Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Rev Med Pharmacol Sci ; 24(9): 4729-4737, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32432736

RESUMO

OBJECTIVE: To investigate the function of HMGB2 in renal tumor ACHN cells in vitro and in vivo and to study the underlying molecular mechanisms. PATIENTS AND METHODS: Kaplan-Meier analysis was used to study the relationship between expression of HMGB2 and prognosis of renal tumor. MTT assay was employed to examine cell proliferation and flow cytometry analysis was used to study the role of HMGB2 in cell apoptosis in ACHN cells. Transwell assays were used to explore the migration and invasion of ACHN cells. The effect of HMGB2 on tumor growth was investigated in vivo. Western blot was performed to evaluate the expression levels of p-JNK, p-ERK and p-p38MAPK. RESULTS: HMGB2 was upregulated in renal tumor and correlated with worse overall survival in renal tumor patients. Down-regulation of HMGB2 suppressed ACHN cells proliferation, invasion and migration in vitro. Moreover, down-regulation of HMGB2 inhibited tumor growth in vivo and HMGB2 exerts the oncogene function partly via the inhibition of p-p38MAPK activation. CONCLUSIONS: Our results provide novel insights into neuropathic pain and help to explore therapeutic targets in the treatment.


Assuntos
Carcinoma de Células Renais/metabolismo , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes/métodos , Proteína HMGB2/deficiência , Neoplasias Renais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Proteína HMGB2/antagonistas & inibidores , Proteína HMGB2/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
2.
J Immunol Methods ; 456: 72-76, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29453955

RESUMO

HMGB1 and HMGB2 are DNA-interacting proteins but can also have extracellular actions during inflammation. Despite their relatively high homology, they may have distinct roles, making it essential to be able to differentiate between the two. Here we examine the specificity of five commercially-available anti-HMGB1 antibodies. By Western blotting of recombinant proteins and HMGB1-/- mouse embryonic fibroblasts, we identified only one HMGB1 antibody that, under our experimental conditions, did not also detect HMGB2. Selecting specific antibodies for HMGB1 and HMGB2 allowed identification of distinct HMGB1 and HMGB2 subcellular pools in primary neutrophils.


Assuntos
Anticorpos/imunologia , Reações Cruzadas , Proteína HMGB1/imunologia , Proteína HMGB2/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Reações Antígeno-Anticorpo , Células Cultivadas , Proteína HMGB1/deficiência , Proteína HMGB2/deficiência , Voluntários Saudáveis , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
3.
Arterioscler Thromb Vasc Biol ; 37(4): 717-729, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28183701

RESUMO

OBJECTIVE: In a previous study, we established diabetic and nondiabetic minipig models with coronary artery in-stent restenosis (ISR). Mass spectrometry showed that high-mobility group box (HMGB) 2 level was higher in ISR than in non-ISR tissue from diabetic minipigs. We here investigated whether serum HMGB2 levels were related to ISR in coronary artery disease patients. The effect of HMGB2 was evaluated in mice with femoral artery wire injury and in human aortic smooth muscle cells. APPROACH AND RESULTS: From 2513 patients undergoing coronary artery intervention and follow-up angiography at ≈1 year, 262 patients were diagnosed with ISR, and 298 patients with no ISR were randomly included as controls. Serum HMGB2 levels were significantly higher in patients with ISR than in those without ISR and were associated with ISR severity. Multivariable logistic regression analysis showed that HMGB2 level was independently associated with ISR. In experiments, HMGB2 expression was increased in vascular tissue after injury. Perivascular HMGB2 administration promoted injury-induced neointimal hyperplasia in C57Bl/6 mice compared with in the control, whereas such pathophysiological features were attenuated in Hmgb2-/- mice. Mechanistically, HMGB2 enhanced neointimal hyperplasia in mice and proliferation and migration in human aortic smooth muscle cells by inducing reactive oxygen species through increased p47phox phosphorylation. Knocking down p47phox, however, inhibited HMGB2-induced effects in human aortic smooth muscle cells. Finally, HMGB2-induced effects were significantly declined in receptor of advanced glycation end products knockdown or deficient cells, but not in Toll-like receptor 4 knockdown or deficient cells. CONCLUSIONS: Serum HMGB2 levels were associated with ISR in patients. HMGB2 promoted neointimal hyperplasia in mice with arterial wire injury through reactive oxygen species activation.


Assuntos
Movimento Celular , Proliferação de Células , Doença da Artéria Coronariana/terapia , Reestenose Coronária/etiologia , Proteína HMGB2/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Intervenção Coronária Percutânea/efeitos adversos , Lesões do Sistema Vascular/sangue , Idoso , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Células Cultivadas , Angiografia Coronária , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Reestenose Coronária/sangue , Reestenose Coronária/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Predisposição Genética para Doença , Proteína HMGB2/deficiência , Proteína HMGB2/genética , Humanos , Hiperplasia , Modelos Logísticos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Análise Multivariada , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , NADPH Oxidases/metabolismo , Intervenção Coronária Percutânea/instrumentação , Fenótipo , Fosforilação , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fatores de Risco , Transdução de Sinais , Stents , Suínos , Porco Miniatura , Transfecção , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia
4.
PLoS One ; 8(12): e84838, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391977

RESUMO

Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2(-/-) mice exhibit SVZ hyperproliferation, increased numbers of SVZ NSCs, and a trend towards aberrant increases in newly born neurons in the olfactory bulb (OB) granule cell layer. Increases in the levels of the transcription factor p21 and the Neural cell adhesion molecule (NCAM), along with down-regulation of the transcription/pluripotency factor Oct4 in the Hmgb2-/- SVZ point to a possible pathway for this increased proliferation/differentiation. Our findings suggest that HMGB2 functions as a modulator of neurogenesis in young adult mice through regulation of NSC proliferation, and identify a potential target via which CNS repair could be amplified following trauma or disease-based neuronal degeneration.


Assuntos
Proliferação de Células , Proteína HMGB2/deficiência , Células-Tronco Neurais/fisiologia , Neurogênese/genética , Animais , Western Blotting , Células Cultivadas , Primers do DNA/genética , Proteína HMGB2/metabolismo , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
5.
Nature ; 462(7269): 99-103, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19890330

RESUMO

The activation of innate immune responses by nucleic acids is crucial to protective and pathological immunities and is mediated by the transmembrane Toll-like receptors (TLRs) and cytosolic receptors. However, it remains unknown whether a mechanism exists that integrates these nucleic-acid-sensing systems. Here we show that high-mobility group box (HMGB) proteins 1, 2 and 3 function as universal sentinels for nucleic acids. HMGBs bind to all immunogenic nucleic acids examined with a correlation between affinity and immunogenic potential. Hmgb1(-/-) and Hmgb2(-/-) mouse cells are defective in type-I interferon and inflammatory cytokine induction by DNA or RNA targeted to activate the cytosolic nucleic-acid-sensing receptors; cells in which the expression of all three HMGBs is suppressed show a more profound defect, accompanied by impaired activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-kappaB. The absence of HMGBs also severely impairs the activation of TLR3, TLR7 and TLR9 by their cognate nucleic acids. Our results therefore indicate a hierarchy in the nucleic-acid-mediated activation of immune responses, wherein the selective activation of nucleic-acid-sensing receptors is contingent on the more promiscuous sensing of nucleic acids by HMGBs. These findings may have implications for understanding the evolution of the innate immune system and for the treatment of immunological disorders.


Assuntos
Proteínas HMGB/imunologia , Proteínas HMGB/metabolismo , Imunidade Inata/imunologia , Ácidos Nucleicos/imunologia , Animais , Linhagem Celular , Citosol/imunologia , DNA/imunologia , Proteínas HMGB/deficiência , Proteínas HMGB/genética , Proteína HMGB1/deficiência , Proteína HMGB1/genética , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Proteína HMGB2/deficiência , Proteína HMGB2/genética , Proteína HMGB2/imunologia , Proteína HMGB2/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , NF-kappa B/metabolismo , Nucleotídeos/química , Nucleotídeos/imunologia , Nucleotídeos/metabolismo , RNA/imunologia , Transdução de Sinais , Receptores Toll-Like/imunologia , Viroses/imunologia , Viroses/virologia
6.
Proc Natl Acad Sci U S A ; 106(4): 1181-6, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19139395

RESUMO

Osteoarthritis (OA) is the most common joint disease and typically begins with an aging-related disruption of the articular cartilage surface. Mechanisms leading to the aging-related cartilage surface degeneration remain to be determined. Here, we demonstrate that nonhistone chromatin protein high-mobility group box (HMGB) protein 2 is uniquely expressed in the superficial zone (SZ) of human articular cartilage. In human and murine cartilage, there is an aging-related loss of HMGB2 expression, ultimately leading to its complete absence. Mice genetically deficient in HMGB2 (Hmgb2(-/-)) show earlier onset of and more severe OA. This is associated with a profound reduction in cartilage cellularity attributable to increased cell death. These cellular changes precede glycosaminoglycan depletion and progressive cartilage erosions. Chondrocytes from Hmgb2(-/-) mice are more susceptible to apoptosis induction in vitro. In conclusion, HMGB2 is a transcriptional regulator specifically expressed in the SZ of human articular cartilage and supports chondrocyte survival. Aging is associated with a loss of HMGB2 expression and reduced cellularity, and this contributes to the development of OA.


Assuntos
Envelhecimento/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cromatina/metabolismo , Proteína HMGB2/deficiência , Osteoartrite/metabolismo , Osteoartrite/patologia , Envelhecimento/metabolismo , Animais , Apoptose , Cartilagem Articular/enzimologia , Sobrevivência Celular , Regulação da Expressão Gênica , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Humanos , Articulações/enzimologia , Articulações/patologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Osteoartrite/enzimologia , Transporte Proteico , Proteoglicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...