Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.466
Filtrar
1.
FEBS Lett ; 598(4): 400-414, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302840

RESUMO

The insulin and dopaminergic systems in the brain are associated with schizophrenia and Parkinson's disease with respect to etiology and treatment. The present study investigated the crosstalk between the insulin receptor (IR) and dopamine receptor and found that insulin stimulation selectively inhibits signaling of D3 R in a PKCßII-dependent manner. Upon insulin stimulation, E3 ligase enzyme Mdm2 moves out of the nucleus to ubiquitinate PKCßII. Subsequently, ubiquitinated PKCßII translocates to the cell membrane and interacts with D3 R in a phosphorylation-dependent manner at S229/257, resulting in the attenuation of D3 R signaling and initiating clathrin-mediated endocytosis and downregulation. Considering that both IR and D3 R are closely related to some neuropsychosis, this study could provide new molecular insight into the etiology of the disorder.


Assuntos
Dopamina , Insulinas , Proteína Quinase C beta , Ubiquitinação , Transdução de Sinais , Ubiquitina/metabolismo , Insulinas/metabolismo
2.
J Am Heart Assoc ; 13(3): e031028, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293916

RESUMO

BACKGROUND: Small conductance calcium-activated potassium (SK) channels are largely responsible for endothelium-dependent coronary arteriolar relaxation. Endothelial SK channels are downregulated by the reduced form of nicotinamide adenine dinucleotide (NADH), which is increased in the setting of diabetes, yet the mechanisms of these changes are unclear. PKC (protein kinase C) is an important mediator of diabetes-induced coronary endothelial dysfunction. Thus, we aimed to determine whether NADH signaling downregulates endothelial SK channel function via PKC. METHODS AND RESULTS: SK channel currents of human coronary artery endothelial cells were measured by whole cell patch clamp method in the presence/absence of NADH, PKC activator phorbol 12-myristate 13-acetate, PKC inhibitors, or endothelial PKCα/PKCß knockdown by using small interfering RNA. Human coronary arteriolar reactivity in response to the selective SK activator NS309 was measured by vessel myography in the presence of NADH and PKCß inhibitor LY333531. NADH (30-300 µmol/L) or PKC activator phorbol 12-myristate 13-acetate (30-300 nmol/L) reduced endothelial SK current density, whereas the selective PKCᵦ inhibitor LY333531 significantly reversed the NADH-induced SK channel inhibition. PKCß small interfering RNA, but not PKCα small interfering RNA, significantly prevented the NADH- and phorbol 12-myristate 13-acetate-induced SK inhibition. Incubation of human coronary artery endothelial cells with NADH significantly increased endothelial PKC activity and PKCß expression and activation. Treating vessels with NADH decreased coronary arteriolar relaxation in response to the selective SK activator NS309, and this inhibitive effect was blocked by coadministration with PKCß inhibitor LY333531. CONCLUSIONS: NADH-induced inhibition of endothelial SK channel function is mediated via PKCß. These findings may provide insight into novel therapeutic strategies to preserve coronary microvascular function in patients with metabolic syndrome and coronary disease.


Assuntos
Diabetes Mellitus , Forbóis , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C beta/farmacologia , Células Endoteliais/metabolismo , Miristatos/metabolismo , Miristatos/farmacologia , NAD/metabolismo , Vasodilatação/fisiologia , Diabetes Mellitus/metabolismo , Endotélio Vascular/metabolismo , RNA Interferente Pequeno/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Forbóis/metabolismo , Forbóis/farmacologia
3.
Eur J Cancer Prev ; 33(1): 45-52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505453

RESUMO

OBJECTIVES: Secreted frizzled-related protein 1 (SFRP1) and protein kinase C-B (PRKCB) contribute to cancer progression and angiogenesis. This study intended to detect SFRP1 and PRKCB expression in non-small-cell lung cancer (NSCLC) patients and analyze its association with clinicopathological features. METHODS: A total of 108 NSCLC patients who underwent surgical resection in our hospital between 2012 and 2017 were retrospectively analyzed. SFRP1 and PRKCB expression was detected using immunohistochemical staining. The relationships between SFRP1 and PRKCB expression and clinicopathological data were analyzed using the chi-square method. Kaplan-Meier analysis was used to investigate survival probability over time. The potential risk of NSCLC morbidity associated with SFRP1 and PRKCB levels was analyzed using univariate and multivariate Cox proportional risk models. RESULTS: SFRP1 and PRKCB expression was negative in 114 and 109 of the 180 NSCLC specimens, respectively. SFRP1 expression was significantly associated with TNM stage ( P  < 0.001) and tumor diameter ( P  < 0.001). PRKCB expression was significantly associated with the TNM stage ( P  < 0.001). The correlation between SFRP1 and PRKCB expression was evident ( P  = 0.023). SFRP1(-) or PRKCB(-) patients shows lower survival rates than SFRP1(+) or PRKCB(+) patients ( P < 0.001). SFRP1(-)/PRKCB(-) patients had the worst prognosis ( P < 0.001). Furthermore, the mortality of SFRP1(-) or PRKCB(-) patients was significantly higher than that of SFRP1(+) or PRKCB(+). CONCLUSION: SFRP1 and PRKCB expression can be used to predict prognosis in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Prognóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Modelos de Riscos Proporcionais , Biomarcadores Tumorais/metabolismo , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intercelular , Proteína Quinase C beta
4.
J Biol Chem ; 299(8): 104917, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315788

RESUMO

Although aging is associated with progressive adiposity and a decline in liver function, the underlying molecular mechanisms and metabolic interplay are incompletely understood. Here, we demonstrate that aging induces hepatic protein kinase Cbeta (PKCß) expression, while hepatocyte PKCß deficiency (PKCßHep-/-) in mice significantly attenuates obesity in aged mice fed a high-fat diet. Compared with control PKCßfl/fl mice, PKCßHep-/- mice showed elevated energy expenditure with augmentation of oxygen consumption and carbon dioxide production which was dependent on ß3-adrenergic receptor signaling, thereby favoring negative energy balance. This effect was accompanied by induction of thermogenic genes in brown adipose tissue (BAT) and increased BAT respiratory capacity, as well as a shift to oxidative muscle fiber type with an improved mitochondrial function, thereby enhancing oxidative capacity of thermogenic tissues. Furthermore, in PKCßHep-/- mice, we determined that PKCß overexpression in the liver mitigated elevated expression of thermogenic genes in BAT. In conclusion, our study thus establishes hepatocyte PKCß induction as a critical component of pathophysiological energy metabolism by promoting progressive hepatic and extrahepatic metabolic derangements in energy homeostasis, contributing to late-onset obesity. These findings have potential implications for augmenting thermogenesis as a means of combating aging-induced obesity.


Assuntos
Fígado , Obesidade , Proteína Quinase C beta , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Oxirredução , Proteína Quinase C beta/deficiência , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Regulação Enzimológica da Expressão Gênica , Envelhecimento , Transdução de Sinais
5.
J Neurosci Res ; 101(8): 1289-1304, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36967123

RESUMO

Morphine-induced scratching (MIS) is a common adverse effect associated with the use of morphine as analgesia after surgery. However, the treatment of MIS is less than satisfactory due to its unclear mechanism, which needs to be enunciated. We found that intrathecal (i.t.) injections of morphine significantly enhanced scratching behavior in C57BL/6J male mice as well as increased the expressions of protein kinase C ß (PKCß), phosphorylated p38 mitogen-activated protein kinases (MAPK), and ionized calcium-binding adapter molecule 1 (Iba1) within spinal cord dorsal horn. Conversely, using the kappa opioid receptor antagonist nalbuphine significantly attenuated scratching behavior, reduced PKCß expression and p38 phosphorylation, and decreased spinal dorsal horn microglial activation, while PKCδ and KOR expression elevated. Spinal PKCß silencing mitigated MIS and microglial activation. Still, knockdown of PKCδ reversed the inhibitory effect of nalbuphine on MIS and microglial activation, indicating that PKCδ is indispensable for the antipruritic effects of nalbuphine. In contrast, PKCß is crucial for inducing microglial activation in MIS in male mice. Our findings show a distinct itch cascade of morphine, PKCß/p38MAPK, and microglial activation, but an anti-MIS pathway of nalbuphine, PKCδ/KOR, and neuron activation.


Assuntos
Morfina , Nalbufina , Camundongos , Masculino , Animais , Morfina/farmacologia , Nalbufina/farmacologia , Nalbufina/metabolismo , Fosforilação , Microglia/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C beta/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Reprod Biol ; 23(2): 100754, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934663

RESUMO

We investigated the role of protein kinase c (PKC) -α and -ß during the ovarian follicular dynamics using estrous cycle, gonadotropin-induced ovulation, and antral follicle culture, 4-vinylcyclohexene diepoxide (VCD)-induced premature ovarian failure (POF) in the SD rat models. We found the higher activity of PKC during the proestrus stage along with expression of PKC-α during the estrus and metestrus stages of the estrous cycle while PKC-ß expression was increased during the diestrus, proestrus, and estrus stages. In response to pregnant mare gonadotropin (PMSG)-induced follicular recruitment and ovulation, the phosphorylated (Thr-642) PKC-ß was increased. PKC activity inhibition by hispidin during the proestrus stage resulted in decreased antral follicles and corpus luteum. Treatment with hispidin resulted in the downregulation of granulosa cell (GC) biomarker, follicle stimulating hormone receptor (FSHR) expression in the cultured pre-antral follicle. During the forskolin-induced luteinization of human granulosa cells, the expression level of PKC-α and ß (I and II) was decreased. In the POF condition, the activity of total PKC and the expression levels of PKC-α and ß (I and II) were increased. Immunostaining depicted ubiquitous expression of PKC-α in the ovary during the estrous cycle and POF conditions. Taken together, we conclude the association of PKC-α and -ß (I and II) during ovarian follicular dynamics where the expression level of PKC-α is increased, but the expression level of PKC-ß (I and II) is suppressed in the POF condition in the SD rat model.


Assuntos
Insuficiência Ovariana Primária , Animais , Feminino , Ratos , Gonadotropinas/farmacologia , Proteína Quinase C beta , Ratos Sprague-Dawley
7.
FEBS Lett ; 597(9): 1300-1316, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775967

RESUMO

The plasticity of proximal tubular epithelial cells in response to TGFß contributes to the expression of TWIST1 to drive renal fibrosis. The mechanism of TWIST1 expression is not known. We show that both PI3 kinase and its target mTORC2 increase TGFß-induced TWIST1 expression. TGFß enhances phosphorylation on Ser-660 in the protein kinase C ßII (PKCßII) hydrophobic motif site. Remarkably, phosphorylation-deficient PKCßIIS660A, kinase-dead PKCßII, and PKCßII knockdown blocked TWIST1 expression by TGFß. Inhibition of TWIST1 arrested TGFß-induced tubular cell hypertrophy and the expression of fibronectin, collagen I (α2), and α-smooth muscle actin. By contrast, TWIST1 overexpression induced these pathologies. Interestingly, the inhibition of PKCßII reduced these phenomena, which were countered by the expression of TWIST1. These results provide the first evidence for the involvement of the mTORC2-PKCßII axis in TWIST1 expression to promote tubular cell pathology.


Assuntos
Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Proteína Quinase C beta , Células Epiteliais/metabolismo
8.
J Biol Chem ; 299(2): 102882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623731

RESUMO

Store-operated Ca2+ entry is a ubiquitous mechanism for Ca2+ influx in mammalian cells that regulates a variety of physiological processes. The identification of two forms of Orai1, the predominant store-operated channel, Orai1α and Orai1ß, raises the question whether they differentially regulate cell function. Orai1α is the full-length Orai1, containing 301 amino acids, whereas Orai1ß lacks the N-terminal 63 amino acids. Here, using a combination of biochemistry and imaging combined with the use of human embryonic kidney 293 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1ß, we show that Orai1α plays a relevant role in agonist-induced NF-κB transcriptional activity. In contrast, functional Orai1ß is not required for the activation of these transcription factors. The role of Orai1α in the activation of NF-κB is entirely dependent on Ca2+ influx and involves PKCß activation. Our results indicate that Orai1α interacts with PKCß2 by a mechanism involving the Orai1α exclusive AKAP79 association region, which strongly suggests a role for AKAP79 in this process. These findings provide evidence of the role of Orai1α in agonist-induced NF-κB transcriptional activity and reveal functional differences between Orai1 variants.


Assuntos
Canais de Cálcio , NF-kappa B , Proteína ORAI1 , Humanos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , NF-kappa B/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Transdução de Sinais
9.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717249

RESUMO

PKCßII, a conventional PKC family member, plays critical roles in the regulation of a variety of cellular functions. Here, we employed loss-of-function approaches and mutants of PKCßII with altered phosphorylation and protein interaction behaviors to identify the cellular mechanisms underlying the activation of PKCßII. Our results show that 3-phosphoinositide-dependent protein kinase-1 (PDK1)-mediated constitutive phosphorylation of PKCßII at the activation loop (T500) is required for phorbol ester-induced nuclear entry and subsequent Mdm2-mediated ubiquitination of PKCßII, whereas ubiquitination of PKCßII is required for the PDK1-mediated inducible phosphorylation of PKCßII at T500 in the nucleus. After moving out of the nucleus, PKCßII interacts with actin, undergoes inducible mTORC2-mediated phosphorylation at the turn motif (T641), interacts with clathrin, and then translocates to the plasma membrane. This overall cascade of cellular events intertwined with the phosphorylation at critical residues and Mdm2-mediated ubiquitination in the nucleus and along with interactions with actin and clathrin plays roles that encompass the core processes of PKC activation.


Assuntos
Actinas , Clatrina , Proteína Quinase C beta , Proteínas Proto-Oncogênicas c-mdm2 , Actinas/metabolismo , Clatrina/metabolismo , Fosforilação , Proteína Quinase C beta/metabolismo , Ubiquitinação , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
10.
Life Sci ; 312: 121245, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503900

RESUMO

AIMS: Conventional members of protein kinase C (PKC) family, including PKCßII, are constitutively phosphorylated on three major motifs and located in the cytosol in a primed state. In response to cellular stimuli, PKCßII is activated through inducible phosphorylation and Mdm2-mediated ubiquitination. In this study, we aimed to identify the activation mechanism of PKCßII, focusing on the signaling cascade that regulate the phosphorylation and ubiquitination. MATERIALS AND METHODS: Loss-of-function approaches and mutants of PDK1/PKCßII that display different regulatory properties were used to identify the cellular components and processes responsible for endocytosis. KEY FINDINGS: Phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation and ubiquitination of PKCßII, which are needed for its translocation to the plasma membrane, required the presence of both Gßγ and 14-3-3ε. Gßγ and 14-3-3ε mediated the constitutive phosphorylation of PKCßII by scaffolding PI3K and PDK1 in the cytosol, which is an inactive but required state for the activation of PKCßII by subsequent signals. In response to PMA treatment, the signaling complex translocated to the nucleus with dissociation of PI3K from it. Thereafter, PDK1 stably interacted with 14-3-3ε and was dephosphorylated; PKCßII interacted with Mdm2 along with Gßγ, leading to its ubiquitination at two lysine residues on its C-tail. Finally, PDK1/14-3-3ε and ubiquitinated PKCßII translocated to the plasma membrane. SIGNIFICANCE: As PKCßII mediates a wide range of cellular functions and plays important roles in the pathogenesis of various diseases, our results will provide clues to understand the pathogenesis of PKCßII-related disorders and facilitate their treatment.


Assuntos
Núcleo Celular , Proteínas de Ligação ao GTP , Proteína Quinase C beta/metabolismo , Fosforilação , Núcleo Celular/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Acetato de Tetradecanoilforbol/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
11.
Free Radic Biol Med ; 194: 62-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410585

RESUMO

Intestinal ischemia reperfusion (I/R) is a common clinical pathological process. We previously reported that pharmacological inhibition of protein kinase C (PKC) ßII with a specific inhibitor attenuated gut I/R injury. However, the endogenous regulatory mechanism of PKCßII inactivation is still unclear. Here, we explored the critical role of caveolin-1 (Cav1) in protecting against intestinal I/R injury by regulating PKCßII inactivation. PKCßII translocated to caveolae and bound with Cav1 after intestinal I/R. Cav1 was highly expressed in the intestine of mice with I/R and IEC-6 cells stimulated with hypoxia/reoxygenation (H/R). Cav1-knockout (KO) mice suffered from worse intestinal injury after I/R than wild-type (WT) mice and showed extremely low survival due to exacerbated systemic inflammatory response syndrome (SIRS) and remote organ (lung and liver) injury. Cav1 deficiency resulted in excessive PKCßII activation and increased oxidative stress and apoptosis after intestinal I/R. Full-length Cav1 scaffolding domain peptide (CSP) suppressed excessive PKCßII activation and protected the gut against oxidative stress and apoptosis due to I/R injury. In summary, Cav1 could regulate PKCßII endogenous inactivation to alleviate intestinal I/R injury. This finding may represent a novel therapeutic strategy for the prevention and treatment of intestinal I/R injury.


Assuntos
Caveolina 1 , Traumatismo por Reperfusão , Animais , Camundongos , Apoptose , Caveolina 1/genética , Caveolina 1/metabolismo , Isquemia , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo
12.
J Biochem Mol Toxicol ; 37(1): e23236, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36239013

RESUMO

Increasing evidence suggests that disruption of neuron activity contributes to the autistic phenotype. Thus, we aimed in this study to explore the role of protein kinase C beta (PKCß) in the regulation of neuron activity in an autism model. The expression of PKCß in the microarray data of autism animal models was obtained from the Gene Expression Omnibus database. Then, mice with autism-like behavior were prepared in EN2 knockout (-/- ) mice. The interaction between PKCß on fat mass and obesity-associated protein (FTO) as well as between PGC-1α and uncoupling protein 1 (UCP1) were characterized. The effect of FTO on the N6 -methyladenosine (m6A) modification level of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was assayed. Following transfection of overexpressed PKCß and/or silenced UCP1, effects of PKCß and UCP1 in autism-like behaviors in EN2-/- mice were analyzed. Results showed that PKCß was downregulated in EN2-/- mouse brain tissues or neurons. PKCß promoted the expression and stability of FTO, which downregulated the m6A modification level of PGC-1α to promote its expression. Moreover, PGC-1α positively targeted the expression of UCP1. PKCß knockdown enhanced sociability and spatial exploration ability, and reduced neuron apoptosis in EN2-/- mouse models of autism, which was reversed by UCP1 overexpression. Collectively, PKCß overexpression leads to activation of the FTO/m6A/PGC-1α/UCP1 axis, thus inhibiting neuron apoptosis and providing neuroprotection in mice with autism-like behavior.


Assuntos
Transtorno Autístico , Proteínas de Homeodomínio , Proteína Quinase C beta , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Transtorno Autístico/genética , Proteínas de Homeodomínio/genética , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Desacopladora 1/metabolismo , Regulação para Cima
13.
Fetal Pediatr Pathol ; 42(2): 241-252, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36062956

RESUMO

Background: Ewing sarcoma (ES) can be confirmed by identifying the EWSR1-FLI1 fusion transcript. This study is to investigate whether immunostaining (IHC) of PRKCB-a protein directly regulated by EWSR1-FLI1 is a surrogate maker for diagnosing ES in routine practice. Methods: Microarray gene expression analyses were conducted. RKCB IHC was applied to 69 ES confirmed by morphology and molecular methods, and 41 non-Ewing small round cell tumors. EWSR1 rearrangement, EWSR1-FLI1 fusion or t(11;22)(q24;q12) were identified by fluorescence in situ hybridization, reverse transcriptase polymerase chain reaction, or cytogenetic analysis, respectively. Results: Gene array analyses showed significant overexpression of the PRKCB in ES. PRKCB IHC was positive in 19 cases of ES with EWSR1-FLI1 fusion, 3 cases with cytogenetic 11:22 translocation and 59 cases with EWSR1 rearrangement while negative in only one EWSR1 rearranged case. PRKCB IHC is sensitive (98%) and specific (96%) in detecting EWSR1 rearranged ES. Conclusions: PRKCB is a reliable antibody for diagnosing ES in routine practice.


Assuntos
Sarcoma de Ewing , Sarcoma , Humanos , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/genética , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Proteína EWS de Ligação a RNA/genética , Biomarcadores , Proteínas de Fusão Oncogênica/genética , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo
14.
Eur J Histochem ; 66(4)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36305269

RESUMO

Diabetic retinopathy (DR) is a common microvascular complication in patients with diabetes mellitus. DR is caused by chronic hyperglycemia and is characterized by progressive loss of vision because of damage to the retinal microvasculature. In this study, we investigated the regulatory role and clinical significance of the vascular endothelial growth factor (VEGF)/protein kinase C (PKC)/endothelin (ET)/nuclear factor-κB (NF-κB)/intercellular adhesion molecule 1 (ICAM-1) signaling pathway in DR using a rat model. Intraperitoneal injections of the VEGF agonist, streptozotocin (STZ) were used to generate the DR model rats. DR rats treated with the VEGF inhibitor (DR+VEGF inhibitor) were used to study the specific effects of VEGF on DR pathology and the underlying mechanisms. DR and DR+VEGF agonist rats were injected with the PKCß2 inhibitor, GF109203X to determine the therapeutic potential of blocking the VEGF/PKC/ET/NF-κB/ICAM-1 signaling pathway. The body weights and blood glucose levels of the rats in all groups were evaluated at 16 weeks. DR-related retinal histopathology was analyzed by hematoxylin and eosin staining. ELISA assay was used to estimate the PKC activity in the retinal tissues. Western blotting and RT-qPCR assays were used to analyze the expression levels of PKC-ß2, VEGF, ETs, NF-κB, and ICAM-1 in the retinal tissues. Immunohistochemistry was used to analyze VEGF and ICAM-1 expression in the rat retinal tissues. Our results showed that VEGF, ICAM-1, PKCß2, ET, and NF-κB expression levels as well as PKC activity were significantly increased in the retinal tissues of the DR and DR+VEGF agonist rat groups compared to the control and DR+VEGF inhibitor rat groups. DR and DR+VEGF agonist rats showed significantly lower body weight and significantly higher retinal histopathology scores and blood glucose levels compared to the control and DR+VEGF inhibitor group rats. However, treatment of DR and DR+VEGF agonist rats with GF109203X partially alleviated DR pathology by inhibiting the VEGF/ PKC/ET/NF-κB/ICAM-1 signaling pathway. In summary, our data demonstrated that inhibition of the VEGF/ PKC/ET/NF-κB/ICAM-1 signaling pathway significantly alleviated DR-related pathology in the rat model. Therefore, VEGF/PKC/ET/NF-κB/ICAM-1 signaling axis is a promising therapeutic target for DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Ratos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , NF-kappa B/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Quinase C beta/metabolismo , Glicemia , Diabetes Mellitus Experimental/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
15.
Toxicol Sci ; 190(1): 64-78, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36066426

RESUMO

Nickel oxide nanoparticles (Nano NiO) lead to pulmonary fibrosis, and the mechanisms are associated with epigenetics. This study aimed to clarify the regulatory relationship among long noncoding RNA HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1), DNA methylation and expression of protein kinase C beta (PRKCB), and JNK/c-Jun pathway in Nano NiO-induced pulmonary fibrosis. Therefore, we constructed the rat pulmonary fibrosis model by intratracheal instillation of Nano NiO twice a week for 9 weeks and established the collagen deposition model by treating BEAS-2B cells with Nano NiO for 24 h. Here, the DNA methylation pattern was analyzed by whole-genome bisulfite sequencing in rat fibrotic lung tissues. Then, we integrated mRNA transcriptome data and found 93 DNA methylation genes with transcriptional significance. Meanwhile, the data showed that Nano NiO caused the down-regulation of lncRNA HOTAIRM1, the hypomethylation, and up-regulation of PRKCB2, JNK/c-Jun pathway activation, and collagen deposition (the up-regulated Col-I and α-SMA) both in vivo and in vitro. DNMTs inhibitor 5-AZDC attenuated Nano NiO-induced PRKCB2 expression, JNK/c-Jun pathway activation, and collagen deposition, but overexpression of PRKCB2 aggravated the changes mentioned indicators in Nano NiO-induced BEAS-2B cells. Furthermore, JNK/c-Jun pathway inhibitor (SP600125) alleviated Nano NiO-induced excessive collagen formation. Additionally, overexpression of HOTAIRM1 restrained the PRKCB hypomethylation, the activation of JNK/c-Jun pathway, and collagen formation induced by Nano NiO in BEAS-2B cells. In conclusion, these findings demonstrated that HOTAIRM1 could arrest Nano NiO-induced pulmonary fibrosis by suppressing the PRKCB DNA methylation-mediated JNK/c-Jun pathway.


Assuntos
Nanopartículas , Fibrose Pulmonar , RNA Longo não Codificante , Animais , Ratos , Metilação de DNA/genética , MAP Quinase Quinase 4/metabolismo , Nanopartículas/efeitos adversos , Nanopartículas/toxicidade , Proteína Quinase C beta/toxicidade , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , RNA Longo não Codificante/genética
16.
J Cell Mol Med ; 26(15): 4183-4194, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801494

RESUMO

Excessive dietary intake of fat results in its storage in white adipose tissue (WAT). Energy expenditure through lipid oxidation occurs in brown adipose tissue (BAT). Certain WAT depots can undergo a change termed beiging where markers that BAT express are induced. Little is known about signalling pathways inducing beiging. Here, inhibition of a signalling pathway regulating alternative pre-mRNA splicing is involved in adipocyte beiging. Clk1/2/4 kinases regulate splicing by phosphorylating factors that process pre-mRNA. Clk1 inhibition by TG003 results in beige-like adipocytes highly expressing PGC1α and UCP1. SiRNA for Clk1, 2 and 4, demonstrated that Clk1 depletion increased UCP1 and PGC1α expression, whereas Clk2/4 siRNA did not. TG003-treated adipocytes contained fewer lipid droplets, are smaller, and contain more mitochondria, resulting in proton leak increases. Additionally, inhibition of PKCßII activity, a splice variant regulated by Clk1, increased beiging. PGC1α is a substrate for both Clk1 and PKCßII kinases, and we surmised that inhibition of PGC1α phosphorylation resulted in beiging of adipocytes. We show that TG003 binds Clk1 more than Clk2/4 through direct binding, and PGC1α binds to Clk1 at a site close to TG003. Furthermore, we show that TG003 is highly specific for Clk1 across hundreds of kinases in our activity screen. Hence, Clk1 inhibition becomes a target for induction of beige adipocytes.


Assuntos
Adipócitos , Precursores de RNA , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Quinase C beta/metabolismo , Precursores de RNA/metabolismo , RNA Interferente Pequeno/metabolismo
17.
BMC Anesthesiol ; 22(1): 230, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850627

RESUMO

Persistent postoperative pain causes influence the life quality of many patients. The Epac/PKC pathway has been indicated to regulate mechanical hyperalgesia. The present study used skin/muscle incision and retraction (SMIR) to induce postoperative pain in rats and evaluated the Epac/PKC pathway in postoperative pain. Mechanical allodynia was assessed by paw withdrawal threshold before and after incision. The levels of Epac, PKC, proinflammatory cytokines, and blood-nerve barrier-related proteins were assessed using Western blotting. We found that SMIR induced the activation of the Epac/PKC pathway, mechanical allodynia, and upregulation of Glut1, VEGF, and PGP9.5 proteins in dorsal root ganglia. Under the influence of agonists of Epac/PKC, normal rats showed mechanical allodynia and increased Glut1, VEGF, and PGP9.5 proteins. After inhibition of Epac1 in rats with SMIR, mechanical allodynia was alleviated, and proinflammatory cytokines and Glut1, VEGF, and PGP9.5 proteins were decreased. Moreover, dorsal root ganglia neurons showed abnormal proliferation under the activation of the Epac/PKC pathway. Using Captopril to protect vascular endothelial cells after SMIR had a positive effect on postoperative pain. In conclusion, SMIR regulates the persistent postoperative pain in rats by the Epac/PKC pathway.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hiperalgesia , Fator A de Crescimento do Endotélio Vascular , Animais , Citocinas/metabolismo , Células Endoteliais/metabolismo , Gânglios Espinais/metabolismo , Transportador de Glucose Tipo 1 , Hiperalgesia/complicações , Músculos/metabolismo , Dor Pós-Operatória/etiologia , Proteína Quinase C beta/metabolismo , Ratos , Ratos Sprague-Dawley , Pele
18.
J Biol Chem ; 298(9): 102246, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835217

RESUMO

Proximal tubular epithelial cells respond to transforming growth factor ß (TGFß) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFß-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCßII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFß-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCßII and siRNAs against PKCßII significantly inhibited TGFß-induced collagen I (α2) expression. In fact, constitutively active PKCßII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCßII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCßII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFß was associated with enhanced expression of DJ-1 and activation of mTOR and PKCßII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFß-induced expression of collagen I (α2) via an mTOR-, PKCßII-, and Hif1α-dependent mechanism to regulate renal fibrosis.


Assuntos
Colágeno Tipo I , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Rim , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteínas Oncogênicas , Proteína Desglicase DJ-1 , Animais , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fibrose , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Proteína Quinase C beta/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
20.
Metab Brain Dis ; 37(6): 1815-1827, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763197

RESUMO

Outgrowth endothelial cells (OECs) provide an endogenous repair mechanism and thus maintain endothelial barrier integrity. As inhibition of protein kinase C-ß (PKC-ß) activity has been shown to attenuate endothelial damage in various pathological conditions including hyperglycaemia and ischaemic injury, the present study comparatively assessed the effect of LY333531, a PKC-ß inhibitor, on the cerebral barrier integrity formed by OECs or human brain microvascular endothelial cells (HBMECs). To this end, an in vitro model of human BBB established by co-culture of astrocytes and pericytes with either OECs or HBMECs was exposed to 4 h of oxygen-glucose deprivation with/out LY333531 (0.05 µM). The inhibition of PKC-ß protected the integrity and function of the BBB formed by HBMECs, as evidenced by increases in transendothelial electrical resistance and decreases in sodium fluorescein flux. It also attenuated ischaemia-evoked actin cytoskeleton remodelling, oxidative stress, and apoptosis in HBMECs. In contrast, treatments with LY333531 exacerbated the deleterious effect of ischaemia on the integrity and function of BBB formed by OECs while augmenting the levels of oxidative stress, apoptosis, and cytoskeletal reorganisation in OECs. Interestingly, the magnitude of damage in all aforementioned parameters, notably oxidative stress, was lower with low dose of LY333531 (0.01 µM). It is therefore possible that the therapeutic concentration of LY333531 (0.05 µM) may neutralise the activity of NADPH oxidase and thus trigger a negative feedback mechanism which in turn exacerbate the detrimental effects of ischaemic injury. In conclusion, targeting PKC-ß signalling pathway in ischaemic settings requires close attention while using OECs as cellular therapeutic.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Barreira Hematoencefálica/metabolismo , Encéfalo , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/patologia , Proteína Quinase C beta/metabolismo , Proteína Quinase C beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...