Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 194(8): 3494-3506, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35377127

RESUMO

Accumulating evidence indicates Ribosomal protein 34 (RPL34) promotes tumor malignance and its expression is associated with poor prognosis in multiple cancer cells. However, the physiological role and biological mechanism of RPL34 in glioblastoma (GBM) remain unclear. Hence, this study aimed to investigate the expression and the role of RPL34 in GBM. A total of 59 glioma samples and 12 normal brains for epilepsy surgery were used to determine the underlying mechanisms and the biological behaviors of RPL34 in GBM. In this study, we identified that RPL34 expression was significantly (p < 0.05) enriched in GBM tumors compared with low-grade glioma and normal brain, and its expression was associated with poor survival. Additionally, RPL34 was functionally required for tumor proliferation in vitro. Mechanically, inhibition of RPL34 induced glioma cell apoptosis by activation of Bad/Caspase7/PARP signaling pathway. The RPL34 promotes cell survival in GBM and could be a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Proteína Ribossômica L3 , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Humanos , Proteína Ribossômica L3/biossíntese , Proteína Ribossômica L3/genética , Proteína Ribossômica L3/metabolismo , Proteínas Ribossômicas/genética
2.
PLoS One ; 16(8): e0256677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449827

RESUMO

Baryancistrus xanthellus (Loricariidae) is an endemic fish species from the Xingu River basin with its life history in the shallow rapid waters flowing over bedrock substrates. In order to investigate the genetic diversity and demographic history of B. xanthellus we analyzed sequence data for one mitochondrial gene (Cyt b) and introns 1 and 5 of nuclear genes Prolactin (Prl) and Ribosomal Protein L3 (RPL3). The analyses contain 358 specimens of B. xanthellus from 39 localities distributed throughout its range. The number of genetically diverged groups was estimated using Bayesian inference on Cyt b haplotypes. Haplotype networks, AMOVA and pairwise fixation index was used to evaluate population structure and gene flow. Historical demography was inferred through neutrality tests and the Extended Bayesian Skyline Plot (EBSP) method. Five longitudinally distributed Cyt b haplogroups for B. xanthellus were identified in the Xingu River and its major tributaries, the Bacajá and Iriri. The demographic analysis suggests that rapids habitats have expanded in the Iriri and Lower Xingu rivers since 200 ka (thousand years) ago. This expansion is possibly related to an increase in water discharge as a consequence of higher rainfall across eastern Amazonia. Conversely, this climate shift also would have promoted zones of sediment trapping and reduction of rocky habitats in the Xingu River channel upstream of the Iriri River mouth. Populations of B. xanthellus showed strong genetic structure along the free-flowing river channels of the Xingu and its major tributaries, the Bacajá and Iriri. The recent impoundment of the Middle Xingu channel for the Belo Monte hydroelectric dam may isolate populations at the downstream limit of the species distribution. Therefore, future conservation plans must consider the genetic diversity of B. xanthellus throughout its range.


Assuntos
Peixes-Gato/genética , Variação Genética/genética , Filogeografia , Proteína Ribossômica L3/genética , Animais , Brasil , Fluxo Gênico/genética , Genes Mitocondriais/genética , Haplótipos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...