Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 126: 155297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342019

RESUMO

BACKGROUND: Research on the imbalance of proopiomelanocortin (POMC)/agouti-related protein (AgRP) neurons in the hypothalamus holds potential insights into the pathophysiology of diabetes. Jinkui Shenqi pills (JSP), a prevalent traditional Chinese medicine, regulate hypothalamic function and treat diabetes. PURPOSE: To investigate the hypoglycemic effect of JSP and explore the probable mechanism in treating diabetes. METHODS: A type 2 diabetes mouse model was used to investigate the pharmacodynamics of JSP. The glucose-lowering efficacy of JSP was assessed through various metrics including body weight, food consumption, fasting blood glucose (FBG), serum insulin levels, and an oral glucose tolerance test (OGTT). To elucidate the modulatory effects of JSP on hypothalamic mechanisms, we quantified the expression and activity of POMC and AgRP and assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (AKT)/forkhead box O1 (FOXO1) pathway in diabetic mice via western blotting and immunohistochemistry. Additionally, primary hypothalamic neurons were exposed to high glucose and palmitic acid levels to induce insulin resistance, and the influence of JSP on POMC/AgRP protein expression and activation was evaluated by PI3K protein inhibition using western blotting and immunofluorescence. RESULTS: Medium- and high-dose JSP treatment effectively inhibited appetite, resulting in a steady declining trend in body weight, FBG, and OGTT results in diabetic mice (p < 0.05). These JSP groups also had significantly increased insulin levels (p < 0.05). Importantly, the medium-dose group exhibited notable protection of hypothalamic neuronal and synaptic structures, leading to augmentation of dendritic length and branching (p < 0.05). Furthermore, low-, medium-, and high-dose JSP groups exhibited increased phosphorylated (p) INSR, PI3K, pPI3K, AKT, and pAKT expression, as well as decreased FOXO1 and increased pFOXO1 expression, indicating improved hypothalamic insulin resistance in diabetic mice (p < 0.05). Treatment with 10% JSP-enriched serum produced a marked elevation of both expression and activation of POMC (p < 0.05), with a concurrent reduction in AgRP expression and activation within primary hypothalamic neurons (p < 0.05). Intriguingly, these effects could be attributed to the regulatory dynamics of PI3K activity. CONCLUSION: Our findings suggest that JSP can ameliorate diabetes by regulating POMC/AgRP expression and activity. The insulin-mediated PI3K/AKT/FOXO1 pathway plays an important regulatory role in this intricate process.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Resistência à Insulina , Camundongos , Animais , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Peso Corporal
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38035762

RESUMO

Voluntary feed intake is insufficient to meet the nutrient demands associated with late pregnancy in prolific ewes and early lactation in high-yielding dairy cows. Under these conditions, peripheral signals such as growth hormone and ceramides trigger adaptations aimed at preserving metabolic well-being. Recent work in rodents has shown that the central nervous system-melanocortin (CNS-MC) system, consisting of alpha-melanocyte-stimulating hormone (α-MSH) and agouti-related peptide (AGRP) acting respectively as agonist and antagonist on central MC receptors, contributes to the regulation of some of the same adaptations. To assess the effects of the CNC-MC on peripheral adaptations in ruminants, ewes were implanted with an intracerebroventricular cannula in the third ventricle and infused over days with artificial cerebrospinal fluid (aCSF), the α-MSH analog melanotan-I (MTI), or AGRP. Infusion of MTI at 0.03 nmol/h reduced intake, expressed as a fold of maintenance energy requirement (M), from 1.8 to 1.1 M (P < 0.0001), whereas AGRP at 0.3 nmol/h increased intake from 1.8 to 2.0 M (P < 0.01); these doses were used in all subsequent experiments. To assess the effect of MTI on plasma variables, sheep were fed ad libitum and infused with aCSF or MTI or pair-fed to MTI-treated sheep and infused with aCSF (aCSFPF). Feed intake of the MTI and aCSFPF groups was 40% lower than the aCSF group (P < 0.0001). MTI increased plasma triiodothyronine and thyroxine in an intake-independent manner (P < 0.05 or less) but was devoid of effects on plasma glucose, insulin, and cortisol. None of these variables were altered by AGRP infusion in sheep fed at a fixed intake of 1.6 M. To assess the effect of CNS-MC activation on insulin action, ewes were infused with aCSF or MTI over the last 3 d of a 14-d period when energy intake was limited to 0.3 M and studied under basal conditions and during hyperinsulinemic-euglycemic clamps. MTI had no effect on plasma glucose, plasma insulin, or glucose entry rate under basal conditions but blunted the ability of insulin to inhibit endogenous glucose production during hyperinsulinemic-euglycemic clamps (P < 0.0001). Finally, MTI tended to reduce plasma leptin in sheep fed at 0.3 M (P < 0.08), and this effect became significant at 0.6 M (P < 0.05); MTI had no effect on plasma adiponectin irrespective of feeding level. These data suggest a role for the CNC-MC in regulating metabolic efficiency and peripheral insulin action.


Highly productive ruminants face short-term nutritional deficits during demanding phases of their life cycle. They remain productive and healthy during these periods through a series of metabolic adaptations. Current models in ruminant biology attribute the coordination of these adaptations to circulating hormones and bioactive metabolites but have not considered the possibility that the central nervous system (CNS) is also involved. The latter appears likely given recent work in rodents implicating the CNS-melanocortin system in the regulation of some of these adaptations. To test this possibility, mature ewes were surgically implanted with a cannula accessing the brain allowing chronic infusion of melanocortins, and used in experiments assessing peripheral effects. These experiments showed that the CNS-melanocortin system regulates the circulating concentrations of some metabolic hormones as well as the ability of insulin to regulate glucose production. Overall, these studies suggest a role for the CNS-melanocortin system in regulating metabolic adaptations in ruminants.


Assuntos
Melanocortinas , alfa-MSH , Bovinos , Feminino , Ovinos , Animais , Gravidez , Melanocortinas/metabolismo , Melanocortinas/farmacologia , alfa-MSH/farmacologia , Proteína Relacionada com Agouti/farmacologia , Glicemia , Leptina , Insulina , Ingestão de Alimentos
3.
J Neurochem ; 167(5): 648-667, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855271

RESUMO

Chemogenetic activation of oxytocin receptor-expressing neurons in the parabrachial nucleus (OxtrPBN neurons) acts as a satiation signal for water. In this research, we investigated the effect of activating OxtrPBN neurons on satiation for different types of fluids. Chemogenetic activation of OxtrPBN neurons in male and female transgenic OxtrCre mice robustly suppressed the rapid, initial (15-min) intake of several solutions after dehydration: water, sucrose, ethanol and saccharin, but only slightly decreased intake of Ensure®, a highly caloric solution (1 kcal/mL; containing 3.72 g protein, 3.27 g fat, 13.42 g carbohydrates, and 1.01 g dietary fibre per 100 mL). OxtrPBN neuron activation also suppressed cumulative, longer-term (2-h) intake of lower caloric, less palatable solutions, but not highly caloric, palatable solutions. These results suggest that OxtrPBN neurons predominantly control initial fluid-satiation responses after rehydration, but not longer-term intake of highly caloric, palatable solutions. The suppression of fluid intake was not because of anxiogenesis, but because OxtrPBN neuron activation decreased anxiety-like behaviour. To investigate the role of different PBN subdivisions on the intake of different solutions, we examined FOS as a proxy marker of PBN neuron activation. Different PBN subdivisions were activated by different solutions: the dorsolateral PBN similarly by all fluids; the external lateral PBN by caloric but not non-caloric solutions; and the central lateral PBN primarily by highly palatable solutions, suggesting PBN subdivisions regulate different aspects of fluid intake. To explore the possible mechanisms underlying the minimal suppression of Ensure® after OxtrPBN neuron activation, we demonstrated in in vitro slice recordings that the feeding-associated agouti-related peptide (AgRP) inhibited OxtrPBN neuron firing in a concentration-related manner, suggesting possible inhibition by feeding-related neurocircuitry of fluid satiation neurocircuitry. Overall, this research suggests that although palatable beverages like sucrose- and ethanol-containing beverages activate fluid satiation signals encoded by OxtrPBN neurons, these neurons can be inhibited by hunger-related signals (agouti-related peptide, AgRP), which may explain why these fluids are often consumed in excess of what is required for fluid satiation.


Assuntos
Núcleos Parabraquiais , Camundongos , Masculino , Feminino , Animais , Núcleos Parabraquiais/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Saciação/fisiologia , Água/metabolismo , Sacarose/farmacologia , Etanol/farmacologia
4.
Mol Psychiatry ; 28(5): 1857-1867, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36765131

RESUMO

Antipsychotic (AP) drugs are efficacious treatments for various psychiatric disorders, but excessive weight gain and subsequent development of metabolic disease remain serious side effects of their use. Increased food intake leads to AP-induced weight gain, but the underlying molecular mechanisms remain unknown. In previous studies, we identified the neuropeptide Agrp and the transcription factor nuclear receptor subfamily 5 group A member 2 (Nr5a2) as significantly upregulated genes in the hypothalamus following AP-induced hyperphagia. While Agrp is expressed specifically in the arcuate nucleus of the hypothalamus and plays a critical role in appetite stimulation, Nr5a2 is expressed in both the CNS and periphery, but its role in food intake behaviors remains unknown. In this study, we investigated the role of hypothalamic Nr5a2 in AP-induced hyperphagia and weight gain. In hypothalamic cell lines, olanzapine treatment resulted in a dose-dependent increase in gene expression of Nr5a2 and Agrp. In mice, the pharmacological inhibition of NR5A2 decreased olanzapine-induced hyperphagia and weight gain, while the knockdown of Nr5a2 in the arcuate nucleus partially reversed olanzapine-induced hyperphagia. Chromatin-immunoprecipitation studies showed for the first time that NR5A2 directly binds to the Agrp promoter region. Lastly, the analysis of single-cell RNA seq data confirms that Nr5a2 and Agrp are co-expressed in a subset of neurons in the arcuate nucleus. In summary, we identify Nr5a2 as a key mechanistic driver of AP-induced food intake. These findings can inform future clinical development of APs that do not activate hyperphagia and weight gain.


Assuntos
Hiperfagia , Animais , Humanos , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Antipsicóticos/efeitos adversos , Ingestão de Alimentos , Hiperfagia/induzido quimicamente , Hiperfagia/genética , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Olanzapina/efeitos adversos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/farmacologia , Receptores Citoplasmáticos e Nucleares/uso terapêutico , Aumento de Peso
5.
Sci Adv ; 9(8): eabq6718, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812308

RESUMO

Asprosin, a recently identified adipokine, activates agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARH) via binding to protein tyrosine phosphatase receptor δ (Ptprd) to increase food intake. However, the intracellular mechanisms responsible for asprosin/Ptprd-mediated activation of AgRPARH neurons remain unknown. Here, we demonstrate that the small-conductance calcium-activated potassium (SK) channel is required for the stimulatory effects of asprosin/Ptprd on AgRPARH neurons. Specifically, we found that deficiency or elevation of circulating asprosin increased or decreased the SK current in AgRPARH neurons, respectively. AgRPARH-specific deletion of SK3 (an SK channel subtype highly expressed in AgRPARH neurons) blocked asprosin-induced AgRPARH activation and overeating. Furthermore, pharmacological blockade, genetic knockdown, or knockout of Ptprd abolished asprosin's effects on the SK current and AgRPARH neuronal activity. Therefore, our results demonstrated an essential asprosin-Ptprd-SK3 mechanism in asprosin-induced AgRPARH activation and hyperphagia, which is a potential therapeutic target for the treatment of obesity.


Assuntos
Núcleo Arqueado do Hipotálamo , Obesidade , Humanos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Núcleo Arqueado do Hipotálamo/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Adipocinas/metabolismo , Fibrilina-1/metabolismo
6.
Front Neural Circuits ; 16: 977642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110920

RESUMO

Dysregulation of body weight maintenance and opioid dependence are often treated as independent disorders. Here, we assessed the effects of both acute and long-term administration of morphine with and without chemogenetic activation of agouti-related peptide (AGRP)-expressing neurons in the arcuate nucleus (ARCAGRP neurons) to elucidate whether morphine and neuronal activation affect feeding behavior and body weight. First, we characterized interactions of opioids and energy deficit in wild-type mice. We observed that opioid administration attenuated both fasting-induced refeeding and ghrelin-stimulated feeding. Moreover, antagonism of opioid receptors blocked fasting-induced refeeding behavior. Next, we interfaced chemogenetics with opioid dependence. For chemogenetic experiments of ARCAGRP neurons, we conducted a priori behavioral qualification and post-mortem FOS immunostaining verification of arcuate activation following ARCAGRP chemogenetic activation. We administered clozapine during short-term and long-term morphine administration paradigms to determine the effects of dependence on food intake and body weight. We found that morphine occluded feeding behavior characteristic of chemogenetic activation of ARCAGRP neurons. Notably, activation of ARCAGRP neurons attenuated opioid-induced weight loss but did not evoke weight gain during opioid dependence. Consistent with these findings, we observed that morphine administration did not block fasting-induced activation of the ARC. Together, these results highlight the strength of opioidergic effects on body weight maintenance and demonstrate the utility of ARCAGRP neuron manipulations as a lever to influence energy balance throughout the development of opioid dependence.


Assuntos
Clozapina , Transtornos Relacionados ao Uso de Opioides , Proteína Relacionada com Agouti/farmacologia , Analgésicos Opioides/farmacologia , Animais , Peso Corporal , Clozapina/farmacologia , Ingestão de Alimentos , Grelina/farmacologia , Camundongos , Derivados da Morfina/farmacologia , Neurônios/fisiologia , Receptores Opioides
7.
Molecules ; 27(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956831

RESUMO

PPARγ agonists are implicated in the regulation of diabetes and metabolic syndrome and have therapeutic potential in brain disorders. PPARγ modulates appetite through its central effects, especially on the hypothalamic arcuate nucleus (ARC). Previous studies demonstrated that the small molecule GL516 is a PPARγ agonist able to reduce oxidative stress and apoptosis with a potential neuroprotective role. Herein, we investigated the effects of GL516, in vitro and ex vivo, on the levels of hypothalamic dopamine (DA) and serotonin (5-HT). The gene expressions of neuropeptide Y, CART, AgRP, and POMC, which play master roles in the neuroendocrine regulation of feeding behavior and energy balance, were also evaluated. HypoE22 cells were treated with H2O2 (300 µM) for 2 h e 30' and with different concentrations of GL516 (1 nM-100 µM). The cell viability was evaluated after 24 and 48 h of culturing using the MTT test. DA and 5-HT levels in the HypoE22 cell supernatants were analyzed through HPLC; an ex vivo study on isolated hypothalamic specimens challenged with scalar concentrations of GL516 (1-100 µM) and with pioglitazone (10 µM) was carried out. The gene expressions of CART, NPY, AgRP, and POMC were also determined by a quantitative real-time PCR. The results obtained showed that GL516 was able to reduce DA and 5-HT turnover; moreover, it was effective in stimulating NPY and AgRP gene expressions with a concomitant reduction in CART and POMC gene expressions. These results highlight the capability of GL516 to modulate neuropeptide pathways deeply involved in appetite control suggesting an orexigenic effect. These findings emphasize the potential use of GL516 as a promising candidate for therapeutical applications in neurodegenerative diseases associated with the reduction in food intake and stimulation of catabolic pathways.


Assuntos
PPAR gama , Pró-Opiomelanocortina , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Peróxido de Hidrogênio/farmacologia , Hipotálamo/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Serotonina/metabolismo , Serotonina/farmacologia
8.
JCI Insight ; 7(17)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917179

RESUMO

In rodent models of type 2 diabetes (T2D), central administration of FGF1 normalizes elevated blood glucose levels in a manner that is sustained for weeks or months. Increased activity of NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) is implicated in the pathogenesis of hyperglycemia in these animals, and the ARC is a key brain area for the antidiabetic action of FGF1. We therefore sought to determine whether FGF1 inhibits NPY/AgRP neurons and, if so, whether this inhibitory effect is sufficiently durable to offer a feasible explanation for sustained diabetes remission induced by central administration of FGF1. Here, we show that FGF1 inhibited ARC NPY/AgRP neuron activity, both after intracerebroventricular injection in vivo and when applied ex vivo in a slice preparation; we also showed that the underlying mechanism involved increased input from presynaptic GABAergic neurons. Following central administration, the inhibitory effect of FGF1 on NPY/AgRP neurons was also highly durable, lasting for at least 2 weeks. To our knowledge, no precedent for such a prolonged inhibitory effect exists. Future studies are warranted to determine whether NPY/AgRP neuron inhibition contributes to the sustained antidiabetic action elicited by intracerebroventricular FGF1 injection in rodent models of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 1 de Crescimento de Fibroblastos , Proteína Relacionada com Agouti/farmacologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/farmacologia , Hipoglicemiantes/farmacologia , Neurônios
9.
Acta Biochim Pol ; 69(3): 647-655, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877942

RESUMO

Appetite regulation in the hypothalamus is dependent on hormonal signals from the periphery, such as insulin and leptin, and can be modulated by both sugar-rich diet and stress. Our aim was to explore the effects of 9-week feeding with 20% fructose solution combined with 4-week chronic unpredictable stress, on appetite-regulating neuropeptides and modulatory role of leptin and insulin signalling in the hypothalamus of male Wistar rats. Energy intake, body mass and adiposity, as well as circulatory leptin and insulin concentrations were assessed. Hypothalamic insulin signalling was analysed at the level of glucose transporters, as well as at the protein level and phosphorylation of insulin receptor, insulin receptor supstrate-1, Akt and ERK. Phosphorylation of AMP-activated protein kinase (AMPK), level of protein tyrosine phosphatase 1B (PTP1B) and expression of leptin receptor (ObRb) and suppressor of cytokine signalling 3 (SOCS3) were also analysed, together with the expression of orexigenic agouti-related protein (AgRP) and anorexigenic proopiomelanocortin (POMC) neuropeptides. The results revealed that stress decreased body mass and adiposity, blood leptin level and expression of ObRb, SOCS3 and POMC, while combination with fructose diet led to marked increase of AgRP, associated with AMPK phosphorylation despite increased plasma insulin. Reduced Akt, enhanced ERK activity and elevated PTP1B were also observed in the hypothalamus of these animals. In conclusion, our results showed that joint effects of fructose diet and stress are more deleterious than the separate ones, since inappropriate appetite control in the hypothalamus may provide a setting for the disturbed energy homeostasis in the long run.


Assuntos
Neuropeptídeos , Pró-Opiomelanocortina , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Citocinas/metabolismo , Dieta , Frutose/efeitos adversos , Frutose/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina , Leptina , Masculino , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Fosforilação , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Receptores para Leptina/metabolismo
10.
Sci Signal ; 15(733): eabj8204, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536884

RESUMO

Variants in the gene encoding ankyrin repeat and SOCS box-containing 4 (ASB4) are linked to human obesity. Here, we characterized the pathways underlying the metabolic functions of ASB4. Hypothalamic Asb4 expression was suppressed by fasting in wild-type mice but not in mice deficient in AgRP, which encodes Agouti-related protein (AgRP), an appetite-stimulating hormone, suggesting that ASB4 is a negative target of AgRP. Many ASB4 neurons in the brain were adjacent to AgRP terminals, and feeding induced by AgRP neuronal activation was disrupted in Asb4-deficient mice. Acute knockdown of Asb4 in the brain caused marked hyperphagia due to increased meal size, and Asb4 deficiency led to increased meal size and food intake at the onset of refeeding, when very large meals were consumed. Asb4-deficient mice were resistant to the meal-terminating effects of exogenously administered calcitonin and showed decreased neuronal expression of Calcr, which encodes the calcitonin receptor. Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus in mice are involved in glucose homeostasis, and Asb4 deficiency specifically in POMC neurons resulted in glucose intolerance that was independent of obesity. Furthermore, individuals with type 2 diabetes showed reduced ASB4 abundance in the infundibular nuclei, the human equivalent of the arcuate nucleus. Together, our results indicate that ASB4 acts in the brain to improve glucose homeostasis and to induce satiety after substantial meals, particularly those after food deprivation.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropeptídeos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Calcitonina/metabolismo , Calcitonina/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia
11.
J Med Chem ; 64(19): 14860-14875, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34592820

RESUMO

The melanocortin-4 receptor (MC4R) plays an important role in appetite. Agonist ligands that stimulate the MC4R decrease appetite, while antagonist compounds increase food consumption. Herein, a functional mixture-based positional scan identified novel MC4R antagonist sequences. Mixtures comprising a library of 12,960,000 tetrapeptides were screened in the presence and absence of the NDP-MSH agonist. These results led to the synthesis of 48 individual tetrapeptides, of which 40 were screened for functional activity at the melanocortin receptors. Thirteen compounds were found to possess nanomolar antagonist potency at the MC4R, with the general tetrapeptide sequence Ac-Aromatic-Basic-Aromatic-Basic-NH2. The most notable results include the identification of tetrapeptide 48 [COR1-25, Ac-DPhe(pI)-Arg-Nal(2')-Arg-NH2], an equipotent MC4R antagonist to agouti-related protein [AGRP(86-132)], more potent than miniAGRP(87-120), and possessing 15-fold selectivity for the MC4R versus the MC3R. These tetrapeptides may serve as leads for novel appetite-inducing therapies to treat states of negative energy balance, such as cachexia and anorexia.


Assuntos
Proteína Relacionada com Agouti/farmacologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Animais , Misturas Complexas , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Oligopeptídeos/química , Receptores de Melanocortina/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785054

RESUMO

The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.


Assuntos
Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/genética , Proteína Relacionada com Agouti/química , Proteína Relacionada com Agouti/farmacologia , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Sítios de Ligação , Humanos , Ligantes , Mutação com Perda de Função , Obesidade/genética , Ligação Proteica , Conformação Proteica , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/genética , alfa-MSH/química , alfa-MSH/farmacologia
13.
Mol Cell Endocrinol ; 514: 110876, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32473184

RESUMO

Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/farmacologia , Proteína Relacionada com Agouti/farmacologia , Proteína Relacionada com Agouti/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/fisiologia , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/fisiologia , Neuropeptídeos/efeitos dos fármacos , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo
14.
J Med Chem ; 63(5): 2194-2208, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31845801

RESUMO

While the melanocortin receptors (MCRs) are known to be involved in numerous biological pathways, the potential roles of the MC5R have not been clearly elucidated in humans. Agouti-related protein (AgRP), an MC3R/MC4R antagonist and MC4R inverse agonist, contains an exposed ß-hairpin loop composed of six residues (Arg-Phe-Phe-Asn-Ala-Phe) that is imperative for binding and function. Within this active loop of AgRP, four human missense polymorphisms were deposited into the NIH Variation Viewer database. These polymorphisms, Arg111Cys, Arg111His, Phe112Tyr, and Ala115Val (AgRP full-length numbering), were incorporated into the peptide macrocycles c[Pro1-Arg2-Phe3-Phe4-Xaa5-Ala6-Phe7-dPro8], where Xaa was Dap5 or Asn5, to explore the functional effects of these naturally occurring substitutions in a simplified AgRP scaffold. All peptides lowered potency at least 10-fold in a cAMP accumulation assay compared to the parent sequences at the MC4Rs. Compounds MDE 6-82-3c, ZMK 2-82, MDE 6-82-1c, ZMK 2-85, and ZMK 2-112 are also the first AgRP-based chemotypes that antagonize the MC5R.


Assuntos
Proteína Relacionada com Agouti/farmacologia , Compostos Macrocíclicos/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores de Melanocortina/antagonistas & inibidores , Proteína Relacionada com Agouti/química , Proteína Relacionada com Agouti/genética , Descoberta de Drogas , Humanos , Compostos Macrocíclicos/química , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/química , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores
15.
Psychoneuroendocrinology ; 86: 73-77, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28917185

RESUMO

Early-life stress (ES) is a risk factor for metabolic disorders (e.g. obesity) with a notoriously higher prevalence in women compared to men. However, mechanisms underlying these effects remain elusive. The development of the hypothalamic feeding and metabolic regulatory circuits occurs mostly in the early sensitive postnatal phase in rodents and is tightly regulated by the metabolic hormones leptin and ghrelin. We have previously demonstrated that chronic ES reduces circulating leptin and alters adipose tissue metabolism early and later in life similarly in both sexes. However, it is unknown whether chronic ES might also affect developmental ghrelin and insulin levels, and if it induces changes in hypothalamic feeding circuits, possibly in a sex-dependent manner. We here show that chronic ES, in the form of exposure to limited nesting and bedding material from postnatal day (P)2 to P9 in mice, affects ghrelin levels differently, depending on the form of ghrelin (acylated vs desacylated), on age (P9 vs P14) and on sex, while insulin levels were similarly increased in both sexes after ES at P9. Even though ghrelin levels were more strongly affected in ES-exposed females, hypothalamic neuropeptide Y (NPY) and agouti-related peptide (AgRP) fiber density at P14 were similarly altered in both sexes by ES. In the paraventricular nucleus of the hypothalamus, both NPY and AgRP fiber density were increased, while in the arcuate nucleus of the hypothalamus, NPY was increased and AgRP unaltered. Additionally, the hypothalamic mRNA expression of ghrelin's receptor (i.e. growth hormone secretagogue receptor) was not affected by ES. Taken together, the specific alterations found in these important regulatory circuits after ES might contribute to an altered energy balance and feeding behavior in adulthood and thereby to an increased vulnerability to develop metabolic disorders.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Grelina/metabolismo , Neuropeptídeo Y/metabolismo , Tecido Adiposo/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Feminino , Grelina/genética , Grelina/farmacologia , Hipotálamo/metabolismo , Insulina/genética , Insulina/metabolismo , Insulina/farmacologia , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/farmacologia , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Fatores Sexuais , Estresse Psicológico/fisiopatologia
16.
J Anim Sci ; 94(7): 2789-97, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27482666

RESUMO

Leukemia inhibitory factor (LIF) has been suggested to function as a potent inhibitor of feed intake in rodents. In sheep, intravenous injection of lipopolysaccharide (LPS) resulted in an increase in gene expression for LIF in the arcuate nucleus ( < 0.01). In the same experiment, agouti related protein (AgRP) expression was elevated ( < 0.05) but there were no effects on proopiomelanocortin expression. Another group of sheep were provided intracerebroventricular (ICV) injections of LIF at 250, 500, 1,000, and 2,500 ng per sheep. Cumulative feed intake was inhibited by the 1,000- and 2,500-ng doses at 8 and 10 h after ICV injection ( < 0.03). All doses of LIF elevated temperature above 40°C, indicating a fever. When AgRP was intracerebroventricularly injected before LIF, there was no effect of LIF to reduce feed intake, suggesting the LIF inhibition of feed intake is consistent with the concept that the effect is mediated by the melanocortin-4 receptor. In an experiment to determine whether endocrine and metabolic effects of LIF were similar to reported effects of LPS, sheep were intracerebroventricularly injected with 2,500 ng LIF, and blood samples were collected at 10-min intervals for 6 h for assay of LH, samples from the first 3 h were assayed for GH, and samples at 30-min intervals were assayed for glucose and free fatty acids. The effect of treatment and treatment × time interaction was significant, indicating elevated plasma free fatty acids ( < 0.03 and < 0.001, respectively) and glucose ( < 0.01 and < 0.0001, respectively). There was also a treatment × time interaction on circulating concentrations of LH such that LIF caused LH to decrease ( < 0.0001). Additionally, there was a tendency for LIF treatment to increase circulating concentrations of GH (P = 0.0874). The effects of LIF on feed intake and other parameters was similar to the effects of LPS and leads to a hypothesis that LIF expression in response to LPS may be a component of the mechanism for feed intake inhibition and perhaps for changes in selected hormone and metabolites in disease models.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Lipopolissacarídeos/toxicidade , Ovinos/fisiologia , Proteína Relacionada com Agouti/administração & dosagem , Proteína Relacionada com Agouti/farmacologia , Animais , Apetite/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ácidos Graxos não Esterificados/sangue , Regulação da Expressão Gênica , Fator Inibidor de Leucemia/administração & dosagem , Hormônio Luteinizante , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Fatores de Tempo
17.
J Mol Neurosci ; 59(4): 521-30, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27339773

RESUMO

Spontaneously hypertensive rats (SHR) have high sympathetic tone and progressive hypertension. Chronic calorie-restriction prevents hypertension. Their food intake (FI) and body weight are lower than in normotensive (NT) controls, even on a high-fat diet, suggesting a dysregulation of energy homeostasis. We assumed enhanced activity of hypothalamic anorexigenic melanocortins and diminished tone of orexigenic neuropeptide Y (NPY) in the background. FI of male SHR and NT Wistar rats was recorded in a FeedScale system upon intracerebroventricular injection of NPY, melanocortin ligands alpha-melanocyte-stimulating hormone (alpha-MSH), and agouti-related peptide (AgRP) or during a 7-day intracerebroventricular infusion of melanocortin antagonist HS024. Alpha-MSH, NPY, and AgRP immunoreactivities were semi-quantified in the arcuate (ARC) and paraventricular (PVN) nuclei of the hypothalamus in NT vs. SHR. Proopiomelanocortin gene expression was also assessed by quantitative RT-PCR in the ARC. Melanocortin-induced anorexia was stronger, FI induced by NPY or HS024 was smaller and delayed in SHR. Cellular alpha-MSH-specific signal density was higher in the ARC of SHR as evaluated by immunofluerescence, which was supported by PCR data. In the PVN, no differences in alpha-MSH-, NPY-, or AgRP-immunosignal were observed. Our results suggest that a higher melanocortin production/responsiveness and lower NPY responsiveness may contribute to the body weight dysregulation of SHR.


Assuntos
Metabolismo Energético , Homeostase , Hipertensão/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Peso Corporal , Hormônios/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Neuropeptídeo Y/farmacologia , Fragmentos de Peptídeos/farmacologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , alfa-MSH/farmacologia
18.
Diabetes ; 65(3): 660-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26467632

RESUMO

Hypothalamic proopiomelanocortin (POMC) is essential for the physiological regulation of energy balance; however, its role in glucose homeostasis remains less clear. We show that hypothalamic arcuate nucleus (Arc)POMC-deficient mice, which develop severe obesity and insulin resistance, unexpectedly exhibit improved glucose tolerance and remain protected from hyperglycemia. To explain these paradoxical phenotypes, we hypothesized that an insulin-independent pathway is responsible for the enhanced glucose tolerance. Indeed, the mutant mice demonstrated increased glucose effectiveness and exaggerated glycosuria relative to wild-type littermate controls at comparable blood glucose concentrations. Central administration of the melanocortin receptor agonist melanotan II in mutant mice reversed alterations in glucose tolerance and glycosuria, whereas, conversely, administration of the antagonist Agouti-related peptide (Agrp) to wild-type mice enhanced glucose tolerance. The glycosuria of ArcPOMC-deficient mice was due to decreased levels of renal GLUT 2 (rGLUT2) but not sodium-glucose cotransporter 2 and was associated with reduced renal catecholamine content. Epinephrine treatment abolished the genotype differences in glucose tolerance and rGLUT2 levels, suggesting that reduced renal sympathetic nervous system (SNS) activity is the underlying mechanism for the observed glycosuria and improved glucose tolerance in ArcPOMC-deficient mice. Therefore, the ArcPOMC-SNS-rGLUT2 axis is potentially an insulin-independent therapeutic target to control diabetes.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/metabolismo , Transportador de Glucose Tipo 2/genética , Glicosúria Renal/genética , Resistência à Insulina/genética , Rim/metabolismo , Obesidade/genética , Pró-Opiomelanocortina/genética , Sistema Nervoso Simpático/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Glicemia/efeitos dos fármacos , Western Blotting , Epinefrina/metabolismo , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 2/metabolismo , Glicosúria Renal/metabolismo , Hipotálamo/metabolismo , Injeções Intraventriculares , Camundongos , Camundongos Knockout , Norepinefrina/metabolismo , Obesidade/metabolismo , Peptídeos Cíclicos/farmacologia , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/metabolismo , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores , alfa-MSH/análogos & derivados , alfa-MSH/farmacologia
19.
Endocrinology ; 157(1): 245-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26505115

RESUMO

Dmbx1 is a brain-specific homeodomain transcription factor expressed primarily during embryogenesis, and its systemic disruption (Dmbx1(-/-)) in the ICR mouse strain resulted in leanness associated with impaired long-lasting orexigenic effect of agouti-related peptide (AgRP). Because spatial and temporal expression patterns of Dmbx1 change dramatically during embryogenesis, it remains unknown when and where Dmbx1 plays a critical role in energy homeostasis. In the present study, the physiological roles of Dmbx1 were examined by its conditional disruption (Dmbx1(loxP/loxP)) in the C57BL/6 mouse strain. Although Dmbx1 disruption in fetal brain resulted in neonatal lethality, its disruption by synapsin promoter-driven Cre recombinase, which eliminated Dmbx1 expression postnatally, exempted the mice (Syn-Cre;Dmbx1(loxP/loxP) mice) from lethality. Syn-Cre;Dmbx1(loxP/loxP) mice show mild leanness and impaired long-lasting orexigenic action of AgRP, demonstrating the physiological relevance of Dmbx1 in the adult. Visualization of Dmbx1-expressing neurons in adult brain using the mice harboring tamoxifen-inducible Cre recombinase in the Dmbx1 locus (Dmbx1(CreERT2/+) mice) revealed Dmbx1 expression in small numbers of neurons in restricted regions, including the lateral parabrachial nucleus (LPB). Notably, c-Fos expression in LPB was increased at 48 hours after AgRP administration in Dmbx1(loxP/loxP) mice but not in Syn-Cre;Dmbx1(loxP/loxP) mice. These c-Fos-positive neurons in LPB did not coincide with neurons expressing Dmbx1 or melanocortin 4 receptor but did coincide with those expressing calcitonin gene-related peptide. Accordingly, Dmbx1 in the adult LPB is required for the long-lasting orexigenic effect of AgRP via the neural circuitry involving calcitonin gene-related peptide neurons.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Regulação do Apetite , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fatores de Transcrição Otx/metabolismo , Núcleos Parabraquiais/metabolismo , Proteína Relacionada com Agouti/farmacologia , Animais , Depressores do Apetite/farmacologia , Regulação do Apetite/efeitos dos fármacos , Biomarcadores/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cruzamentos Genéticos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Loci Gênicos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fatores de Transcrição Otx/genética , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/crescimento & desenvolvimento , Fragmentos de Peptídeos/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tamoxifeno/farmacologia
20.
Mol Endocrinol ; 29(11): 1619-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26418335

RESUMO

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain, where it controls energy balance through pathways including α-melanocyte-stimulating hormone (α-MSH)-dependent signaling. We have reported that the MC4R can exist in an active conformation that signals constitutively by increasing cAMP levels in the absence of receptor desensitization. We asked whether synthetic MC4R agonists differ in their ability to increase intracellular cAMP over time in Neuro2A cells expressing endogenous MC4R and exogenous, epitope-tagged hemagglutinin-MC4R-green fluorescent protein. By analyzing intracellular cAMP in a temporally resolved Förster resonance energy transfer assay, we show that withdrawal of α-MSH leads to a quick reversal of cAMP induction. By contrast, the synthetic agonist melanotan II (MTII) induces a cAMP signal that persists for at least 1 hour after removal of MTII from the medium and cannot be antagonized by agouti related protein. Similarly, in mHypoE-42 immortalized hypothalamic neurons, MTII, but not α-MSH, induced persistent AMP kinase signal, which occurs downstream of increased cAMP. By using a fluorescence recovery after photobleaching assay, it appears that the receptor exposed to MTII continues to signal after being internalized. Similar to MTII, the synthetic MC4R agonists, THIQ and BIM-22511, but not LY2112688, induced prolonged cAMP signaling after agonist withdrawal. However, agonist-exposed MC4R desensitized to the same extent, regardless of the ligand used and regardless of differences in receptor intracellular retention kinetics. In conclusion, α-MSH and LY2112688, when compared with MTII, THIQ, and BIM-22511, vary in the duration of the acute cAMP response, showing distinct temporal signaling selectivity, possibly linked to specific cell compartments from which cAMP signals may originate.


Assuntos
Proteína Relacionada com Agouti/farmacologia , AMP Cíclico/metabolismo , Peptídeos Cíclicos/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , alfa-MSH/análogos & derivados , alfa-MSH/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Camundongos , Peptídeos/farmacologia , Fotodegradação , Conformação Proteica , Receptor Tipo 4 de Melanocortina/genética , Tetra-Hidroisoquinolinas/farmacologia , Triazóis/farmacologia , alfa-MSH/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...