Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621908

RESUMO

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


Assuntos
Proteína HMGB1 , Ligusticum , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Condrócitos , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Dinoprostona , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Apoptose , RNA Mensageiro/metabolismo
2.
J Appl Oral Sci ; 32: e20230304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359267

RESUMO

OBJECTIVE: We aimed to investigate the regulatory effects of HMGB1/TLR4 signaling pathway on the expression of IL-10 and VEGF in human bone marrow mesenchymal stem cells. METHODOLOGY: Human JBMSCs were isolated and cultured. Then, HMGB1 was added into the JBMSCs culture medium, and the protein and mRNA expression levels of IL-10 and VEGF were assessed. Moreover, cells were pretreated with a specific TLR4 inhibitor (TAK-242), and the expression changes of IL-10 and VEGF were compared. RESULTS: Compared with the control group, exposure to HMGB1 in human JBMSCs up-regulated TLR4, IL-10, and VEGF secretion at both protein and mRNA levels (P<0. 05). In addition, the increased expression of IL-10 and VEGF could be restrained in TAK-242 group compared with the HMGB1 group (P<0.05). CONCLUSIONS: The results indicated that HMGB1 activate TLR4 signaling pathway in Human JBMSCs, which plays a regulatory role in cytokines expression.


Assuntos
Proteína HMGB1 , Células-Tronco Mesenquimais , Sulfonamidas , Humanos , Interleucina-10 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator A de Crescimento do Endotélio Vascular , Proteína HMGB1/farmacologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro
3.
J Physiol Sci ; 74(1): 7, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326739

RESUMO

Folic acid (FA), with its anti-inflammatory and antioxidant properties, may offer protection against ischemia-reperfusion (IR) injury. This study investigated whether FA safeguards rat kidneys from IR by targeting high mobility group box-1 (HMGB1), a key inflammatory mediator. Fifty adult male Wistar rats were randomly allocated into four groups: control, IR, IR + FA pretreatment, and FA alone. Compared to controls, IR significantly impaired renal function and elevated levels of malondialdehyde, HMGB1, NF-κB, and caspase 3. FA pretreatment effectively reversed these detrimental changes, protecting renal function and minimizing tissue damage. The FA-alone group showed no significant differences compared to the control group, indicating no adverse effects of FA treatment. Mechanistically, FA inhibited HMGB1 expression and its downstream activation of NF-κB and caspase 3, thereby quelling inflammation and cell death. FA shields rat kidneys from IR-induced injury by suppressing HMGB1-mediated inflammation and apoptosis, suggesting a potential therapeutic avenue for IR-associated kidney damage.


Assuntos
Proteína HMGB1 , Traumatismo por Reperfusão , Ratos , Masculino , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Ratos Wistar , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Caspase 3 , Ácido Fólico/farmacologia , Inflamação/prevenção & controle , Rim/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Suplementos Nutricionais , Reperfusão , Isquemia
4.
Fitoterapia ; 173: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278423

RESUMO

Osteoporosis is an aging disease characterized by an imbalance between bone formation and resorption. However, drugs that inhibit bone resorption have various adverse effects. Ginseng (Panax ginseng), a prominent herbal medicine in East Asia for >2000 years, is renowned for its manifold beneficial properties, including antioxidant, anti-cancer, anti-diabetic, and anti-adipogenic activities. Despite its long history of use, the pharmacological functions of ginseng leaves are not yet fully comprehended. In this study, we evaluated the potential effects of ginseng leaf extract (GLE) on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in RAW264.7 macrophage cells. Tartrate-resistant acid phosphatase (TRAP) staining revealed that GLE had significant anti-osteoclastogenic activity. GLE significantly reduced mRNA levels of osteoclast differentiation markers including TRAP, nuclear factor of activated T cell cytoplasmic 1, and cathepsin K. It also suppressed the production of reactive oxygen species (ROS) and secretion of high mobility group box-1 (HMGB1) in RANKL-treated RAW264.7 cells. In addition, GLE upregulated dose- and time-dependently the expression of heme oxygenase-1 (HO-1), eventually suppressing ROS production and HMGB1 secretion. This effects of GLE were significantly reversed by Tin Protoporphyrin IX dichloride, an inhibitor of HO-1, and HO-1 shRNA, indicating that HO-1 potently inhibits RANKL-induced osteoclast differentiation by inhibiting ROS production and HMGB1 secretion. Taken together, these observations suggest that GLE could have therapeutic potential as a natural product-derived medicine for the treatment of bone disorders.


Assuntos
Reabsorção Óssea , Proteína HMGB1 , Panax , Osteoclastos , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Diferenciação Celular , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/metabolismo , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Ligante RANK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA