Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34352203

RESUMO

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Assuntos
DNA Ligase Dependente de ATP/ultraestrutura , Enzimas Reparadoras do DNA/ultraestrutura , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Apoptose/genética , Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestrutura , Complexos Multiproteicos/genética , Fosforilação/genética
2.
Nature ; 593(7858): 294-298, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33854234

RESUMO

DNA double-strand breaks (DSBs) are a highly cytotoxic form of DNA damage and the incorrect repair of DSBs is linked to carcinogenesis1,2. The conserved error-prone non-homologous end joining (NHEJ) pathway has a key role in determining the effects of DSB-inducing agents that are used to treat cancer as well as the generation of the diversity in antibodies and T cell receptors2,3. Here we applied single-particle cryo-electron microscopy to visualize two key DNA-protein complexes that are formed by human NHEJ factors. The Ku70/80 heterodimer (Ku), the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), DNA ligase IV (LigIV), XRCC4 and XLF form a long-range synaptic complex, in which the DNA ends are held approximately 115 Å apart. Two DNA end-bound subcomplexes comprising Ku and DNA-PKcs are linked by interactions between the DNA-PKcs subunits and a scaffold comprising LigIV, XRCC4, XLF, XRCC4 and LigIV. The relative orientation of the DNA-PKcs molecules suggests a mechanism for autophosphorylation in trans, which leads to the dissociation of DNA-PKcs and the transition into the short-range synaptic complex. Within this complex, the Ku-bound DNA ends are aligned for processing and ligation by the XLF-anchored scaffold, and a single catalytic domain of LigIV is stably associated with a nick between the two Ku molecules, which suggests that the joining of both strands of a DSB involves both LigIV molecules.


Assuntos
Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA/metabolismo , DNA/ultraestrutura , DNA/química , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/ultraestrutura , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/ultraestrutura , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Autoantígeno Ku/metabolismo , Autoantígeno Ku/ultraestrutura , Modelos Moleculares , Fosforilação
3.
Prog Biophys Mol Biol ; 117(2-3): 194-205, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25550082

RESUMO

The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/química , DNA/química , Mitose/genética , Animais , Sítios de Ligação , DNA/genética , DNA/ultraestrutura , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/ultraestrutura , Ativação Enzimática , Humanos , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
4.
Nucleic Acids Res ; 40(9): 4168-77, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22223246

RESUMO

The DNA-dependent protein kinase (DNA-PK) and Poly(ADP-ribose) polymerase-1 (PARP1) are critical enzymes that reduce genomic damage caused by DNA lesions. They are both activated by DNA strand breaks generated by physiological and environmental factors, and they have been shown to interact. Here, we report in vivo evidence that DNA-PK and PARP1 are equally necessary for rapid repair. We purified a DNA-PK/PARP1 complex loaded on DNA and performed electron microscopy and single particle analysis on its tetrameric and dimer-of-tetramers forms. By comparison with the DNA-PK holoenzyme and fitting crystallographic structures, we see that the PARP1 density is in close contact with the Ku subunit. Crucially, PARP1 binding elicits substantial conformational changes in the DNA-PK synaptic dimer assembly. Taken together, our data support a functional, in-pathway role for DNA-PK and PARP1 in double-strand break (DSB) repair. We also propose a NHEJ model where protein-protein interactions alter substantially the architecture of DNA-PK dimers at DSBs, to trigger subsequent interactions or enzymatic reactions.


Assuntos
Reparo do DNA , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas Nucleares/ultraestrutura , Poli(ADP-Ribose) Polimerases/ultraestrutura , Animais , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Dimerização , Camundongos , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/fisiologia
5.
Nucleic Acids Res ; 39(13): 5757-67, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21450809

RESUMO

The multi-subunit DNA-dependent protein kinase (DNA-PK), a crucial player in DNA repair by non-homologous end-joining in higher eukaryotes, consists of a catalytic subunit (DNA-PKcs) and the Ku heterodimer. Ku recruits DNA-PKcs to double-strand breaks, where DNA-PK assembles prior to DNA repair. The interaction of DNA-PK with DNA is regulated via autophosphorylation. Recent SAXS data addressed the conformational changes occurring in the purified catalytic subunit upon autophosphorylation. Here, we present the first structural analysis of the effects of autophosphorylation on the trimeric DNA-PK enzyme, performed by electron microscopy and single particle analysis. We observe a considerable degree of heterogeneity in the autophosphorylated material, which we resolved into subpopulations of intact complex, and separate DNA-PKcs and Ku, by using multivariate statistical analysis and multi-reference alignment on a partitioned particle image data set. The proportion of dimeric oligomers was reduced compared to non-phosphorylated complex, and those dimers remaining showed a substantial variation in mutual monomer orientation. Together, our data indicate a substantial remodelling of DNA-PK holo-enzyme upon autophosphorylation, which is crucial to the release of protein factors from a repaired DNA double-strand break.


Assuntos
Proteína Quinase Ativada por DNA/ultraestrutura , DNA/metabolismo , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Dimerização , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica/métodos , Fosforilação
6.
Acta Pharmacol Sin ; 26(10): 1153-64, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16174429

RESUMO

Single-particle electron microscopy has now reached maturity, becoming a commonly used method in the examination of macromolecular structure. Using a small amount of purified protein, isolated molecules are observed under the electron microscope and the data collected can be averaged into a 3D reconstruction. Single-particle electron microscopy is an appropriate tool for the analysis of proteins that can only be obtained in modest quantities, like many of the large complexes currently of interest in biomedicine. Whilst the use of electron microscopy expands, new methods are being developed and improved to deal with further challenges, such as reaching higher resolutions and the combination of information at different levels of structural detail. More importantly, present methodology is still not robust enough when studying certain tricky proteins like those displaying extensive conformational flexibility and a great deal of user expertise is required, posing a threat to the consistency of the final structure. This mini review describes a brief outline of the methods currently used in the 3D analysis of macromolecules using single-particle electron microscopy, intended for those first approaching this field. A summary of methods, techniques, software, and some recent work is presented. The spectacular improvements to the technique in recent years, its advantages and limitations compared to other structural methods, and its future developments are discussed.


Assuntos
Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Substâncias Macromoleculares , Conformação Proteica , Proteína Quinase Ativada por DNA/ultraestrutura , Proteínas Nucleares/ultraestrutura , Ribossomos/ultraestrutura , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA