Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Mol Histol ; 52(4): 705-715, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34105058

RESUMO

Lipopolysaccharide (LPS)-induced autophagy is involved in sepsis-associated myocardial injury with increased PKCß2 activation. We previously found hyperglycemia-induced PKCß2 activation impaired the expression of caveolin-3 (Cav-3), the dominant isoform to form cardiomyocytes caveolae which modulate eNOS signaling to confer cardioprotection in diabetes. However, little is known about the roles of PKCß2 in autophagy and Cav-3/eNOS signaling in cardiomyocytes during LPS exposure. We hypothesize LPS-induced PKCß2 activation promotes autophagy and impairs Cav-3/eNOS signaling in LPS-treated cardiomyocytes. H9C2 cardiomyocytes were treated with LPS (10 µg/mL) in the presence or absence of PKCß2 inhibitor CGP53353 (CGP, 1 µM) or autophagy inhibitor 3-methyladenine (3-MA, 10 µM). LPS stimulation induced cytotoxicity overtime in H9C2 cardiomyocytes, accompanied with excessive PKCß2 activation. Selective inhibition of PKCß2 with CGP significantly reduced LPS-induced cytotoxicity and autophagy (measured by LC-3II, Beclin-1, p62 and autophagic flux). In addition, CGP significantly attenuated LPS-induced oxidative injury, and improved Cav-3 expression and eNOS activation, similar effects were shown by the treatment of autophagy inhibitor 3-MA. LPS-induced myocardial injury is associated with excessive PKCß2 activation, which contributes to elevated autophagy and impaired Cav-3/eNOS signaling. Selective inhibition of PKCß2 improves Cav-3/eNOS signaling and attenuates LPS-induced injury through inhibiting autophagy in H9C2 cardiomyocytes.


Assuntos
Autofagia/efeitos dos fármacos , Caveolina 3/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Ftalimidas/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Western Blotting , Sobrevivência Celular , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos/toxicidade , Malondialdeído/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C beta/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo
2.
Sci Rep ; 11(1): 6044, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723318

RESUMO

Breast cancer is the leading cause of cancer death among women worldwide. Blocking a single signaling pathway is often an ineffective therapy, especially in the case of aggressive or drug-resistant tumors. Since we have previously described the mechanism involved in the crosstalk between Retinoic Acid system and protein kinase C (PKC) pathway, the rationale of our study was to evaluate the effect of combining all-trans-retinoic acid (ATRA) with a classical PCK inhibitor (Gö6976) in preclinical settings. Employing hormone-independent mammary cancer models, Gö6976 and ATRA combined treatment induced a synergistic reduction in proliferative potential that correlated with an increased apoptosis and RARs modulation towards an anti-oncogenic profile. Combined treatment also impairs growth, self-renewal and clonogenicity potential of cancer stem cells and reduced tumor growth, metastatic spread and cancer stem cells frequency in vivo. An in-silico analysis of "Kaplan-Meier plotter" database indicated that low PKCα together with high RARα mRNA expression is a favorable prognosis factor for hormone-independent breast cancer patients. Here we demonstrate that a classical PKC inhibitor potentiates ATRA antitumor effects also targeting cancer stem cells growth, self-renewal and frequency.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Mamárias Experimentais , Proteínas de Neoplasias , Células-Tronco Neoplásicas/enzimologia , Proteína Quinase C beta , Proteína Quinase C-alfa , Animais , Linhagem Celular Tumoral , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Tretinoína/farmacologia
3.
J Cell Physiol ; 236(9): 6312-6327, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33561320

RESUMO

Bcr-Abl independent resistance to tyrosine kinase inhibitor (TKI) is a crucial factor lead to relapse or acute leukemia transformation in chronic myeloid leukemia (CML). However, its mechanism is still unclear. Herein, we found that of nine common protein kinases C (PKCs), PKC-ß overexpression was significantly related with TKI resistance. Blockage of its expression in CD34+ cells and CML cell lines increased sensitivity to imatinib. Then, eighty-four leukemia related genes were compared between TKI-resistant CML cell lines with PKC-ß silenced or not. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that Arachidonate 5-lipoxygenase (Alox5) and its relative pathway mainly participated in the resistance induced by PKC-ß overexpression. It's also observed that Alox5 was increased not only in bone marrow biopsy but also in CD34+ cells derived from IM-resistant CML patients. The signaling pathway exploration indicated that ERK1/2 pathway mediates Alox5 upregulation by PKC-ß. Meanwhile, we also proved that Alox5 induces TKI-insensitivity in CML through inactivation of PTEN. In vivo experiment, PKC-ß elective inhibitor LY333531 prolonged survival time in CML-PDX mice model. In conclusion, targeted on PKC-ß overexpression might be a novel therapy mechanism to overcome TKI-resistance in CML.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteína Quinase C beta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Proteínas de Fusão bcr-abl/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Mutação/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C beta/antagonistas & inibidores , Análise de Sobrevida , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
4.
J Nutr Biochem ; 87: 108515, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017608

RESUMO

This study investigated if the nephroprotective effect of Curcumin in streptozotocin-induced type 1 diabetes mellitus (DM) in rats involves downregulation/inhibition of p66Shc and examined the underlying mechanisms. Rats were divided into 4 groups (n = 12/group) as control, control + Curcumin (100 mg/kg), T1DM, and T1DM + Curcumin. Curcumin was administered orally to control or diabetic rats for 12 weeks daily. As compared to diabetic rats, Curcumin didn't affect either plasma glucose or insulin levels but significantly reduced serum levels of urea, blood urea nitrogen, and creatinine, and concurrently reduced albumin/protein urea and increased creatinine clearance. It also prevented the damage in renal tubules and mitochondria, mesangial cell expansion, the thickness of the basement membrane. Mechanistically, Curcumin reduced mRNA and protein levels of collagen I/III and transforming growth factor- ß-1 (TGF-ß1), reduced inflammatory cytokines levels, improved markers of mitochondrial function, and suppressed the release of cytochrome-c and the activation of caspase-3. In the kidneys of both control and diabetic rats, Curcumin reduced the levels of reactive oxygen species (ROS), increased mRNA levels of manganese superoxide dismutase (MnSOD) and gamma-glutamyl ligase, increased glutathione (GSH) and protein levels of Bcl-2 and MnSOD, and increased the nuclear levels of nuclear factor2 (Nrf2) and FOXO-3a. Besides, Curcumin reduced the nuclear activity of the nuclear factor-kappa B (NF-κB), downregulated protein kinase CßII (PKCßII), NADPH oxidase, and p66Shc, and decreased the activation of p66Shc. In conclusion, Curcumin prevents kidney damage in diabetic rats by activating Nrf2, inhibiting Nf-κB, suppressing NADPH oxidase, and downregulating/inhibiting PKCßII/p66Shc axis.


Assuntos
Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Proteína Quinase C beta/antagonistas & inibidores , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína Forkhead Box O3/metabolismo , Masculino , Proteína Quinase C beta/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/antagonistas & inibidores , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
5.
Cell Cycle ; 19(24): 3399-3405, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33305655

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19. Until now, diverse drugs have been used for the treatment of COVID-19. These drugs are associated with severe side effects, e.g. induction of erythrocyte death, named eryptosis. This massively affects the oxygen (O2) supply of the organism. Therefore, three elementary aspects should be considered simultaneously: (1) a potential drug should directly attack the virus, (2) eliminate virus-infected host cells and (3) preserve erythrocyte survival and functionality. It is known that PKC-α inhibition enhances the vitality of human erythrocytes, while it dose-dependently activates the apoptosis machinery in nucleated cells. Thus, the use of chelerythrine as a specific PKC-alpha and -beta (PKC-α/-ß) inhibitor should be a promising approach to treat people infected with SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Benzofenantridinas/farmacologia , Tratamento Farmacológico da COVID-19 , Eritrócitos/imunologia , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C-alfa/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Doenças Respiratórias/virologia , Antivirais/efeitos adversos , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Benzofenantridinas/efeitos adversos , Benzofenantridinas/uso terapêutico , COVID-19/imunologia , COVID-19/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Vírus de RNA/genética , Vírus de RNA/metabolismo , Doenças Respiratórias/enzimologia , Doenças Respiratórias/metabolismo
6.
Arch Pharm (Weinheim) ; 353(7): e2000062, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32394529

RESUMO

In this study, a series of 20 chalcone derivatives was synthesized, and their antiproliferative activity was tested against the human T cell acute lymphoblastic leukemia-derived cell line, CCRF-CEM. On the basis of the structural features of the most active compounds, a new library of chalcone derivatives, according to the structure-activity relationship design, was synthesized, and their antiproliferative activity was tested against the same cancer cell line. Furthermore, four of these derivatives (compounds 3, 4, 8, 28), based on lower IC50 values (between 6.1 and 8.9 µM), were selected for further investigation regarding the modulation of the protein expression of RACK1 (receptor for activated C kinase), protein kinase C (PKC)α and PKCß, and their action on the cell cycle level. The cell cycle analysis indicated a block in the G0/G1 phase for all four compounds, with a statistically significant decrease in the percentage of cells in the S phase, with no indication of apoptosis (sub-G0/G1 phase). Compounds 4 and 8 showed a statistically significant reduction in the expression of PKCα and an increase in PKCß, which together with the demonstration of an antiproliferative role of PKCß, as assessed by treating cells with a selective PKCß activator, indicated that the observed antiproliferative effect is likely to be mediated through PKCß induction.


Assuntos
Antineoplásicos/farmacologia , Chalconas/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Pré-Escolar , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Proteína Quinase C beta/metabolismo , Relação Estrutura-Atividade
7.
J Diabetes Res ; 2020: 2408240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337288

RESUMO

Diabetic hearts are more susceptible to myocardial ischemia/reperfusion (I/R) injury and less sensitive to ischemic postconditioning (IPostC), but the underlying mechanisms remain unclear. PKCß2 is preferentially overactivated in diabetic myocardium, in which autophagy status is abnormal. This study determined whether hyperglycemia-induced PKCß2 activation resulted in autophagy abnormality and compromised IPostC cardioprotection in diabetes. We found that diabetic rats showed higher cardiac PKCß2 activation and lower autophagy than control at baseline. However, myocardial I/R further increased PKCß2 activation and promoted autophagy status in diabetic rats. IPostC significantly attenuated postischemic infarct size and CK-MB, accompanied with decreased PKCß2 activation and autophagy in control but not in diabetic rats. Pretreatment with CGP53353, a selective inhibitor of PKCß2, attenuated myocardial I/R-induced infarction and autophagy and restored IPostC-mediated cardioprotection in diabetes. Similarly, CGP53353 could restore hypoxic postconditioning (HPostC) protection against hypoxia reoxygenation- (HR-) induced injury evidenced by decreased LDH release and JC-1 monomeric cells and increased cell viability. These beneficial effects of CGP53353 were reversed by autophagy inducer rapamycin, but could be mimicked by autophagy inhibitor 3-MA. It is concluded that selective inhibition of PKCß2 could attenuate myocardial I/R injury and restore IPostC-mediated cardioprotection possibly through modulating autophagy in diabetes.


Assuntos
Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Pós-Condicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica/metabolismo , Ftalimidas/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Masculino , Proteína Quinase C beta/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
8.
Am J Physiol Heart Circ Physiol ; 318(2): H470-H483, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922892

RESUMO

Reactive oxygen species (ROS), mitochondrial dysfunction, and excessive vasoconstriction are important contributors to chronic hypoxia (CH)-induced neonatal pulmonary hypertension. On the basis of evidence that PKCß and mitochondrial oxidative stress are involved in several cardiovascular and metabolic disorders, we hypothesized that PKCß and mitochondrial ROS (mitoROS) signaling contribute to enhanced pulmonary vasoconstriction in neonatal rats exposed to CH. To test this hypothesis, we examined effects of the PKCß inhibitor LY-333,531, the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and the mitochondrial antioxidants mitoquinone mesylate (MitoQ) and (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) on vasoconstrictor responses in saline-perfused lungs (in situ) or pressurized pulmonary arteries from 2-wk-old control and CH (12-day exposure, 0.5 atm) rats. Lungs from CH rats exhibited greater basal tone and vasoconstrictor sensitivity to 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619). LY-333,531 and TEMPOL attenuated these effects of CH, while having no effect in lungs from control animals. Basal tone was similarly elevated in isolated pulmonary arteries from neonatal CH rats compared with control rats, which was inhibited by both LY-333,531 and mitochondria-targeted antioxidants. Additional experiments assessing mitoROS generation with the mitochondria-targeted ROS indicator MitoSOX revealed that a PKCß-mitochondrial oxidant signaling pathway can be pharmacologically stimulated by the PKC activator phorbol 12-myristate 13-acetate in primary cultures of pulmonary artery smooth muscle cells (PASMCs) from control neonates. Finally, we found that neonatal CH increased mitochondrially localized PKCß in pulmonary arteries as assessed by Western blotting of subcellular fractions. We conclude that PKCß activation leads to mitoROS production in PASMCs from neonatal rats. Furthermore, this signaling axis may account for enhanced pulmonary vasoconstrictor sensitivity following CH exposure.NEW & NOTEWORTHY This research demonstrates a novel contribution of PKCß and mitochondrial reactive oxygen species signaling to increased pulmonary vasoconstrictor reactivity in chronically hypoxic neonates. The results provide a potential mechanism by which chronic hypoxia increases both basal and agonist-induced pulmonary arterial smooth muscle tone, which may contribute to neonatal pulmonary hypertension.


Assuntos
Hipóxia/metabolismo , Proteína Quinase C beta/metabolismo , Animais , Animais Recém-Nascidos , Doença Crônica , Óxidos N-Cíclicos/farmacologia , Inibidores Enzimáticos , Feminino , Sequestradores de Radicais Livres , Indóis/farmacologia , Maleimidas/farmacologia , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Gravidez , Proteína Quinase C beta/antagonistas & inibidores , Artéria Pulmonar/efeitos dos fármacos , Circulação Pulmonar , Ratos , Espécies Reativas de Oxigênio , Marcadores de Spin , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Vasoconstrição , Vasoconstritores/farmacologia
9.
J Clin Invest ; 130(2): 686-698, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31639107

RESUMO

Vascular Ehlers-Danlos syndrome (vEDS) is an autosomal-dominant connective tissue disorder caused by heterozygous mutations in the COL3A1 gene, which encodes the pro-α 1 chain of collagen III. Loss of structural integrity of the extracellular matrix is believed to drive the signs and symptoms of this condition, including spontaneous arterial dissection and/or rupture, the major cause of mortality. We created 2 mouse models of vEDS that carry heterozygous mutations in Col3a1 that encode glycine substitutions analogous to those found in patients, and we showed that signaling abnormalities in the PLC/IP3/PKC/ERK pathway (phospholipase C/inositol 1,4,5-triphosphate/protein kinase C/extracellular signal-regulated kinase) are major mediators of vascular pathology. Treatment with pharmacologic inhibitors of ERK1/2 or PKCß prevented death due to spontaneous aortic rupture. Additionally, we found that pregnancy- and puberty-associated accentuation of vascular risk, also seen in vEDS patients, was rescued by attenuation of oxytocin and androgen signaling, respectively. Taken together, our results provide evidence that targetable signaling abnormalities contribute to the pathogenesis of vEDS, highlighting unanticipated therapeutic opportunities.


Assuntos
Ruptura Aórtica , Colágeno Tipo III , Síndrome de Ehlers-Danlos , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases , Animais , Ruptura Aórtica/tratamento farmacológico , Ruptura Aórtica/genética , Ruptura Aórtica/metabolismo , Ruptura Aórtica/patologia , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/tratamento farmacológico , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo
10.
J Mol Cell Cardiol ; 138: 283-290, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785237

RESUMO

The slow voltage-gated potassium channel (IKs) is composed of the KCNQ1 and KCNE1 subunits and is one of the major repolarizing currents in the heart. Activation of protein kinase C (PKC) has been linked to cardiac arrhythmias. Although PKC has been shown to be a regulator of a number of cardiac channels, including IKs, little is known about regulation of the channel by specific isoforms of PKC. Here we studied the role of different PKC isoforms on IKs channel membrane localization and function. Our studies focused on PKC isoforms that translocate to the plasma membrane in response to Gq-coupled receptor (GqPCR) stimulation: PKCα, PKCßI, PKCßII and PKCε. Prolonged stimulation of GqPCRs has been shown to decrease IKs membrane expression, but the specific role of each PKC isoform is unclear. Here we show that stimulation of calcium-dependent isoforms of PKC (cPKC) but not PKCε mimic receptor activation. In addition, we show that general PKCß (LY-333531) and PKCßII inhibitors but not PKCα or PKCßI inhibitors blocked the effect of cPKC on the KCNQ1/KCNE1 channel. PKCß inhibitors also blocked GqPCR-mediated decrease in channel membrane expression in cardiomyocytes. Direct activation of PKCßII using constitutively active PKCßII construct mimicked agonist-induced decrease in membrane expression and channel function, while dominant negative PKCßII showed no effect. This suggests that the KCNQ1/KCNE1 channel was not regulated by basal levels of PKCßII activity. Our results indicate that PKCßII is a specific regulator of IKs membrane localization. PKCßII expression and activation are strongly increased in many disease states, including heart disease and diabetes. Thus, our results suggest that PKCßII inhibition may protect against acquired QT prolongation associated with heart disease.


Assuntos
Membrana Celular/metabolismo , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína Quinase C beta/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenilefrina/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Ratos
11.
Bioorg Med Chem Lett ; 30(4): 126886, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31879206

RESUMO

Variegatic acid, isolated from Tylopilus ballouii dry fruiting bodies, is an inhibitor of ß-hexosaminidase release and tumor necrosis factor (TNF)-α secretion from rat basophilic leukemia (RBL-2H3) cells, with IC50 values of 10.4 µM and 16.8 µM, respectively. On the other hand, it inhibits PKCß1 activity with an IC50 value of 36.2 µM.


Assuntos
Basidiomycota/química , Proteína Quinase C beta/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Animais , Basidiomycota/metabolismo , Linhagem Celular Tumoral , Concentração Inibidora 50 , Leucemia/metabolismo , Leucemia/patologia , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Proteína Quinase C beta/metabolismo , Ratos , Estaurosporina/farmacologia
12.
BMC Nephrol ; 20(1): 358, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521120

RESUMO

BACKGROUND: Cardiovascular disease is the most common complication and leading cause of death in maintenance hemodialysis patients. The protection mechanism of hydrogen sulfide (H2S) and the specific role of conventional protein kinase C ßII (cPKCßII)/Akt signaling pathway in the formation of atherosclerosis is still controversial. METHODS: 8-week-old male ApoE-/- mice were treated with 5/6 nephrectomy and high-fat diet to make uremia accelerated atherosclerosis (UAAS) model. Mice were divided into normal control group (control group), sham operation group (sham group), UAAS group, L-cysteine group (UAAS+L-cys group), sodium hydrosulfide group (UAAS+NaHS group), and propargylglycine group (UAAS+PPG group). Western blot was used to detect cPKCßII activation, Akt phosphorylation and endothelial nitric oxide synthase (eNOS) expression in mice aorta. RESULTS: The membrane translocation of cPKCßII in UAAS group was higher than sham group, and L-cys or NaHS injection could suppress the membrane translocation, but PPG treatment resulted in more membrane translocation of cPKCßII (P < 0.05, n = 6 per group). Akt phosphorylation and the eNOS expression in UAAS group was lower than sham group, and L-cys or NaHS injection could suppress the degradation of Akt phosphorylation and the eNOS expression, but PPG treatment resulted in more decrease in the Akt phosphorylation and the eNOS expression (P < 0.05, n = 6 per group). CONCLUSION: Endogenous cystathionine-γ-lyase (CSE)/H2S system protected against the formation of UAAS via cPKCßII/Akt signal pathway. The imbalance of CSE/H2S system may participate in the formation of UAAS by affecting the expression of downstream molecule eNOS, which may be mediated by cPKCßII/Akt signaling pathway.


Assuntos
Aterosclerose/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteína Quinase C beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Uremia/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase C beta/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Uremia/etiologia , Uremia/prevenção & controle
13.
Cell Microbiol ; 21(10): e13084, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290228

RESUMO

Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCß âž” Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCß or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP-1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/ß âž” Src, and inhibition of EGFR controls pre-established toxoplasmosis.


Assuntos
Autofagossomos/metabolismo , Autofagossomos/parasitologia , Autofagia , Receptores ErbB/metabolismo , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/enzimologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína Beclina-1/metabolismo , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Gefitinibe/uso terapêutico , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fosforilação , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Toxoplasma/efeitos dos fármacos , Toxoplasma/patogenicidade , Toxoplasmose Animal/enzimologia , Toxoplasmose Animal/genética
14.
J Physiol ; 597(17): 4481-4501, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31241168

RESUMO

KEY POINTS: Acute hyperglycaemia at the time of a heart attack worsens the outcome for the patient. Acute hyperglycaemia is not limited to diabetic patients and can be due to a stress response in non-diabetics. This study suggests that the damaging cardiac effects of hyperglycaemia can be reversed by selective PKC inhibition. If PKCα/ß isoforms are inhibited, then high glucose itself becomes protective against ischaemic damage. Selective PKC inhibition may therefore be a useful therapeutic tool to limit the damage that can occur during a heart attack by stress-induced hyperglycaemia. ABSTRACT: Hyperglycaemia has a powerful association with adverse prognosis for patients with acute coronary syndromes (ACS). Previous work shows that high glucose prevents ischaemic preconditioning and causes electrical and mechanical disruption via protein kinase C α/ß (PKCα/ß) activation. The present study aimed to: (i) determine whether the adverse clinical association of hyperglycaemia in ACS can be replicated in preclinical cellular models of ACS and (ii) determine the importance of PKCα/ß activation to the deleterious effect of glucose. Freshly isolated rat, guinea pig or rabbit cardiomyocytes were exposed to simulated ischaemia after incubation in the presence of normal (5 mm) or high (20 mm) glucose in the absence or presence of small molecule or tat-peptide-linked PKCαß inhibitors. In each of the four conditions, the following hallmarks of cardioprotection were recorded using electrophysiology or fluorescence imaging: cardiomyocyte contraction and survival, action potential stability and time to failure, intracellular calcium and ATP, mitochondrial depolarization, ischaemia-sensitive leak current, and time to Kir 6.2 opening. High glucose alone resulted in decreased cardiomyocyte contraction and survival; however, it also imparted cardioprotection in the presence of PKCα/ß inhibitors. This cardioprotective phenotype displayed improvements in all of the measured parameters and decreased myocardium damage during whole heart coronary ligation experiments. High glucose is deleterious to cellular and whole-heart models of simulated ischaemia, in keeping with the clinical association of hyperglycaemia with an adverse outcome in ACS. PKCαß inhibition revealed high glucose to show a cardioprotective phenotype in this setting. The results of the present study suggest the potential for the therapeutic application of PKCαß inhibition in ACS associated with hyperglycaemia.


Assuntos
Glicólise/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C-alfa/antagonistas & inibidores , Animais , Glucose/farmacologia , Glicólise/fisiologia , Cobaias , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Masculino , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Ratos , Ratos Wistar
15.
Psychopharmacology (Berl) ; 236(11): 3231-3242, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31134292

RESUMO

RATIONALE: Pathological amphetamine (AMPH) use is a serious public health concern with no pharmacological treatment options. Protein kinase Cß (PKCß) has been implicated in the mechanism of action of AMPH, such that inhibition of PKCß attenuates AMPH-stimulated dopamine efflux in vivo. With this in mind, inhibition of PKCß may be a viable therapeutic target for AMPH use disorder. OBJECTIVE: The purpose of this study is to demonstrate that selective pharmacological inhibition of PKCß alters AMPH-stimulated behaviors in rats. METHODS: Rats were administered intracerebroventricular (i.c.v.) injections of the PKCß-selective inhibitor enzastaurin 0.5, 3, 6, or 18 h before evaluating AMPH-stimulated locomotion (0.32-3.2 mg/kg). Rats were trained to make responses for different doses of AMPH infusions or sucrose under a fixed ratio 5 schedule of reinforcement, and the effects of enzastaurin pretreatment 3 or 18 h prior to a self-administration session were determined. Also, the effect of enzastaurin on AMPH-stimulated PKC activity in the ventral striatum was evaluated. RESULTS: A large dose of enzastaurin (1 nmol) decreased AMPH-stimulated locomotor activity 0.5 h following enzastaurin administration. Small doses of enzastaurin (10-30 pmol) attenuated AMPH-stimulated locomotor activity and shifted the AMPH dose-effect curve to the right following an 18-h pretreatment. Rats pretreated with enzastaurin 18 h, but not 3, prior to a self-administration session showed a decrease in the number of responses for AMPH, shifted the ascending limb of the amphetamine dose effect curve, and produced no change in responses for sucrose. AMPH-stimulated PKC activity was decreased following a 0.5- or 18-h pretreatment, but not a 3-h pretreatment of enzastaurin. CONCLUSIONS: These results demonstrate that inhibition of PKCß will decrease AMPH-stimulated behaviors and neurobiological changes and suggest that PKCß is potentially a viable target for AMPH use disorder.


Assuntos
Anfetamina/administração & dosagem , Comportamento Aditivo/prevenção & controle , Estimulantes do Sistema Nervoso Central/administração & dosagem , Indóis/farmacologia , Locomoção/efeitos dos fármacos , Proteína Quinase C beta/antagonistas & inibidores , Animais , Comportamento Aditivo/enzimologia , Comportamento Aditivo/psicologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Relação Dose-Resposta a Droga , Indóis/uso terapêutico , Locomoção/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Autoadministração
16.
Hum Mol Genet ; 28(12): 2014-2029, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753434

RESUMO

An early hallmark of Alzheimer's disease is the accumulation of amyloid-ß (Aß), inspiring numerous therapeutic strategies targeting this peptide. An alternative approach is to destabilize the amyloid beta precursor protein (APP) from which Aß is derived. We interrogated innate pathways governing APP stability using a siRNA screen for modifiers whose own reduction diminished APP in human cell lines and transgenic Drosophila. As proof of principle, we validated PKCß-a known modifier identified by the screen-in an APP transgenic mouse model. PKCß was genetically targeted using a novel adeno-associated virus shuttle vector to deliver microRNA-adapted shRNA via intracranial injection. In vivo reduction of PKCß initially diminished APP and delayed plaque formation. Despite persistent PKCß suppression, the effect on APP and amyloid diminished over time. Our study advances this approach for mining druggable modifiers of disease-associated proteins, while cautioning that prolonged in vivo validation may be needed to reveal emergent limitations on efficacy.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Proteína Quinase C beta/antagonistas & inibidores , Doença de Alzheimer/genética , Amiloidose/terapia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Drosophila , Testes Genéticos , Terapia Genética , Humanos , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Fosforilação , Placa Amiloide/patologia , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
17.
Nat Commun ; 10(1): 329, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659190

RESUMO

We previously demonstrated that beta II protein kinase C (ßIIPKC) activity is elevated in failing hearts and contributes to this pathology. Here we report that ßIIPKC accumulates on the mitochondrial outer membrane and phosphorylates mitofusin 1 (Mfn1) at serine 86. Mfn1 phosphorylation results in partial loss of its GTPase activity and in a buildup of fragmented and dysfunctional mitochondria in heart failure. ßIIPKC siRNA or a ßIIPKC inhibitor mitigates mitochondrial fragmentation and cell death. We confirm that Mfn1-ßIIPKC interaction alone is critical in inhibiting mitochondrial function and cardiac myocyte viability using SAMßA, a rationally-designed peptide that selectively antagonizes Mfn1-ßIIPKC association. SAMßA treatment protects cultured neonatal and adult cardiac myocytes, but not Mfn1 knockout cells, from stress-induced death. Importantly, SAMßA treatment re-establishes mitochondrial morphology and function and improves cardiac contractility in rats with heart failure, suggesting that SAMßA may be a potential treatment for patients with heart failure.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Peptídeos/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Animais , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Inativação de Genes , Insuficiência Cardíaca/metabolismo , Masculino , Membranas Mitocondriais/metabolismo , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , RNA Interferente Pequeno , Ratos Wistar
18.
ACS Chem Neurosci ; 10(1): 246-251, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30156829

RESUMO

The demonstrated role of PKCß in  mediating amphetamine-stimulated dopamine efflux, which regulates amphetamine-induced dopamine transporter trafficking and activity, has promoted the research use of the selective, reversible PKCß inhibitor (9 S)-9-[(dimethylamino)methyl]-6,7,10,11-tetrahydro-9 H,18 H-5,21:12,17-dimethenodibenzo[ e,k]pyrrolo[3,4- h][1,4,13]oxadiazacyclohexadecine-18,20(19 H)-dione, ruboxistaurin. Despite the interest in development of ruboxistaurin as the mesylate monohydrate (Arxxant) for the treatment of diabetic retinopathy, macular edema, and nephoropathy, several crucial details in physicochemical characterization were erroneous or missing. This report describes the synthesis and full characterization of ruboxistaurin free base (as a monohydrate), including X-ray crystallography to confirm the absolute configuration, and of the mesylate salt, isolated as a hydrate containing 1.5 mol of water per mole.


Assuntos
Química Farmacêutica/métodos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Maleimidas/síntese química , Maleimidas/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/metabolismo , Difração de Raios X/métodos
19.
J Diabetes Res ; 2018: 9502895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850613

RESUMO

BACKGROUND: Patients with diabetes are more vulnerable to myocardial ischemia reperfusion injury (IRI), which is involved in PKCß2 activation and mitochondrial dysfunction. Glycine has been documented as a cytoprotective agent to attenuate diabetes-related abnormalities and reduce myocardial IRI, but the underlying mechanisms are still unclear. We determined whether glycine could attenuate high glucose- (HG-) and hypoxia/reoxygenation- (H/R-) induced injury by inhibiting PKCß2 activation and improving mitochondrial quality in cultured H9C2 cells. METHODS: H9C2 cells were either exposed to low glucose (LG) or HG conditions with or without treatment of glycine or CGP53353 (a selective inhibitor of PKCß2) for 48 h, then subjected to 4 h of hypoxia followed by 2 h of reoxygenation (H/R). Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration were detected using corresponding commercial kits. Mitochondrial quality control-related proteins (LC-3II, Mfn-2, and Cyt-C) and PKCß2 activation were detected by Western blot. RESULTS: HG stimulation significantly decreased cell viability and SOD activity and increased LDH release, MDA production, and PKCß2 activation as compared to LG group, all of which changes were further increased by H/R insult. Glycine or CGP53353 treatment significantly reduced the increase of LDH release, MDA production, PKCß2 activation, and Cyt-C expression and the decrease of cell viability, SOD activity, MMP, Mfn-2 expression, and LC-3II/LC-3I ratio induced by HG and H/R stimulation. CONCLUSIONS: Supplementary glycine protects H9C2 cells from HG- and H/R-induced cellular injury by suppressing PKCß2 activation and improving mitochondria quality.


Assuntos
Glucose/farmacologia , Glicina/farmacologia , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteína Quinase C beta/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hipóxia/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ftalimidas/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos
20.
PLoS One ; 13(6): e0198256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870545

RESUMO

Enzastaurin is a Protein Kinase C-ß selective inhibitor that was developed to treat cancers. Protein Kinase C-ß is an important enzyme for a variety of neuronal functions; in particular, previous rodent studies have reported deficits in spatial and fear-conditioned learning and memory with lower levels of Protein Kinase C-ß. Due to Enzastaurin's mechanism of action, the present study investigated the consequences of Enzastaurin exposure on learning and memory in 12-month-old Fischer-344 male rats. Rats were treated daily with subcutaneous injections of either vehicle or Enzastaurin, and behaviorally tested using the spatial reference memory Morris Water Maze. Rats treated with Enzastaurin exhibited decreased overnight retention and poorer performance on the latter testing day, indicating a mild, but significant, memory impairment. There were no differences during the probe trial indicating that all animals were able to spatially localize the platform to the proper quadrant by the end of testing. RNA isolated from the hippocampus was analyzed using Next Generation Sequencing (Illumina). No statistically significant transcriptional differences were noted. Our findings suggest that acute Enzastaurin treatment can impair hippocampal-based learning and memory performance, with no effects on transcription in the hippocampus. We propose that care should be taken in future clinical trials that utilize Protein Kinase C-ß inhibitors, to monitor for possible cognitive effects, future research should examine if these effects are fully reversible.


Assuntos
Envelhecimento/metabolismo , Comportamento Animal/efeitos dos fármacos , Indóis/efeitos adversos , Transtornos da Memória , Memória/efeitos dos fármacos , Proteína Quinase C beta/antagonistas & inibidores , Envelhecimento/genética , Animais , Indóis/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/enzimologia , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...