the screening of Protein A resins has been previously examined, process flexibility has not been considered to date. Examining performance alongside flexibility is crucial for the design of processes that can handle disturbances arising from the feed stream. In this work, we present a model-based approach for the identification of design spaces, enhanced by machine learning. We demonstrate its capabilities on the design of a Protein A chromatography unit, screening five industrially relevant resins. The computational results favourably compare to experimental data and a resin performance comparison is presented. An improvement on the computational time by a factor of 300,000 is achieved using the machine learning aided methodology. This allowed for the identification of 5,120 different design spaces in only 19 h.


Assuntos
Anticorpos Monoclonais , Cromatografia de Afinidade , Desenho Assistido por Computador , Aprendizado de Máquina , Proteína Estafilocócica A , Cromatografia de Afinidade/métodos , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química
4.
J Chromatogr A ; 1722: 464873, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626540

RESUMO

3D printing offers the unprecedented ability to fabricate chromatography stationary phases with bespoke 3D morphology as opposed to traditional packed beds of spherical beads. The restricted range of printable materials compatible with chromatography is considered a setback for its industrial implementation. Recently, we proposed a novel ink that exhibits favourable printing performance (printing time ∼100 mL/h, resolution ∼200 µm) and broadens the possibilities for a range of chromatography applications thanks to its customisable surface chemistry. In this work, this ink was used to fabricate 3D printed ordered columns with 300 µm channels for the capture and polishing of therapeutic monoclonal antibodies. The columns were initially assessed for leachables and extractables, revealing no material propensity for leaching. Columns were then functionalised with protein A and SO3 ligands to obtain affinity and strong cation exchangers, respectively. 3D printed protein A columns showed >85 % IgG recovery from harvested cell culture fluid with purities above 98 %. Column reusability was evaluated over 20 cycles showing unaffected performance. Eluate samples were analysed for co-eluted protein A fragments, host cell protein and aggregates. Results demonstrate excellent HCP clearance (logarithmic reduction value of > 2.5) and protein A leakage in the range of commercial affinity resins (<100 ng/mg). SO3 functionalised columns employed for polishing achieved removal of leaked Protein A (down to 10 ng/mg) to meet regulatory expectations of product purity. This work is the first implementation of 3D printed columns for mAb purification and provides strong evidence for their potential in industrial bioseparations.


Assuntos
Anticorpos Monoclonais , Cricetulus , Imunoglobulina G , Impressão Tridimensional , Proteína Estafilocócica A , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/química , Células CHO , Cromatografia de Afinidade/métodos , Animais , Cromatografia por Troca Iônica/métodos , Tinta
5.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673914

RESUMO

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Potyvirus , Imunoglobulina G/metabolismo , Cetuximab/farmacologia , Cetuximab/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
6.
J Chem Inf Model ; 64(8): 3350-3359, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38566451

RESUMO

The B domain of protein A (BdpA), a small three-helix bundle, folds on a time scale of a few microseconds with heterogeneous native and unfolded states. It is widely used as a model for understanding protein folding mechanisms. In this work, we use structure-based models (SBMs) and atomistic simulations to comprehensively investigate how BdpA folding is associated with the formation of its secondary structure. The energy landscape visualization method (ELViM) was used to characterize the pathways that connect the folded and unfolded states of BdpA as well as the sets of structures displaying specific ellipticity patterns. We show that the native state conformational diversity is due mainly to the conformational variability of helix I. Helices I, II, and III occur in a weakly correlated manner, with Spearman's rank correlation coefficients of 0.1539 (I and II), 0.1259 (I and III), and 0.2561 (II and III). These results, therefore, suggest the highest cooperativity between helices II and III. Our results allow the clustering of partially folded structures of folding of the B domain of protein A on the basis of its secondary structure, paving the way to an understanding of environmental factors in the relative stability of the basins of the folding ensemble, which are illustrated by the structural dependency of the protein hydration structures, as computed with minimum-distance distribution functions.


Assuntos
Simulação de Dinâmica Molecular , Domínios Proteicos , Dobramento de Proteína , Proteína Estafilocócica A , Água , Água/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Conformação Proteica em alfa-Hélice , Modelos Moleculares , Termodinâmica
7.
Biotechnol Bioeng ; 121(5): 1716-1728, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454640

RESUMO

Host cell proteins (HCPs) are process-related impurities of therapeutic proteins produced in for example, Chinese hamster ovary (CHO) cells. Protein A affinity chromatography is the initial capture step to purify monoclonal antibodies or Fc-based proteins and is most effective for HCP removal. Previously proposed mechanisms that contribute to co-purification of HCPs with the therapeutic protein are either HCP-drug association or leaching from chromatin heteroaggregates. In this study, we analyzed protein A eluates of 23 Fc-based proteins by LC-MS/MS to determine their HCP content. The analysis revealed a high degree of heterogeneity in the number of HCPs identified in the different protein A eluates. Among all identified HCPs, the majority co-eluted with less than three Fc-based proteins indicating a drug-specific co-purification for most HCPs. Only ten HCPs co-purified with over 50% of the 23 Fc-based proteins. A correlation analysis of HCPs identified across multiple protein A eluates revealed their co-elution as HCP groups. Functional annotation and protein interaction analysis confirmed that some HCP groups are associated with protein-protein interaction networks. Here, we propose an additional mechanism for HCP co-elution involving protein-protein interactions within functional networks. Our findings may help to guide cell line development and to refine downstream purification strategies.


Assuntos
Proteína Estafilocócica A , Espectrometria de Massas em Tandem , Cricetinae , Animais , Cricetulus , Cromatografia Líquida , Células CHO , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química
8.
Biotechnol J ; 19(2): e2300554, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38385524

RESUMO

The application of model-based real-time monitoring in biopharmaceutical production is a major step toward quality-by-design and the fundament for model predictive control. Data-driven models have proven to be a viable option to model bioprocesses. In the high stakes setting of biopharmaceutical manufacturing it is essential to ensure high model accuracy, robustness, and reliability. That is only possible when (i) the data used for modeling is of high quality and sufficient size, (ii) state-of-the-art modeling algorithms are employed, and (iii) the input-output mapping of the model has been characterized. In this study, we evaluate the accuracy of multiple data-driven models in predicting the monoclonal antibody (mAb) concentration, double stranded DNA concentration, host cell protein concentration, and high molecular weight impurity content during elution from a protein A chromatography capture step. The models achieved high-quality predictions with a normalized root mean squared error of <4% for the mAb concentration and of ≈10% for the other process variables. Furthermore, we demonstrate how permutation/occlusion-based methods can be used to gain an understanding of dependencies learned by one of the most complex data-driven models, convolutional neural network ensembles. We observed that the models generally exhibited dependencies on correlations that agreed with first principles knowledge, thereby bolstering confidence in model reliability. Finally, we present a workflow to assess the model behavior in case of systematic measurement errors that may result from sensor fouling or failure. This study represents a major step toward improved viability of data-driven models in biopharmaceutical manufacturing.


Assuntos
Produtos Biológicos , Aprendizado Profundo , Proteína Estafilocócica A/química , Reprodutibilidade dos Testes , Cromatografia , Anticorpos Monoclonais/química
9.
J Chromatogr A ; 1717: 464672, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38350166

RESUMO

The monoclonal antibody (mAb) industry is becoming increasingly digitalized. Digital twins are becoming increasingly important to test or validate processes before manufacturing. High-Throughput Process Development (HTPD) has been progressively used as a tool for process development and innovation. The combination of High-Throughput Screening with fast computational methods allows to study processes in-silico in a fast and efficient manner. This paper presents a hybrid approach for HTPD where equal importance is given to experimental, computational and decision-making stages. Equilibrium adsorption isotherms of 13 protein A and 16 Cation-Exchange resins were determined with pure mAb. The influence of other components in the clarified cell culture supernatant (harvest) has been under-investigated. This work contributes with a methodology for the study of equilibrium adsorption of mAb in harvest to different protein A resins and compares the adsorption behavior with the pure sample experiments. Column chromatography was modelled using a Lumped Kinetic Model, with an overall mass transfer coefficient parameter (kov). The screening results showed that the harvest solution had virtually no influence on the adsorption behavior of mAb to the different protein A resins tested. kov was found to have a linear correlation with the sample feed concentration, which is in line with mass transfer theory. The hybrid approach for HTPD presented highlights the roles of the computational, experimental, and decision-making stages in process development, and how it can be implemented to develop a chromatographic process. The proposed white-box digital twin helps to accelerate chromatographic process development.


Assuntos
Anticorpos Monoclonais , Cromatografia , Anticorpos Monoclonais/química , Resinas de Troca de Cátion , Adsorção , Proteína Estafilocócica A/química , Cromatografia por Troca Iônica/métodos
10.
J Chromatogr A ; 1715: 464585, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38183781

RESUMO

During the manufacturing of therapeutic antibodies, effective Protein A chromatography as initial column step is crucial to simplify the remaining purification effort for subsequent polishing steps. This is particularly relevant for molecules with high impurity content so that desired product purity can be attained. The present study demonstrates beneficial effects on impurity removal when applying kosmotropic salts, e.g., sodium sulfate or sodium chloride, in the elution phase. Initially, a screen using negative linear pH gradient elution evaluated the impact of the kosmotropic salts in comparison to no additive and chaotropic urea using three mAbs and three common resins. Retaining acceptable yield, the kosmotropic salts improved resolution of monomer and impurities and reduced the contents of process-related host cell proteins and DNA as well as of product-related low and high molecular weight forms, despite some resin- and mAb-dependent variations. Moreover, a decrease in hydrolytic activity measured by a new assay for polysorbase activity was observed. In contrast, urea was hardly effective. The findings served to establish optimized step elution conditions with 0.25 M of sodium sulfate for a challenging mAb with complex format (bispecific 2 + 1 CrossMab) displaying high relative hydrophobicity and impurity levels. With yield and purity both in the range of 90 %, the contents of all impurity components were reduced, e.g., low molecular weight forms by two-fold and polysorbase activity by four-fold. The study indicates the potential of kosmotropic salts to establish efficient and comprehensive impurity separation by Protein A for facilitated downstream processing and economic manufacturing of complex antibodies.


Assuntos
Sais , Proteína Estafilocócica A , Sulfatos , Sais/química , Proteína Estafilocócica A/química , Cromatografia/métodos , Anticorpos Monoclonais , Ureia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38266612

RESUMO

Resin aging is a common occurrence in chromatographic processes and generally influenced by factors such as cleaning procedure and composition of the feed stream. Two major events occur along with protein fouling, one is the loss of protein A ligand and the other is non-specific, irreversible interactions of foulants with resin particles. Both these are responsible for resin aging. As a result, the performance of the resin suffers a fall, and this can be quantified through indicators like reduction in dynamic binding capacity, increased column pressure, or peak broadening. The number of reuse cycles of a resin has a major influence on the cost per batch. This is even more significant in the case of protein A resin, which is the primary cost driver for downstream processing. In this work, we first identify chromatogram characteristics that correlate to resin aging. Next, we propose a data monitoring-based tool for prediction of resin aging. Principal component analysis of the UV data of Mab 1 showed a deviation at 120th cycle and an out of specification at around 149th cycle, corroborating with yield decline. Batch level modelling could deliver a predictable trend for resin aging and was demonstrated for two different Mabs (Mab1 and Mab2). The results demonstrate that significant resin aging can be detected 20-25 cycles prior to observable yield decline. A control strategy has been suggested such that once the deviation has been detected, additional resin cleaning is triggered. Overall, a 50-100 Protein A cycle enhancement in resin lifespan could be achieved.


Assuntos
Cromatografia , Proteína Estafilocócica A , Proteína Estafilocócica A/química , Cromatografia/métodos , Ligantes , Anticorpos Monoclonais/química , Resinas Vegetais
12.
Biotechnol Bioeng ; 121(4): 1284-1297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240126

RESUMO

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.


Assuntos
Anticorpos Monoclonais , Proteômica , Cricetinae , Animais , Cricetulus , Proteômica/métodos , Células CHO , Anticorpos Monoclonais/química , Cromatografia em Gel , Proteína Estafilocócica A/química
13.
Protein Expr Purif ; 215: 106391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939750

RESUMO

While purifying a regular monospecific antibody, we found that the Protein A step yield was much lower than expected. Further studies revealed that the antibody formed large-size aggregates that did not bind to the Protein A resin, hence leading to dropped recovery. In an attempt to solve this low yield issue, we found that mildly acidic pH or ammonium sulfate treatment can partially convert the aggregates into monomers. In addition, when acidic pH treated culture harvest was processed by Protein A chromatography, the yield was restored to the normal range, suggesting that the monomers recovered from aggregates regained Protein A binding capability. Thus, low pH treatment of culture harvest can be potentially used as a general approach for improving Protein A step yield in cases where non-binding antibody aggregates are formed through noncovalent interactions.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química , Cromatografia , Concentração de Íons de Hidrogênio
14.
Biotechnol Bioeng ; 121(2): 757-770, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902763

RESUMO

The most straightforward method to increase monoclonal antibody (mAb) product yield is to complete the purification process in less steps. Here, three different fiber chromatographic devices were implemented using a holistic approach to intensify the mAb purification process and increase yield. Fiber protein A (proA) chromatography was first investigated, but traditional depth filtration was not sufficient in reducing the contaminant load as the fiber proA device prematurely fouled. Further experimentation revealed that chromatin aggregates were the most likely reason for the fiber fouling. To reduce levels of chromatin aggregates, a chromatographic clarification device (CCD) was incorporated into the process, resulting in single-stage clarification of harvested cell culture fluid and reduction of DNA levels. The CCD clarified pool was then successfully processed through the fiber proA device, fully realizing the productivity gains that the fiber technology offers. After the proA and viral inactivation neutralization (VIN) hold step, the purification process was further intensified using a novel single-use fiber-based polishing anion exchange (AEX) material that is capable of binding both soluble and insoluble contaminants. The three-stage fiber chromatographic purification process was compared to a legacy five-step process of dual-stage depth filtration, bead-based proA chromatography, post-VIN depth filtration, and bead-based AEX chromatography. The overall yield from the five-step process was 60%, while the fiber chromatographic-enabled intensified process had an overall yield of 70%. The impurity clearance of DNA and host cell protein (HCP) for both processes were within the regulatory specification (<100 ppm HCP, <1 ppb DNA). For the harvest of a 2000 L cell culture, the intensified process is expected to increase productivity by 2.5-fold at clarification, 50-fold at the proA step, and 1.6-fold in polishing. Relative to the legacy process, the intensified process would reduce buffer use by 1088 L and decrease overall process product mass intensity by 12.6%.


Assuntos
Anticorpos Monoclonais , Cromatografia , Animais , Cricetinae , Anticorpos Monoclonais/química , Técnicas de Cultura de Células , DNA , Cromatina , Proteína Estafilocócica A/química , Cricetulus , Células CHO
15.
J Chromatogr A ; 1713: 464523, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38041974

RESUMO

Protein A affinity chromatography is widely used as a capture step for monoclonal antibodies (mAb) and molecules that possess an Fc-domain, such as fusion proteins and bispecific antibodies. However, the use of low pH (3.0-4.0) to elute the molecule and achieve acceptable yield (>85 %) can lead to product degradation (e.g. fragmentation, aggregation) for molecules sensitive to low pH. In this paper, we describe a comprehensive evaluation of two protein A resins with ligands designed to elute at a milder pH as a result of modified sequences in their Fc and VH3 binding regions. One of the evaluated resins has been made commercially available by Purolite and named Praesto Jetted A50 HipH. Results demonstrated that Jetted A50 HipH could elute the Fc-fusion protein and most mAbs evaluated with an elution pH at or above 4.6. Elution and wash optimization determined run conditions for high recovery (>90 % monomer yield), reduction of high molecular weight (HMW) species (>50 %), and significant host cell protein (HCP) clearance at the mildest elution pH possible. For a pH-stable mAb and a pH-sensitive fusion protein, cell culture material was purified with optimized conditions and demonstrated the mild elution pH resins' ability to purify product with acceptable yield, comparable or better impurity clearance, and significantly milder native eluate pH compared to traditional resins. The benefits of the mild elution pH resins were clearly exemplified for the pH-sensitive protein, where a milder elution buffer and native eluate pH resulted in only 2 % HMW in the eluate that remained stable over 48 h. In contrast, a traditional protein A resin requiring low pH elution led to eluate HMW levels of 8 %, which increased to 16 % over the same hold time. Additionally, these resins have high dynamic binding capacity and allow the use of traditional HCP washes. Therefore, Jetted A50 HipH is an ideal candidate for a platform protein A resin and provides flexibility for pH-sensitive proteins and stable mAbs, while preserving product quality, recovery, and seamless integration into a downstream process.


Assuntos
Anticorpos Biespecíficos , Proteína Estafilocócica A , Cricetinae , Animais , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química , Técnicas de Cultura de Células , Concentração de Íons de Hidrogênio , Cromatografia de Afinidade/métodos , Células CHO
16.
J Chromatogr A ; 1713: 464528, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38029658

RESUMO

Multi-column periodic counter-current chromatography is a promising technology for continuous antibody capture. However, dynamic changes due to disturbances and drifts pose some potential risks for continuous processes during long-term operation. In this study, a model-based approach was used to describe the changes in breakthrough curves with feedstock variations in target proteins and impurities. The performances of continuous capture of three-column periodic counter-current chromatography under ΔUV dynamic control were systematically evaluated with modeling to assess the risks under different feedstock variations. As the concentration of target protein decreased rapidly, the protein might not breakthrough from the first column, resulting in the failure of ΔUV control. Small reductions in the concentrations of target proteins or impurities would cause protein losses, which could be predicted by the modeling. The combination of target protein and impurity variations showed complicated effects on the process performance of continuous capture. A contour map was proposed to describe the comprehensive impacts under different situations, and nonoperation areas could be identified due to control failure or protein loss. With the model-based approach, after the model parameters are estimated from the breakthrough curves, it can rapidly predict the process stability under dynamic control and assess the risks under feedstock variations or UV signal drifts. In conclusion, the model-based approach is a powerful tool for continuous process evaluation under dynamic changes and would be useful for establishing a new real-time dynamic control strategy.


Assuntos
Anticorpos Monoclonais , Distribuição Contracorrente , Distribuição Contracorrente/métodos , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química
17.
Protein Expr Purif ; 216: 106418, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141898

RESUMO

For a certain number of mAbs, bispecific antibodies (bsAbs) and Fc-fusion proteins that we worked on, the Protein A capture step experienced low yield (i.e., ∼80%). A previous case study suggested that non-binding aggregate formed in cell culture was the root cause of low Protein A step yield. In the current work, we selected five projects with the low Protein A yield issue to further illustrate this phenomenon. In all cases, existence of non-binding aggregates was confirmed by size-exclusion chromatography-high performance liquid chromatography (SEC-HPLC) analysis of Protein A load and flow-through. In addition, we demonstrated that aggregates failed to bind to Protein A resin mainly due to their large sizes, which prevented them from entering the resin beads. As the data suggested, SEC-HPLC analysis of Protein A load and flow-through, although not a standard procedure, can provide information that is critical for understanding the unexpected performance of Protein A chromatography in cases like those being presented here. Thus, SEC-HPLC analysis of Protein A load and flow-through is highly recommended for antibodies/Fc-fusions suffering from low Protein A yield.


Assuntos
Anticorpos Biespecíficos , Técnicas de Cultura de Células , Cromatografia Líquida de Alta Pressão , Cromatografia em Gel , Anticorpos Monoclonais/química , Anticorpos Biespecíficos/química , Proteína Estafilocócica A/química
18.
J Chromatogr A ; 1713: 464558, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38096684

RESUMO

Protein A chromatography is an enabling technology in current manufacturing processes of monoclonal antibodies (mAbs) and mAb derivatives, largely due to its ability to reduce the levels of process-related impurities by several orders of magnitude. Despite its widespread application, the use of mathematical modeling capable of accurately predicting the full protein A chromatographic process, including loading, post-loading wash and elution stages, has been limited. This work describes a mechanistic modeling approach utilizing the general rate model (GRM), the capabilities of which are explored and optimized using two isotherm models. Isotherm parameters were estimated by inverse-fitting simulated breakthrough curves to experimental data at various pH values. The parameter values so obtained were interpolated across the relevant pH range using a best-fit curve, thus enabling their use in predictive modeling, including of elution over a range of pH. The model provides accurate predictions (< 3% mean error in 10% dynamic binding capacity predictions and ∼ 5% mean error in elution mass and pool volume predictions, both on scale-up) for various residence times, buffer conditions and elution schemes and its effectiveness for use in scale-up and process development is shown by applying the same parameters to larger columns and a wider range of residence times.


Assuntos
Cromatografia , Proteína Estafilocócica A , Proteína Estafilocócica A/química , Modelos Teóricos , Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos
19.
Biotechnol Bioeng ; 121(3): 1090-1101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151902

RESUMO

Protein A capture chromatography remains a high-cost and relatively low-productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single-pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8- to 2.6-fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A , Animais , Cricetinae , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química , Cromatografia , Técnicas de Cultura de Células/métodos , Filtração/métodos , Cricetulus , Células CHO
20.
Appl Spectrosc ; 77(12): 1393-1400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37908083

RESUMO

Protein A affinity chromatography is a key step in isolation of biotherapeutics (BTs) containing fragment crystallizable regions, including monoclonal and bispecific antibodies. Dynamic binding capacity (DBC) analysis assesses how much BT will bind to a protein A column. DBC reduces with column usage, effectively reducing the amount of recovered product over time. Drug regulatory bodies mandate chromatography resin lifetime for BT isolation, through measurement of parameters including DBC, so this feature is carefully monitored in industrial purification pipelines. High-performance affinity chromatography (HPAC) is typically used to assess the concentration of BT, which when loaded to the column results in significant breakthrough of BT in the flowthrough. HPAC gives an accurate assessment of DBC and how this changes over time but only reports on protein concentration, requires calibration for each new BT analyzed, and can only be used offline. Here we utilized Raman spectroscopy and revealed that this approach is at least as effective as both HPAC and ultraviolet chromatogram methods at monitoring DBC of protein A resins. In addition to reporting on protein concentration, the chemical information in the Raman spectra provides information on aggregation status and protein structure, providing extra quality controls to industrial bioprocessing pipelines. In combination with partial least square (PLS) analysis, Raman spectroscopy can be used to determine the DBC of a BT without prior calibration. Here we performed Raman analysis offline in a 96-well plate format, however, it is feasible to perform this inline. This study demonstrates the power of Raman spectroscopy as a significantly improved approach to DBC monitoring in industrial pipelines.


Assuntos
Proteínas , Análise Espectral Raman , Cromatografia de Afinidade/métodos , Proteínas/química , Proteína Estafilocócica A/química , Calibragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...