Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Genes (Basel) ; 12(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34356107

RESUMO

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family, phosphorylates serine and threonine residues of substrate proteins in the presence of the Ku complex and double-stranded DNA. Although it has been established that DNA-PKcs is involved in non-homologous end-joining, a DNA double-strand break repair pathway, the mechanisms underlying DNA-PKcs activation are not fully understood. Nevertheless, the findings of numerous in vitro and in vivo studies have indicated that DNA-PKcs contains two autophosphorylation clusters, PQR and ABCDE, as well as several autophosphorylation sites and conformational changes associated with autophosphorylation of DNA-PKcs are important for self-activation. Consistent with these features, an analysis of transgenic mice has shown that the phenotypes of DNA-PKcs autophosphorylation mutations are significantly different from those of DNA-PKcs kinase-dead mutations, thereby indicating the importance of DNA-PKcs autophosphorylation in differentiation and development. Furthermore, there has been notable progress in the high-resolution analysis of the conformation of DNA-PKcs, which has enabled us to gain a visual insight into the steps leading to DNA-PKcs activation. This review summarizes the current progress in the activation of DNA-PKcs, focusing in particular on autophosphorylation of this kinase.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/fisiologia , Fosforilação/genética , Animais , Diferenciação Celular/genética , DNA/metabolismo , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/fisiologia , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação/fisiologia
2.
Cell Tissue Res ; 380(3): 615-625, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31950264

RESUMO

Mutations in Foxn1 and Prkdc genes lead to nude and severe combined immunodeficiency (scid) phenotypes, respectively. Besides being immunodeficient, previous reports have shown that nude mice have lower gonadotropins and testosterone levels, while scid mice present increased pachytene spermatocyte (PS) apoptosis. Therefore, these specific features make them important experimental models for understanding Foxn1 and Prkdc roles in reproduction. Hence, we conducted an investigation of the testicular function in nude and scid BALB/c adult male mice and significant differences were observed, especially in Leydig cell (LC) parameters. Although the differences were more pronounced in nude mice, both immunodeficient strains presented a larger number of LC, whereas its cellular volume was smaller in comparison to the wild type. Besides these alterations in LC, we also observed differences in androgen receptor and steroidogenic enzyme expression in nude and scid mice, suggesting the importance of Foxn1 and Prkdc genes in androgen synthesis. Specifically in scid mice, we found a smaller meiotic index, which represents the number of round spermatids per PS, indicating a greater cell loss during meiosis, as previously described in the literature. In addition and for the first time, Foxn1 was identified in the testis, being expressed in LC, whereas DNA-PKc (the protein produced by Prkdc) was observed in LC and Sertoli cells. Taken together, our results show that the changes in LC composition added to the higher expression of steroidogenesis-related genes in nude mice and imply that Foxn1 transcription factor may be associated to androgen production regulation, while Prkdc expression is also important for the meiotic process.


Assuntos
Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Células Intersticiais do Testículo/fisiologia , Células de Sertoli/fisiologia , Animais , Células Intersticiais do Testículo/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Receptores Androgênicos/metabolismo , Células de Sertoli/citologia
3.
Sci Rep ; 9(1): 14597, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601897

RESUMO

We previously reported that cells exposed to low doses of ionizing radiation (IR) in the G2-phase of the cell cycle activate a checkpoint that is epistatically regulated by ATM and ATR operating as an integrated module. In this module, ATR interphases exclusively with the cell cycle to implement the checkpoint, mainly using CHK1. The ATM/ATR module similarly regulates DNA end-resection at low IR-doses. Strikingly, at high IR-doses, the ATM/ATR coupling relaxes and each kinase exerts independent contributions to resection and the G2-checkpoint. DNA-PKcs links to the ATM/ATR module and defects cause hyper-resection and hyperactivation of G2-checkpoint at all doses examined. Surprisingly, our present report reveals that cells irradiated in S-phase utilize a different form of wiring between DNA-PKcs/ATM/ATR: The checkpoint activated in G2-phase is regulated exclusively by ATR/CHK1; similarly at high and low IR-doses. DNA end-resection supports ATR-activation, but inhibition of ATR leaves resection unchanged. DNA-PKcs and ATM link now epistatically to resection and their inhibition causes hyper-resection and ATR-dependent G2-checkpoint hyperactivation at all IR-doses. We propose that DNA-PKcs, ATM and ATR form a modular unit to regulate DSB processing with their crosstalk distinctly organized in S- and G2- phase, with strong dependence on DSB load only in G2-phase.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Reparo do DNA , Proteína Quinase Ativada por DNA/fisiologia , Epistasia Genética , Células A549 , Dano ao DNA , Técnica Indireta de Fluorescência para Anticorpo , Fase G2 , Células HCT116 , Humanos , Fosforilação , Radiação Ionizante , Proteína de Replicação A/metabolismo , Fase S
5.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842317

RESUMO

The adenovirus (Ad) E4orf4 protein contributes to virus-induced inhibition of the DNA damage response (DDR) by reducing ATM and ATR signaling. Consequently, E4orf4 inhibits DNA repair and sensitizes transformed cells to killing by DNA-damaging drugs. Inhibition of ATM and ATR signaling contributes to the efficiency of virus replication and may provide one explanation for the cancer selectivity of cell death induced by the expression of E4orf4 alone. In this report, we investigate a direct interaction of E4orf4 with the DDR. We show that E4orf4 physically associates with the DNA-dependent protein kinase (DNA-PK), and we demonstrate a biphasic functional interaction between these proteins, wherein DNA-PK is required for ATM and ATR inhibition by E4orf4 earlier during infection but is inhibited by E4orf4 as infection progresses. This biphasic process is accompanied by initial augmentation and a later inhibition of DNA-PK autophosphorylation as well as by colocalization of DNA-PK with early Ad replication centers and distancing of DNA-PK from late replication centers. Moreover, inhibition of DNA-PK improves Ad replication more effectively when a DNA-PK inhibitor is added later rather than earlier during infection. When expressed alone, E4orf4 is recruited to DNA damage sites in a DNA-PK-dependent manner. DNA-PK inhibition reduces the ability of E4orf4 to induce cancer cell death, likely because E4orf4 is prevented from arriving at the damage sites and from inhibiting the DDR. Our results support an important role for the E4orf4-DNA-PK interaction in Ad replication and in facilitation of E4orf4-induced cancer-selective cell death.IMPORTANCE Several DNA viruses evolved mechanisms to inhibit the cellular DNA damage response (DDR), which acts as an antiviral defense system. We present a novel mechanism by which the adenovirus (Ad) E4orf4 protein inhibits the DDR. E4orf4 interacts with the DNA damage sensor DNA-PK in a biphasic manner. Early during infection, E4orf4 requires DNA-PK activity to inhibit various branches of the DDR, whereas it later inhibits DNA-PK itself. Furthermore, although both E4orf4 and DNA-PK are recruited to virus replication centers (RCs), DNA-PK is later distanced from late-phase RCs. Delayed DNA-PK inhibition greatly contributes to Ad replication efficiency. When E4orf4 is expressed alone, it is recruited to DNA damage sites. Inhibition of DNA-PK prevents both recruitment and the previously reported ability of E4orf4 to kill cancer cells. Our results support an important role for the E4orf4-DNA-PK interaction in Ad replication and in facilitation of E4orf4-induced cancer-selective cell death.


Assuntos
Dano ao DNA/fisiologia , Proteína Quinase Ativada por DNA/metabolismo , Proteínas Virais/metabolismo , Adenoviridae/genética , Infecções por Adenoviridae/genética , Proteínas E4 de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/fisiologia , Adenovírus Humanos/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Reparo do DNA/fisiologia , DNA Viral/genética , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Transdução de Sinais , Proteínas Virais/fisiologia , Replicação Viral/fisiologia
6.
Nucleic Acids Res ; 46(16): 8326-8346, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30010942

RESUMO

Chronic low levels of survival motor neuron (SMN) protein cause spinal muscular atrophy (SMA). SMN is ubiquitously expressed, but the mechanisms underlying predominant neuron degeneration in SMA are poorly understood. We report that chronic low levels of SMN cause Senataxin (SETX)-deficiency, which results in increased RNA-DNA hybrids (R-loops) and DNA double-strand breaks (DSBs), and deficiency of DNA-activated protein kinase-catalytic subunit (DNA-PKcs), which impairs DSB repair. Consequently, DNA damage accumulates in patient cells, SMA mice neurons and patient spinal cord tissues. In dividing cells, DSBs are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ) pathways, but neurons predominantly use NHEJ, which relies on DNA-PKcs activity. In SMA dividing cells, HR repairs DSBs and supports cellular proliferation. In SMA neurons, DNA-PKcs-deficiency causes defects in NHEJ-mediated repair leading to DNA damage accumulation and neurodegeneration. Restoration of SMN levels rescues SETX and DNA-PKcs deficiencies and DSB accumulation in SMA neurons and patient cells. Moreover, SETX overexpression in SMA neurons reduces R-loops and DNA damage, and rescues neurodegeneration. Our findings identify combined deficiency of SETX and DNA-PKcs stemming downstream of SMN as an underlying cause of DSBs accumulation, genomic instability and neurodegeneration in SMA and suggest SETX as a potential therapeutic target for SMA.


Assuntos
Dano ao DNA , DNA Helicases/deficiência , Proteína Quinase Ativada por DNA/deficiência , Proteínas de Ligação a DNA/deficiência , Degeneração Neural , Proteínas Nucleares/deficiência , RNA Helicases/deficiência , Atrofias Musculares Espinais da Infância/genética , Idoso , Animais , Divisão Celular , Células Cultivadas , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/fisiologia , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Fibroblastos , Humanos , Masculino , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Enzimas Multifuncionais , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Conformação de Ácido Nucleico , RNA Helicases/genética , RNA Helicases/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Atrofias Musculares Espinais da Infância/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/fisiologia , Proteína 2 de Sobrevivência do Neurônio Motor/deficiência , Proteína 2 de Sobrevivência do Neurônio Motor/genética
7.
Oncol Rep ; 39(3): 912-920, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29344644

RESUMO

The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in non-homologous end-joining (NHEJ) repair. We investigated the mechanism of NU7441, a highly selective DNA-PK inhibitor, in NHEJ-competent mouse embryonic fibroblast (MEF) cells and NHEJ-deficient cells and explored the feasibility of its application in radiosensitizing nasopharyngeal carcinoma (NPC) cells. We generated wild-type and DNA-PKcs-/- MEF cells. Clonogenic survival assays, flow cytometry, and immunoblotting were performed to study the effect of NU7441 on survival, cell cycle, and DNA repair. NU7441 profoundly radiosensitized wild-type MEF cells and SUNE-1 cells, but not DNA-PKcs-/- MEF cells. NU7441 significantly suppressed radiation-induced DSB repair post-irradiation through unrepaired and lethal DNA damage, the cell cycle arrest. The effect was associated with the activation of cell cycle checkpoints. The present study revealed a mechanism by which inhibition of DNA-PK sensitizes cells to irradiation suggesting that radiotherapy in combination with DNA-PK inhibitor is a promising paradigm for the management of NPC which merits further investigation.


Assuntos
Carcinoma/patologia , Cromonas/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Raios gama/efeitos adversos , Morfolinas/farmacologia , Neoplasias Nasofaríngeas/patologia , Proteínas Nucleares/fisiologia , Radiossensibilizantes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Carcinoma/genética , Carcinoma/terapia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Humanos , Camundongos , Camundongos Knockout , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia
8.
Bull Cancer ; 104(11): 981-987, 2017 Nov.
Artigo em Francês | MEDLINE | ID: mdl-29132682

RESUMO

The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers.


Assuntos
Biomarcadores/análise , Reparo do DNA , DNA/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Enzimas Reparadoras do DNA/efeitos adversos , Enzimas Reparadoras do DNA/fisiologia , Proteína Quinase Ativada por DNA/fisiologia , Relação Dose-Resposta à Radiação , Histonas/fisiologia , Humanos , Proteínas Nucleares/fisiologia , Tolerância a Radiação , Radioterapia , Reparo de DNA por Recombinação , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia
9.
Nucleic Acids Res ; 45(18): 10614-10633, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977657

RESUMO

Phosphorylated histone H2AX, termed 'γH2AX', mediates the chromatin response to DNA double strand breaks (DSBs) in mammalian cells. H2AX deficiency increases the numbers of unrepaired DSBs and translocations, which are partly associated with defects in non-homologous end joining (NHEJ) and contributing to genomic instability in cancer. However, the role of γH2AX in NHEJ of general DSBs has yet to be clearly defined. Here, we showed that despite little effect on overall NHEJ efficiency, H2AX deficiency causes a surprising bias towards accurate NHEJ and shorter deletions in NHEJ products. By analyzing CRISPR/Cas9-induced NHEJ and by using a new reporter for mutagenic NHEJ, we found that γH2AX, along with its interacting protein MDC1, is required for efficient classical NHEJ (C-NHEJ) but with short deletions and insertions. Epistasis analysis revealed that ataxia telangiectasia mutated (ATM) and the chromatin remodeling complex Tip60/TRRAP/P400 are essential for this H2AX function. Taken together, these data suggest that a subset of DSBs may require γH2AX-mediated short-range nucleosome repositioning around the breaks to facilitate C-NHEJ with loss of a few extra nucleotides at NHEJ junctions. This may prevent outcomes such as non-repair and translocations, which are generally more destabilizing to genomes than short deletions and insertions from local NHEJ.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Histonas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Sequência de Bases , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Linhagem Celular , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Nucleotídeos/análise , Deleção de Sequência
10.
Philos Trans R Soc Lond B Biol Sci ; 372(1732)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28893936

RESUMO

Viruses regulate cellular processes to facilitate viral replication. Manipulation of nuclear proteins and pathways by nuclear replicating viruses often causes cellular genome instability that contributes to transformation. The cellular DNA damage response (DDR) safeguards the host to maintain genome integrity, but DNA tumour viruses can manipulate the DDR to promote viral propagation. In this review, we describe the interactions of DNA tumour viruses with the phosphatidylinositol 3-kinase-like protein kinase (PIKK) pathways, which are central regulatory arms of the DDR. We review how signalling through the ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3 related (ATR), and DNA-dependent protein kinases (DNA-PK) influences viral life cycles, and how their manipulation by viral proteins may contribute to tumour formation.This article is part of the themed issue 'Human oncogenic viruses'.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Carcinogênese/genética , Vírus de DNA Tumorais/fisiologia , Proteína Quinase Ativada por DNA/fisiologia , Transdução de Sinais , Proteínas Virais/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Proteínas Quinases
11.
Radiat Res ; 188(6): 597-604, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28952912

RESUMO

Uncontrolled generation of DNA double-strand breaks (DSBs) in cells is regarded as a highly toxic event that threatens cell survival. Radiation-induced DNA DSBs are commonly measured by pulsed-field gel electrophoresis, microscopic evaluation of accumulating DNA damage response proteins (e.g., 53BP1 or γ-H2AX) or flow cytometric analysis of γ-H2AX. The advantage of flow cytometric analysis is that DSB formation and repair can be studied in relationship to cell cycle phase or expression of other proteins. However, γ-H2AX is not able to monitor repair kinetics within the first 60 min postirradiation, a period when most DSBs undergo repair. A key protein in non-homologous end joining repair is the catalytic subunit of DNA-dependent protein kinase. Among several phosphorylation sites of DNA-dependent protein kinase, the threonine at position 2609 (T2609), which is phosphorylated by ataxia telangiectasia mutated (ATM) or DNA-dependent protein kinase catalytic subunit itself, activates the end processing of DSB. Using flow cytometry, we show here that phosphorylation at T2609 is faster in response to DSBs than γ-H2AX. Furthermore, flow cytometric analysis of T2609 resulted in a better representation of fast repair kinetics than analysis of γ-H2AX. In cells with reduced ligase IV activity, and wild-type cells where DNA-dependent protein kinase activity was inhibited, the reduced DSB repair capacity was observed by T2609 evaluation using flow cytometry. In conclusion, flow cytometric evaluation of DNA-dependent protein kinase T2609 can be used as a marker for early DSB repair and gives a better representation of early repair events than analysis of γ-H2AX.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/fisiologia , Citometria de Fluxo , Proteínas Nucleares/fisiologia , Processamento de Proteína Pós-Traducional , Linhagem Celular , Cromonas/farmacologia , DNA/efeitos da radiação , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Relação Dose-Resposta à Radiação , Eletroforese em Gel de Campo Pulsado , Raios gama , Histonas/fisiologia , Humanos , Morfolinas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fatores de Tempo
12.
Oncotarget ; 8(14): 22662-22673, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28186989

RESUMO

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a distinct factor in the non-homologous end-joining (NHEJ) pathway involved in DNA double-strand break (DSB) repair. We examined the crosstalk between key proteins in the DSB NHEJ repair pathway and cell cycle regulation and found that mouse embryonic fibroblast (MEF) cells deficient in DNA-PKcs or Ku70 were more vulnerable to ionizing radiation (IR) compared with wild-type cells and that DSB repair was delayed. γH2AX was associated with phospho-Ataxia-telangiectasia mutated kinase (Ser1987) and phospho-checkpoint effector kinase 1 (Ser345) foci for the arrest of cell cycle through the G2/M phase. Inhibition of DNA-PKcs prolonged IR-induced G2/M phase arrest because of sequential activation of cell cycle checkpoints. DSBs were introduced, and cell cycle checkpoints were recruited after exposure to IR in nasopharyngeal carcinoma SUNE-1 cells. NU7441 radiosensitized MEF cells and SUNE-1 cells by interfering with DSB repair. Together, these results reveal a mechanism in which coupling of DSB repair with the cell cycle radiosensitizes NHEJ repair-deficient cells, justifying further development of DNA-PK inhibitors in cancer therapy.


Assuntos
Carcinoma/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/genética , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Autoantígeno Ku/fisiologia , Neoplasias Nasofaríngeas/genética , Proteínas Nucleares/antagonistas & inibidores , Tolerância a Radiação/genética , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Proliferação de Células , Quinase 1 do Ponto de Checagem/metabolismo , Cromonas/farmacologia , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Proteínas Nucleares/fisiologia , Radiação Ionizante , Radiossensibilizantes/farmacologia , Células Tumorais Cultivadas
13.
FEBS J ; 283(19): 3626-3636, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27513301

RESUMO

Differentiation of myoblasts into myotubes is essential for skeletal muscle development and regeneration. Caspase-3 and caspase-9 are required for efficient myoblast differentiation. The caspase-activated endonuclease activity, CAD, and the DNA-damage repair protein XRCC1 have also been shown to be required to complete differentiation. DNA-damage associated with differentiation is accompanied by phosphorylation of Histone 2AX, an event normally catalysed by kinases ATR, ATM or DNA-PK. However, the kinase responsible for phosphorylation during differentiation is not known. Here we show that inhibition of DNA-PK, but not of ATR or ATM, blocked histone phosphorylation during differentiation. We also show that DNA-PK inhibition and siRNA-mediated DNA-PK knockdown blocked cell fusion. These data implicate a new role for DNA-PK in myogenic differentiation.


Assuntos
Caspase 3/metabolismo , Proteína Quinase Ativada por DNA/fisiologia , Desenvolvimento Muscular , Animais , Inibidores de Caspase/farmacologia , Fusão Celular , Linhagem Celular , Cromonas/farmacologia , Dano ao DNA , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Histonas/metabolismo , Camundongos , Morfolinas/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
14.
Oncotarget ; 7(34): 54430-54444, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27303920

RESUMO

Ionizing radiation (IR) induces highly cytotoxic double-strand breaks (DSBs) and also clustered oxidized bases in mammalian genomes. Base excision repair (BER) of bi-stranded oxidized bases could generate additional DSBs as repair intermediates in the vicinity of direct DSBs, leading to loss of DNA fragments. This could be avoided if DSB repair via DNA-PK-mediated nonhomologous end joining (NHEJ) precedes BER initiated by NEIL1 and other DNA glycosylases (DGs). Here we show that DNA-PK subunit Ku inhibits DGs via direct interaction. The scaffold attachment factor (SAF)-A, (also called hnRNP-U), phosphorylated at Ser59 by DNA-PK early after IR treatment, is linked to transient release of chromatin-bound NEIL1, thus preventing BER. SAF-A is subsequently dephosphorylated. Ku inhibition of DGs in vitro is relieved by unphosphorylated SAF-A, but not by the phosphomimetic Asp59 mutant. We thus propose that SAF-A, in concert with Ku, temporally regulates base damage repair in irradiated cell genome.


Assuntos
Reparo do DNA , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/fisiologia , Autoantígeno Ku/fisiologia , Lesões por Radiação/etiologia , Quebras de DNA de Cadeia Dupla , DNA Glicosilases/fisiologia , Enzimas Reparadoras do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células HEK293 , Humanos , Fosforilação , Tolerância a Radiação
15.
Cancer Res ; 76(5): 1078-88, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26603896

RESUMO

A series of critical pathways are responsible for the detection, signaling, and restart of replication forks that encounter blocks during S-phase progression. Small base lesions may obstruct replication fork progression and processing, but the link between repair of small lesions and replication forks is unclear. In this study, we investigated a hypothesized role for DNA-PK, an important enzyme in DNA repair, in cellular responses to DNA replication stress. The enzyme catalytic subunit DNA-PKcs was phosphorylated on S2056 at sites of stalled replication forks in response to short hydroxyurea treatment. Using DNA fiber experiments, we found that catalytically active DNA-PK was required for efficient replication restart of stalled forks. Furthermore, enzymatically active DNA-PK was also required for PARP-dependent recruitment of XRCC1 to stalled replication forks. This activity was enhanced by preventing Mre11-dependent DNA end resection, suggesting that XRCC1 must be recruited early to an unresected stalled fork. We also found that XRCC1 was required for effective restart of a subset of stalled replication forks. Overall, our work suggested that DNA-PK and PARP-dependent recruitment of XRCC1 is necessary to effectively protect, repair, and restart stalled replication forks, providing new insight into how genomic stability is preserved.


Assuntos
Reparo do DNA , Replicação do DNA , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Caseína Quinase II/fisiologia , Linhagem Celular , Humanos , Proteína Homóloga a MRE11 , Poli(ADP-Ribose) Polimerase-1 , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
16.
Oncogene ; 35(30): 3909-18, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-26616856

RESUMO

Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) at the Thr2609 cluster is essential for its complete function in DNA repair and tissue stem cell homeostasis. This phenomenon is demonstrated by congenital bone marrow failure occurring in DNA-PKcs(3A/3A) mutant mice, which require bone marrow transplantation (BMT) to prevent early mortality. Surprisingly, an increased incidence of spontaneous tumors, especially skin cancer, was observed in adult BMT-rescued DNA-PKcs(3A/3A) mice. Upon further investigation, we found that spontaneous γH2AX foci occurred in DNA-PKcs(3A/3A) skin biopsies and primary keratinocytes and that these foci overlapped with telomeres during mitosis, indicating impairment of telomere replication and maturation. Consistently, we observed significantly elevated frequencies of telomere fusion events in DNA-PKcs(3A/3A) cells as compared with wild-type and DNA-PKcs-knockout cells. In addition, a previously identified DNA-PKcs Thr2609Pro mutation, found in breast cancer, also induces a similar impairment of telomere leading-end maturation. Taken together, our current analyses indicate that the functional DNA-PKcs T2609 cluster is required to facilitate telomere leading strand maturation and prevention of genomic instability and cancer development.


Assuntos
Transplante de Medula Óssea , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neoplasias/etiologia , Proteínas Nucleares/fisiologia , Telômero/fisiologia , Animais , Células Cultivadas , Dano ao DNA , Instabilidade Genômica , Histonas/análise , Queratinócitos/metabolismo , Camundongos
17.
Mol Cell ; 59(6): 1011-24, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26365377

RESUMO

The ATR-Chk1 pathway is critical for DNA damage responses and cell-cycle progression. Chk1 inhibition is more deleterious to cycling cells than ATR inhibition, raising questions about ATR and Chk1 functions in the absence of extrinsic replication stress. Here we show that a key role of ATR in S phase is to coordinate RRM2 accumulation and origin firing. ATR inhibitor (ATRi) induces massive ssDNA accumulation and replication catastrophe in a fraction of early S-phase cells. In other S-phase cells, however, ATRi induces moderate ssDNA and triggers a DNA-PK and Chk1-mediated backup pathway to suppress origin firing. The backup pathway creates a threshold such that ATRi selectively kills cells under high replication stress, whereas Chk1 inhibitor induces cell death at a lower threshold. The levels of ATRi-induced ssDNA correlate with ATRi sensitivity in a panel of cell lines, suggesting that ATRi-induced ssDNA could be predictive of ATRi sensitivity in cancer cells.


Assuntos
Proteína Quinase Ativada por DNA/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Quinases/fisiologia , Fase S , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Origem de Replicação , Ribonucleosídeo Difosfato Redutase/metabolismo , Estresse Fisiológico
18.
Nat Med ; 21(8): 906-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26107252

RESUMO

The inflammasome activates caspase-1 and the release of interleukin-1ß (IL-1ß) and IL-18, and several inflammasomes protect against intestinal inflammation and colitis-associated colon cancer (CAC) in animal models. The absent in melanoma 2 (AIM2) inflammasome is activated by double-stranded DNA, and AIM2 expression is reduced in several types of cancer, but the mechanism by which AIM2 restricts tumor growth remains unclear. We found that Aim2-deficient mice had greater tumor load than Asc-deficient mice in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colorectal cancer. Tumor burden was also higher in Aim2(-/-)/Apc(Min/+) than in APC(Min/+) mice. The effects of AIM2 on CAC were independent of inflammasome activation and IL-1ß and were primarily mediated by a non-bone marrow source of AIM2. In resting cells, AIM2 physically interacted with and limited activation of DNA-dependent protein kinase (DNA-PK), a PI3K-related family member that promotes Akt phosphorylation, whereas loss of AIM2 promoted DNA-PK-mediated Akt activation. AIM2 reduced Akt activation and tumor burden in colorectal cancer models, while an Akt inhibitor reduced tumor load in Aim2(-/-) mice. These findings suggest that Akt inhibitors could be used to treat AIM2-deficient human cancers.


Assuntos
Neoplasias do Colo/prevenção & controle , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Inflamassomos/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Colite/complicações , Feminino , Células HCT116 , Humanos , Pólipos Intestinais/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
19.
Cell Cycle ; 14(12): 1961-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26017556

RESUMO

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a major role in DNA damage signaling and repair and is also frequently overexpressed in tumor metastasis. We used isogenic cell lines expressing different levels of DNA-PKcs to investigate the role of DNA-PKcs in metastatic development. We found that DNA-PKcs participates in melanoma primary tumor and metastasis development by stimulating angiogenesis, migration and invasion. Comparison of conditioned medium content from DNA-PKcs-proficient and deficient cells reveals that DNA-PKcs controls secretion of at least 103 proteins (including 44 metastasis-associated with FBLN1, SERPINA3, MMP-8, HSPG2 and the inhibitors of matrix metalloproteinases, such as α-2M and TIMP-2). High throughput analysis of secretomes, proteomes and transcriptomes, indicate that DNA-PKcs regulates the secretion of 85 proteins without affecting their gene expression. Our data demonstrate that DNA-PKcs has a pro-metastatic activity via the modification of the tumor microenvironment. This study shows for the first time a direct link between DNA damage repair and cancer metastasis and highlights the importance of DNA-PKcs as a potential target for anti-metastatic treatment.


Assuntos
Proteína Quinase Ativada por DNA/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Proteínas Nucleares/fisiologia , Animais , Células CHO , Movimento Celular , Proliferação de Células , Cricetinae , Cricetulus , Meios de Cultivo Condicionados , Dano ao DNA , Inativação Gênica , Humanos , Linfonodos/patologia , Melanoma/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas em Tandem
20.
Int J Radiat Oncol Biol Phys ; 90(1): 36-43, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25195988

RESUMO

PURPOSE: Previously we showed that the relative biological efficiency for induced cell killing by the 76-MeV beam used at the Institut Curie Proton Therapy Center in Orsay increased with depth throughout the spread-out Bragg peak (SOBP). To investigate the repair pathways underlying this increase, we used an isogenic human cell model in which individual DNA repair proteins have been depleted, and techniques dedicated to precise measurements of radiation-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). METHODS AND MATERIALS: The 3-Gy surviving fractions of HeLa cells individually depleted of Ogg1, XRCC1, and PARP1 (the base excision repair/SSB repair pathway) or of ATM, DNA-PKcs, XRCC4, and Artemis (nonhomologous end-joining pathway) were determined at the 3 positions previously defined in the SOBP. Quantification of incident SSBs and DSBs by the alkaline elution technique and 3-dimensional (3D) immunofluorescence of γ-H2AX foci, respectively, was performed in SQ20 B cells. RESULTS: We showed that the amount of SSBs and DSBs depends directly on the particle fluence and that the increase in relative biological efficiency observed in the distal part of the SOBP is due to a subset of lesions generated under these conditions, leading to cell death via a pathway in which the Artemis protein plays a central role. CONCLUSIONS: Because therapies like proton or carbon beams are now being used to treat cancer, it is even more important to dissect the mechanisms implicated in the repair of the lesions generated by these particles. Additionally, alteration of the expression or activity of the Artemis protein could be a novel therapeutic tool before high linear energy transfer irradiation treatment.


Assuntos
Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA/fisiologia , Proteínas Nucleares/fisiologia , Prótons , Eficiência Biológica Relativa , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Institutos de Câncer , Sobrevivência Celular/fisiologia , DNA Glicosilases/fisiologia , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Endonucleases , França , Células HeLa , Histonas/análise , Humanos , Método de Monte Carlo , Proteínas Nucleares/deficiência , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/fisiologia , Terapia com Prótons , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...