Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713624

RESUMO

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Córtex Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Animais , Neurogênese/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Neuroglia/metabolismo , Neuroglia/citologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/citologia , Linhagem da Célula , Humanos
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731849

RESUMO

Tumors of the head and neck, more specifically the squamous cell carcinoma, often show upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2 (GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues, suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog pathway inhibitors are being tested in combination with other therapies for head and neck squamous cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma as well.


Assuntos
Adenocarcinoma , Proteínas Hedgehog , Imuno-Histoquímica , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Masculino , Feminino , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Pessoa de Meia-Idade , Projetos Piloto , Idoso , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Neoplasias dos Seios Paranasais/metabolismo , Neoplasias dos Seios Paranasais/patologia , Adulto , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso , Proteínas Nucleares
3.
Dev Biol ; 504: 128-136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37805104

RESUMO

Transcriptional responses to the Hedgehog (HH) signaling pathway are primarily modulated by GLI repression in the mouse limb. Previous studies suggested a role for the BAF chromatin remodeling complex in mediating GLI repression. Consistent with this possibility, the core BAF complex protein SMARCC1 is present at most active limb enhancers including the majority of GLI enhancers. However, in contrast to GLI repression which reduces chromatin accessibility, SMARCC1 maintains chromatin accessibility at most enhancers, including those bound by GLI. Moreover, SMARCC1 binding at GLI-regulated enhancers occurs independently of GLI3. Consistent with previous studies, some individual GLI target genes are mis-regulated in Smarcc1 conditional knockouts, though most GLI target genes are unaffected. Moreover, SMARCC1 is not necessary for mediating constitutive GLI repression in HH mutant limb buds. We conclude that SMARCC1 does not mediate GLI3 repression, which we propose utilizes alternative chromatin remodeling complexes.


Assuntos
Cromatina , Botões de Extremidades , Animais , Camundongos , Cromatina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Botões de Extremidades/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
4.
Oncotarget ; 13: 944-959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937499

RESUMO

The transcription factor GLI3 is a member of the GLI family and has been shown to be regulated by canonical hedgehog (HH) signaling through smoothened (SMO). Little is known about SMO-independent regulation of GLI3. Here, we identify TLR signaling as a novel pathway regulating GLI3 expression. We show that GLI3 expression is induced by LPS/TLR4 in human monocyte cell lines and peripheral blood CD14+ cells. Further analysis identified TRIF, but not MyD88, signaling as the adapter used by TLR4 to regulate GLI3. Using pharmacological and genetic tools, we identified IRF3 as the transcription factor regulating GLI3 downstream of TRIF. Furthermore, using additional TLR ligands that signal through TRIF such as the TLR4 ligand, MPLA and the TLR3 ligand, Poly(I:C), we confirm the role of TRIF-IRF3 in the regulation of GLI3. We found that IRF3 directly binds to the GLI3 promoter region and this binding was increased upon stimulation of TRIF-IRF3 with Poly(I:C). Furthermore, using Irf3 -/- MEFs, we found that Poly(I:C) stimulation no longer induced GLI3 expression. Finally, using macrophages from mice lacking Gli3 expression in myeloid cells (M-Gli3-/- ), we found that in the absence of Gli3, LPS stimulated macrophages secrete less CCL2 and TNF-α compared with macrophages from wild-type (WT) mice. Taken together, these results identify a novel TLR-TRIF-IRF3 pathway that regulates the expression of GLI3 that regulates inflammatory cytokines and expands our understanding of the non-canonical signaling pathways involved in the regulation of GLI transcription factors.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Citocinas/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso , Poli I-C/farmacologia , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
5.
Stem Cell Reports ; 17(9): 2064-2080, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931079

RESUMO

Mutations in the embryonic ectoderm development (EED) cause Weaver syndrome, but whether and how EED affects embryonic brain development remains elusive. Here, we generated a mouse model in which Eed was deleted in the forebrain to investigate the role of EED. We found that deletion of Eed decreased the number of upper-layer neurons but not deeper-layer neurons starting at E16.5. Transcriptomic and genomic occupancy analyses revealed that the epigenetic states of a group of cortical neurogenesis-related genes were altered in Eed knockout forebrains, followed by a decrease of H3K27me3 and an increase of H3K27ac marks within the promoter regions. The switching of H3K27me3 to H3K27ac modification promoted the recruitment of RNA-Pol2, thereby enhancing its expression level. The small molecule activator SAG or Ptch1 knockout for activating Hedgehog signaling can partially rescue aberrant cortical neurogenesis. Taken together, we proposed a novel EED-Gli3-Gli1 regulatory axis that is critical for embryonic brain development.


Assuntos
Encéfalo , Neurogênese , Complexo Repressor Polycomb 2 , Proteína GLI1 em Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , Animais , Encéfalo/crescimento & desenvolvimento , Epigênese Genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Histonas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
6.
Cell Rep ; 38(5): 110312, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108539

RESUMO

The Zic family of zinc finger transcription factors plays a critical role in multiple developmental processes. Using loss-of-function studies, we find that Zic5 is important for the differentiation of retinal pigmented epithelium (RPE) and the rod photoreceptor layer through suppressing Hedgehog (Hh) signaling. Further, Zic5 interacts with the critical Hh signaling molecule, Gli3, through the zinc finger domains of both proteins. This Zic5-Gli3 interaction disrupts Gli3/Gli3 homodimerization, resulting in Gli3 protein stabilization via a reduction in Gli3 ubiquitination. During embryonic Hh signaling, the activator form of Gli is normally converted to a repressor form through proteosome-mediated processing of Gli3, and the ratio of Gli3 repressor to full-length (activator) form of Gli3 determines the Gli3 repressor output required for normal eye development. Our results suggest Zic5 is a critical player in regulating Gli3 stability for the proper differentiation of RPE and rod photoreceptor layer during Xenopus eye development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retina/crescimento & desenvolvimento , Proteínas de Xenopus/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Xenopus
7.
Cell Signal ; 92: 110278, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134468

RESUMO

Hedgehog signaling pathway has been previously elucidated to be inappropriately activated in many human cancers, including ovarian and breast cancer. However, mechanistic contribution of GLI3, one of the terminal effectors of the pathway, to ovarian and mammary cancer development is underexplored. In this study, we investigated whether GLI3 is necessary for the growth and migration of ovarian and breast cancer cells and further explored the underlying mechanism of GLI3-mediated oncogenesis. We report that GLI3 knockdown inhibited growth and migration of androgen receptor (AR)-positive ovarian and breast cancer cells, but not AR-negative ovarian and breast cancer cells. Furthermore, knockdown of AR expression was effective in inhibiting the growth and migration of AR-positive ovarian and breast cancer cells in the presence of GLI3, but not in GLI3 knockdown cells. Similarly, ectopic expression of AR promoted the growth and migration of AR-negative ovarian and breast cancer cells in the presence of GLI3, but not in GLI3 knockdown cells. GLI3 and AR co-immunoprecipitated each other. GLI3 expression was negatively associated with overall survival of ovarian or breast patients whose tumors expressed a high level of AR. Our findings suggest that GLI3 and AR not only physically interact, but also are mutually dependent for their malignancy-promoting activity in ovarian and breast cancer cells. GLI3-specific inhibitors may be novel therapeutics for AR-expressing ovarian and breast cancers.


Assuntos
Neoplasias da Mama , Receptores Androgênicos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Proteínas Hedgehog , Humanos , Proteínas do Tecido Nervoso/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
8.
Cells ; 11(2)2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35053334

RESUMO

The ventricular-subventricular zone (V-SVZ) is a postnatal germinal niche. It holds a large population of neural stem cells (NSCs) that generate neurons and oligodendrocytes for the olfactory bulb and (primarily) the corpus callosum, respectively. These NSCs are heterogeneous and generate different types of neurons depending on their location. Positional identity among NSCs is thought to be controlled in part by intrinsic pathways. However, extrinsic cell signaling through the secreted ligand Sonic hedgehog (Shh) is essential for neurogenesis in both the dorsal and ventral V-SVZ. Here we used a genetic approach to investigate the role of the transcription factors GLI2 and GLI3 in the proliferation and cell fate of dorsal and ventral V-SVZ NSCs. We find that while GLI3 is expressed in stem cell cultures from both dorsal and ventral V-SVZ, the repressor form of GLI3 is more abundant in dorsal V-SVZ. Despite this high dorsal expression and the requirement for other Shh pathway members, GLI3 loss affects the generation of ventrally-, but not dorsally-derived olfactory interneurons in vivo and does not affect trilineage differentiation in vitro. However, loss of GLI3 in the adult dorsal V-SVZ in vivo results in decreased numbers of OLIG2-expressing progeny, indicating a role in gliogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular , Células Cultivadas , Interneurônios/metabolismo , Ventrículos Laterais/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Receptor Smoothened/metabolismo
9.
Mol Cancer Res ; 20(1): 62-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610962

RESUMO

Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Repressoras/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Mutação , Receptores Androgênicos/metabolismo
10.
Crit Rev Eukaryot Gene Expr ; 31(6): 69-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34936293

RESUMO

Sporadic thumb polydactyly with nonfamily inheritance is the most common in clinical work. This study focused on characterization of GLI3 gene function. We constructed the plasmid with p.m948i point mutation of GLI3 and transfected it into mouse embryonic fibroblasts (MEFs) to study the effects and potential mechanism of the mutant gene. The RNA of GLI3 mutant cells was extracted and analyzed by transcriptome sequencing and bioinformatics. Finally, we constructed cbx3 overexpression plasmid, designed siRNA for gene silencing, and transfected it into the MEFs. Cell proliferation and invasion ability of the MEFs were examined. The results showed that there were 2,452 differential expression genes in the MEFs transfected with GLI3 mutant plasmid compared with wild-type MEFs. The results of differential expression analysis showed that the cbx3 gene was significantly up-regulated. Overexpression of cbx3 in MEFs promoted cell proliferation and invasion, while siRNA knockdown of cbx3 expression reduced proliferation and invasion. GLI3 gene mutation in MEFs resulted in cbx3 up-regulation and promoted MEF proliferation and invasion. This study further clarified the potential function of GLI3 in limb development, established a new relationship between gene mutation and polydactyly, and preliminarily clarified the possible signal pathway, all of which have laid a foundation for further study on the etiology of polydactyl.


Assuntos
Proteínas do Tecido Nervoso , Polidactilia , Proteína Gli3 com Dedos de Zinco , Animais , Fibroblastos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linhagem , Polidactilia/genética , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
11.
J Exp Clin Cancer Res ; 40(1): 287, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517880

RESUMO

BACKGROUND: Emerging evidence demonstrates that lncRNAs play pivotal roles in tumor energy metabolism; however, the detailed mechanisms of lncRNAs in the regulation of tumor glycolysis remain largely unknown. METHODS: The expression of SLC2A1-AS1 was investigated by TCGA, GEO dataset and qRT-PCR. The binding of GLI3 to SLC2A1-AS1 promoter was detected by Luciferase Reporter Assay System and Ago2-RIP assay. FISH was performed to determine the localization of SLC2A1-AS1 in ESCC cells. Double Luciferase Report assay was used to investigate the interaction of miR-378a-3p with SLC2A1-AS1 and Glut1. Gain-of-function and Loss-of-function assay were performed to dissect the function of SLC2A1-AS1/miR-378a-3p/Glut1 axis in ESCC progression in vitro and in vivo. RESULTS: We identified a novel lncRNA SLC2A1-AS1 in ESCC. SLC2A1-AS1 was frequently overexpressed in ESCC tissues and cells, and its overexpression was associated with TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Importantly, GLI3 and SLC2A1-AS1 formed a regulatory feedback loop in ESCC cells. SLC2A1-AS1 promoted cell growth in vitro and in vivo, migration and invasion, and suppressed apoptosis, leading to EMT progression and increased glycolysis in ESCC cells. SLC2A1-AS1 functioned as ceRNA for sponging miR-378a-3p, resulting in Glut1 overexpression in ESCC cells. MiR-378a-3p inhibited cell proliferation and invasion as well as induced apoptosis, resulting in reduced glycolysis, which was partly reversed by SLC2A1-AS1 or Glut1 overexpression in ESCC cells. CONCLUSION: SLC2A1-AS1 plays important roles in ESCC development and progression by regulating glycolysis, and SLC2A1-AS1/miR-378a-3p/Glut1 regulatory axis may be a novel therapeutic target in terms of metabolic remodeling of ESCC patients.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Transportador de Glucose Tipo 1/biossíntese , Glicólise/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Longo não Codificante/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Progressão da Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Prognóstico , Proteína Gli3 com Dedos de Zinco/genética
12.
Nat Commun ; 12(1): 5685, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584102

RESUMO

Chromatin remodeling and genomic alterations impact spatio-temporal regulation of gene expression, which is central to embryonic development. The analysis of mouse and chicken limb development provides important insights into the morphoregulatory mechanisms, however little is known about the regulatory differences underlying their morphological divergence. Here, we identify the underlying shared and species-specific epigenomic and genomic variations. In mouse forelimb buds, we observe striking synchrony between the temporal dynamics of chromatin accessibility and gene expression, while their divergence in chicken wing buds uncovers species-specific regulatory heterochrony. In silico mapping of transcription factor binding sites and computational footprinting establishes the developmental time-restricted transcription factor-DNA interactions. Finally, the construction of target gene networks for HAND2 and GLI3 transcriptional regulators reveals both conserved and species-specific interactions. Our analysis reveals the impact of genome evolution on the regulatory interactions orchestrating vertebrate limb bud morphogenesis and provides a molecular framework for comparative Evo-Devo studies.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Galinha , Galinhas , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Simulação por Computador , Embrião de Mamíferos , Redes Reguladoras de Genes , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA-Seq , Especificidade da Espécie , Proteína Gli3 com Dedos de Zinco/metabolismo
13.
Pathol Res Pract ; 223: 153478, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34022683

RESUMO

PURPOSE: Hedgehog (Hh) signaling is a crucial developmental regulatory pathway recognized as a primary oncogenesis driver in various human cancers. However, its role in breast carcinoma (BC) has been underexplored. METHODS: We analyzed the expression of several Hh associated genes in a clinical series and breast cancer cell lines. We included 193 BC stratified according to intrinsic immunophenotypes. Gene expression profiling ofBOC, PTCH, SMO, GLI1, GLI2, and GLI3 was performed by qRT-PCR. Results were correlated with clinical-pathological variables and outcome. RESULTS: We observed expression ofGLI2 in triple-negative/basal-like (TN/BL) and GLI3 in luminal cells. In samples, BOC, GLI1, GLI2, and GLI3 expression correlated significantly with luminal tumors and good prognostic factors. In contrast, PTCH and SMO correlated with TN/BL phenotype and nodal involvement. Patients whose tumors expressed SMO had a poorer outcome, especially those with HER2 phenotype. Positive lymph-node status and high SMO remained independent poor prognostic factors. CONCLUSION: Our results support a differential Hh pathway activation in BC phenotypes.SMO levels stratified patients at risk of recurrence and death in HER2 phenotype, and it showed an independent prognostic value. Therefore, SMO could be a potential therapeutic target for a subset of BC patients.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Proteínas Hedgehog/genética , Receptor Smoothened/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Intervalo Livre de Progressão , Estudos Retrospectivos , Transdução de Sinais , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
14.
Brain Tumor Pathol ; 38(2): 109-121, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33704596

RESUMO

We previously reported observing GLI3 in medulloblastomas expressing neuronal markers (NM) and/or glial fibrillary acidic protein (GFAP). Furthermore, patients with medulloblastomas expressing NM or GFAP tended to show favorable or poor prognosis, respectively. In the present study, we focused on the role of topoisomerase IIß (TOP2ß) as a possible regulator for neuronal differentiation in medulloblastomas and examined the pathological roles of GLI3, NM, GFAP, and TOP2ß expressions in a larger population. We divided 124 medulloblastomas into three groups (NM-/GFAP-, NM +/GFAP-, and GFAP +) based on their immunoreactivity (IR) against NM and GFAP. The relationship among GLI3, NM, GFAP, and TOP2ß was evaluated using fluorescent immunostaining and a publicly available single-cell RNA sequencing dataset. In total, 87, 30, and 7 medulloblastomas were classified as NM-/GFAP-, NM + /GFAP-, and GFAP +, and showed intermediate, good, and poor prognoses, respectively. GLI3-IR was frequently observed in NM +/GFAP- and GFAP + , and TOP2ß-IR was frequently observed only in NM +/GFAP- medulloblastomas. In fluorescent immunostaining, TOP2ß-IR was mostly co-localized with NeuN-IR but not with GFAP-IR. In single-cell RNA sequencing, TOP2ß expression was elevated in CMAS/DCX-positive, but not in GFAP-positive, cells. NM-IR and GFAP-IR are important for estimating the prognosis of patients with medulloblastoma; hence they should be assessed in clinical practice.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Povo Asiático/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/genética , Criança , Pré-Escolar , Feminino , Proteína Glial Fibrilar Ácida , Humanos , Imuno-Histoquímica , Japão , Masculino , Meduloblastoma/patologia , Neurônios/patologia , Prognóstico
15.
Open Biol ; 11(2): 200339, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622105

RESUMO

The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus (DG), and the earliest deletion (from E9.5, FoxG1-Cre) causes drastic abnormalities, with almost complete absence of the DG. We identify a set of functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1-Cre mouse model reveal altered excitatory transmission in CA1 and CA3 regions.


Assuntos
Giro Denteado/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXB1/metabolismo , Potenciais de Ação , Animais , Linhagem Celular Tumoral , Giro Denteado/citologia , Giro Denteado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
16.
J Cell Biochem ; 122(5): 577-597, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33417295

RESUMO

Breast cancer continues to be a serious public health problem. The role of the hedgehog pathway in normal development of the mammary gland as well as in carcinogenesis and progression of breast cancer is the subject of intense investigation, revealing functional interactions with cell surface heparan sulfate. Nevertheless, its influence on breast cancer prognosis, and its relation to specific sulfation motifs in heparan sulfate have only been poorly studied in large patient cohorts. Using the public database KMplotter that includes gene expression and survival data of 3951 patients, we found that the higher expression of SHH, HHAT, PTCH1, GLI1, GLI2, and GLI3 positively influences breast cancer prognosis. Stratifying patients according to the expression of hormone receptors, histological grade, lymph node metastasis, and systemic therapy, we observed that GLI1, GLI2, and GLI3 expression, as well as co-expression of SHH and ELP1 were associated with worse relapse-free survival in patients with HER2-positive tumors. Moreover, GLI1 expression in progesterone receptor-negative tumors and GLI3 expression in grade 3 tumors correlated with poor prognosis. SHH, in a panel of cell lines representing different breast cancer subtypes, and HHAT, PTCH1, GLI1, GLI2, and GLI3 were mostly expressed in cell lines classified as HER2-positive and basal-like. Expression of SHH, HHAT, GLI2, and GLI3 was differentially affected by overexpression of the heparan sulfate sulfotransferases HS2ST1 and HS3ST2 in vitro. Although high HS2ST1 expression was associated with poor prognosis in KMplotter analysis, high levels of HS3ST2 were associated with a good prognosis, except for ER-positive breast cancer. We suggest the GLI transcription factors as possible markers for the diagnosis, treatment, and prognosis of breast cancer especially in HER2-positive tumors, but also in progesterone receptor-negative and grade-3 tumors. The pathway interaction and prognostic impact of specific heparan sulfate sulfotransferases provide novel perspectives regarding a therapeutical targeting of the hedgehog pathway in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Hedgehog/metabolismo , Feminino , Heparitina Sulfato , Humanos , Proteínas do Tecido Nervoso/metabolismo , Receptor Patched-1/metabolismo , Prognóstico , Fatores de Elongação da Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo
17.
Exp Mol Med ; 53(1): 52-66, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33390589

RESUMO

In early pregnancy, the placenta anchors the conceptus and supports embryonic development and survival. This study aimed to investigate the underlying functions of Shh signaling in recurrent miscarriage (RM), a serious disorder of pregnancy. In the present study, Shh and Gli2 were mainly observed in cytotrophoblasts (CTBs), Ptch was mainly observed in syncytiotrophoblasts (STBs), and Smo and Gli3 were expressed in both CTBs and STBs. Shh signaling was significantly impaired in human placenta tissue from recurrent miscarriage patients compared to that of gestational age-matched normal controls. VEGF-A and CD31 protein levels were also significantly decreased in recurrent miscarriage patients. Furthermore, inhibition of Shh signaling impaired the motility of JAR cells by regulating the expression of Gli2 and Gli3. Intriguingly, inhibition of Shh signaling also triggered autophagy and autolysosome accumulation. Additionally, knockdown of BECN1 reversed Gant61-induced motility inhibition. In conclusion, our results showed that dysfunction of Shh signaling activated autophagy to inhibit trophoblast motility, which suggests the Shh pathway and autophagy as potential targets for RM therapy.


Assuntos
Aborto Habitual/metabolismo , Autofagia , Proteínas Hedgehog/metabolismo , Trofoblastos/metabolismo , Adulto , Proteína Beclina-1/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Proteínas Hedgehog/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Trofoblastos/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo
18.
Biomed Res Int ; 2021: 8889986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506047

RESUMO

PURPOSE: The epithelial-mesenchymal transition (EMT) is a key hallmark of cancer which promotes malignant progression, especially during the process of cancer invasion. A better understanding of EMT will help elucidate the molecular mechanism underlying colorectal cancer (CRC) metastasis and may provide new insights into the identification of potential biomarkers and therapeutic targets. METHODS: A series of bioinformatic approaches were combined and identify GLI3 as a potential key regulator in EMT. In vitro experiments were performed to knockdown GLI3 expression in two CRC cell lines and to reveal the oncogenic role of GLI3 in CRC. qRT-PCR and western blot were performed to show the influence of GLI3 in EMT and downstream pathways. The Kaplan-Meier analysis and log-rank test were used to evaluate the prognostic value of GLI3 in CRC patients. RESULTS: GLI3 was identified as a key regulator in coexpression and protein-protein interaction (PPI) networks involved in EMT. Bioinformatic analyses indicated that GLI3 had a high correlation with EMT markers in CRC. In vitro experiments showed that GLI3 knockdown attenuated the migratory and invasive capacities of CRC cells via influencing EMT property, especially by regulating phosphorylation of ERK signaling pathway. In addition, higher expression of GLI3 predicts worse prognosis in CRC patients. CONCLUSIONS: In summary, we presented the first evidence that GLI3 could promote the migratory and invasive capacities of CRC cells by regulating the EMT process. Our study might provide some useful clues to a better understanding of GLI3 in EMT during CRC progression.


Assuntos
Neoplasias Colorretais , Proteínas do Tecido Nervoso , Proteína Gli3 com Dedos de Zinco , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Prognóstico , Mapas de Interação de Proteínas/genética , Transcriptoma/genética , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo
19.
J Neuropathol Exp Neurol ; 80(2): 129-136, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33249504

RESUMO

Glioma-associated oncogene homolog 3 (GLI3), whose main function is to inhibit GLI1, has been associated with neuronal differentiation in medulloblastoma. However, it is not clear what molecular subtype(s) show increased GLI3 expression. GLI3 levels were assessed by immunohistochemistry in 2 independent cohorts, including a total of 88 cases, and found to be high in both WNT- and SHH-activated medulloblastoma. Analysis of bulk mRNA expression data and single cell RNA sequencing studies confirmed that GLI1 and GLI3 are highly expressed in SHH-activated medulloblastoma, whereas GLI3 but not GLI1 is highly expressed in WNT-activated medulloblastoma. Immunohistochemical analysis has shown that GLI3 is expressed inside the neuronal differentiated nodules of SHH-activated medulloblastoma, whereas GLI1/2 are expressed in desmoplastic areas. In contrast, GLI3 is diffusely expressed in WNT-activated medulloblastoma, whereas GLI1 is suppressed. Our data suggest that GLI3 may be a master regulator of neuronal differentiation and morphology in these subgroups.


Assuntos
Diferenciação Celular/fisiologia , Neoplasias Cerebelares/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Wnt/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética
20.
Mol Cell Endocrinol ; 522: 111136, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347954

RESUMO

BACKGROUND: Gli is an oncogenic transcription factor family thought to be involved in breast cancer (BrCa) cell growth. Gli activity is regulated by a post-translational proteolytic process that is suppressed by Hedgehog signaling. In prostate cancer cells, however, Gli activation is mediated by an interaction of active androgen receptor proteins with Gli3 that stabilizes Gli3 in its un-proteolyzed form. Here we show that the estrogen receptor (ER), ERα, also binds Gli3 and activates Gli in BrCa cells. Moreover, we show that ER + BrCa cells are dependent on Gli3 for cancer cell growth. METHODS: Transfection with Gli-luciferase reporter was used to report Gli activity in 293FT or BrCa cells (MCF7, T47D, MDA-MB-453) with or without steroid ligands. Co-immunoprecipitation and proximity ligation were used to show association of Gli3 with ERα. Gli3 stability was determined by western blots of BrCa cell extracts. ERα knockdown or destabilization (by fulvestrant) was used to assess how loss of ERα affects estradiol-induced Gli reporter activity, formation of intranuclear ERα-Gli3 complexes and Gli3 stability. Expression of Gli1 and/or other endogenous Gli-target genes in BrCa cells were measured by qPCR in the presence or absence of estradiol. Gli3 knockdown was assessed for effects on BrCa cell growth using the Cyquant assay. RESULTS: ERα co-transfection increased Gli reporter activity in 293FT cells that was further increased by estradiol. Gli3 co-precipitated in ERα immunoprecipitates. Acute (2 h) estradiol increased Gli reporter activity and the formation of intranuclear ERα-Gli3 complexes in ER + BrCa cells but more chronic estradiol (48 h) reduced ERα-Gli complexes commensurate with reduced ERα levels. Gli3 stability and endogenous activity was only increased by more chronic estradiol treatment. Fulvestrant or ERα knockdown suppressed E2-induction of Gli activity, intranuclear ERα-Gli3 complexes and stabilization of Gli3. Gli3 knockdown significantly reduced the growth of BrCa cells. CONCLUSIONS: ERα interacts with Gli3 in BrCa cells and estradiol treatment leads to Gli3 stabilization and increased expression of Gli-target genes. Furthermore, we found tthat Gli3 is necessary for BrCa cell growth. These results support the idea that the ERα-Gli interaction and Gli3 may be novel targets for effective control of BrCa growth.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Células HEK293 , Humanos , Estabilidade Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...