Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Struct Mol Biol ; 29(1): 59-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013597

RESUMO

DNA mismatch repair detects and corrects mismatches introduced during DNA replication. The protein MutS scans for mismatches and coordinates the repair cascade. During this process, MutS undergoes multiple conformational changes in response to ATP binding, hydrolysis and release, but how ATP induces the various MutS conformations is incompletely understood. Here we present four cryogenic electron microscopy structures of Escherichia coli MutS at sequential stages of the ATP hydrolysis cycle that reveal how ATP binding and hydrolysis induce closing and opening of the MutS dimer, respectively. Biophysical analysis demonstrates how DNA binding modulates the ATPase cycle by prevention of hydrolysis during scanning and mismatch binding, while preventing ADP release in the sliding clamp state. Nucleotide release is achieved when MutS encounters single-stranded DNA that is produced during removal of the daughter strand. The combination of ATP binding and hydrolysis and its modulation by DNA enables MutS to adopt the different conformations needed to coordinate the sequential steps of the mismatch repair cascade.


Assuntos
Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Difosfato de Adenosina/metabolismo , Domínio Catalítico , Escherichia coli , Hidrólise , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
3.
Nat Struct Mol Biol ; 28(4): 373-381, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820992

RESUMO

DNA mismatch repair detects and removes mismatches from DNA by a conserved mechanism, reducing the error rate of DNA replication by 100- to 1,000-fold. In this process, MutS homologs scan DNA, recognize mismatches and initiate repair. How the MutS homologs selectively license repair of a mismatch among millions of matched base pairs is not understood. Here we present four cryo-EM structures of Escherichia coli MutS that provide snapshots, from scanning homoduplex DNA to mismatch binding and MutL activation via an intermediate state. During scanning, the homoduplex DNA forms a steric block that prevents MutS from transitioning into the MutL-bound clamp state, which can only be overcome through kinking of the DNA at a mismatch. Structural asymmetry in all four structures indicates a division of labor between the two MutS monomers. Together, these structures reveal how a small conformational change from the homoduplex- to heteroduplex-bound MutS acts as a licensing step that triggers a dramatic conformational change that enables MutL binding and initiation of the repair cascade.


Assuntos
DNA/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Proteínas MutL/ultraestrutura , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Conformação Proteica , Microscopia Crioeletrônica , DNA/genética , Reparo de Erro de Pareamento de DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas MutL/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética
4.
PLoS Comput Biol ; 12(10): e1005159, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27768684

RESUMO

Allostery is conformation regulation by propagating a signal from one site to another distal site. This study focuses on the long-range communication in DNA mismatch repair proteins MutS and its homologs where intramolecular signaling has to travel over 70 Å to couple lesion detection to ATPase activity and eventual downstream repair. Using dynamic network analysis based on extensive molecular dynamics simulations, multiple preserved communication pathways were identified that would allow such long-range signaling. The pathways appear to depend on the nucleotides bound to the ATPase domain as well as the type of DNA substrate consistent with previously proposed functional cycles of mismatch recognition and repair initiation by MutS and homologs. A mechanism is proposed where pathways are switched without major conformational rearrangements allowing for efficient long-range signaling and allostery.


Assuntos
Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , DNA/química , DNA/ultraestrutura , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Sítios de Ligação , Comunicação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Ligação Proteica , Conformação Proteica , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade
5.
DNA Repair (Amst) ; 35: 71-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466357

RESUMO

In Escherichia coli, errors in newly-replicated DNA, such as the incorporation of a nucleotide with a mis-paired base or an accidental insertion or deletion of nucleotides, are corrected by a methyl-directed mismatch repair (MMR) pathway. While the enzymology of MMR has long been established, many fundamental aspects of its mechanisms remain elusive, such as the structures, compositions, and orientations of complexes of MutS, MutL, and MutH as they initiate repair. Using atomic force microscopy, we--for the first time--record the structures and locations of individual complexes of MutS, MutL and MutH bound to DNA molecules during the initial stages of mismatch repair. This technique reveals a number of striking and unexpected structures, such as the growth and disassembly of large multimeric complexes at mismatched sites, complexes of MutS and MutL anchoring latent MutH onto hemi-methylated d(GATC) sites or bound themselves at nicks in the DNA, and complexes directly bridging mismatched and hemi-methylated d(GATC) sites by looping the DNA. The observations from these single-molecule studies provide new opportunities to resolve some of the long-standing controversies in the field and underscore the dynamic heterogeneity and versatility of MutSLH complexes in the repair process.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Endodesoxirribonucleases/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Força Atômica/métodos , Imagem Molecular/métodos , Proteínas MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ácidos Nucleicos Heteroduplexes/ultraestrutura
6.
Biochem Biophys Res Commun ; 360(2): 412-7, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17599803

RESUMO

Escherichia coli MutS, an 853 amino acids oligomeric protein, is involved in the postreplicative DNA mismatch repair and avoidance of homeologous recombination. By constructing MutS mutated versions of the C-terminal region, we determined that deletion of the last 7 C-terminal amino acids is enough to abolish tetramer formation and that the K850A substitution destabilize the tetramer structure. It is proposed that the C-terminal extreme alpha helix (residues 839-850) of the protein may play an important role in protein oligomerization. We also show that the C-terminal region or the C-terminal plus the HTH domain of MutS, fused to the monomeric Maltose Binding Protein promote oligomerization of the chimeric protein. However, chemical cross-linking experiments indicate that the HTH domain improves the oligomerization properties of the fused protein. Escherichia coli cells expressing the fused proteins become hypermutator suggesting that the C-terminal region of MutS plays an important role in vivo.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Dimerização , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA