Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Sci Rep ; 14(1): 9128, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644382

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Macrophage-mediated innate immune responses play a crucial role in tumor development. This study revealed the mechanism of SHP-1 in regulating HCC progression. SHP-1 inhibits tumour development in vivo. Increasing SHP-1 expression in macrophages promotes the expression of p-SHP-1, SHP2, and p-SHP-2. In macrophages GM-CSF recruits SHP-2 to the GM-CSF receptor GM-CSFR induces p-SHP-2 dephosphorylation. GM-CSF recruits p-SHP-2 for dephosphorylation by up-regulating HoxA10HOXA10 activates the transcription of TGFß2 by interacting with tandem cis-elements in the promoter thereby regulating the proliferation and migration of liver cancer cells. GM-CSF inhibits SHP-1 regulation of p-SHP-1, SHP2, and p-SHP-2 in macrophages. Detailed studies have shown that SHP-1 regulates SHP2 expression, and SHP-1 and SHP2 are involved in macrophage M2 polarisation. SHP-1 inhibits HOXA10 and TGFß2 which in turn regulates the expression of the migration-associated proteins, MMP2/9, and the migration of hepatocellular carcinoma cells. Overexpression of SHP-1 inhibits macrophage M2 polarisation via the p-STAT3/6 signalling pathway Classical markers arginase-1, CD206, CD163 and regulate the expression of M2 polarisation cytokines IL-4 and IL-10. In addition, hypoxia-induced ROS inhibited SHP-1 regulation by suppressing the expression of p-SHP-1. The combined effect of GM-CSF and ROS significantly increased p-HOXA10/TGFß2 and macrophage M2 polarisation, and the regulatory effect of ROS was significantly suppressed by GM-CSF knockdown. These findings suggest that increasing the expression of tyrosine phosphatase SHP-1 can inhibit hepatocellular carcinoma progression by modulating the SHP2/GM-CSF pathway in TAM and thus inhibit the progression of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias Hepáticas , Macrófagos , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Transdução de Sinais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Humanos , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Progressão da Doença , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão Gênica
2.
Sci Signal ; 17(817): eadg4422, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166031

RESUMO

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Humanos , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Treonina/metabolismo
3.
Ocul Immunol Inflamm ; 32(3): 336-341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745681

RESUMO

PURPOSE: To explore the association of the polymorphisms in PTPN6 and LncRNA C1RL-AS1 genes with ocular BD in Han Chinese patients. METHODS: Correlation study was performed using the iPLEX system on a cohort of ocular BD patients andcontrols. The genotyping of 7 SNPs for LncRNA C1RL-AS1 and PTPN6 genes in ocular BD patients was performed using the iPLEX Gold genotype. RESULTS: The frequencies of rs4013722 AG genotype/A allele in LncRNA C1RL-AS1 were significantly decreased in BD patients, and the frequency of GG genotype was significantly increased in BD patients. The rs4013722 was associated with ocular BD in male patients, but not in female patients. The AG and GG genotype of rs4013722 were associated with skin lesions in male patients. The gene polymorphisms of PTPN6 were not associated with BD patients. CONCLUSIONS: The LncRNA C1RL-AS1/rs4013722 polymorphism conferred susceptibility to ocular BD in Han Chinese patients, which was influenced by sex.Abbreviations: LncRNA: Long Non-coding RNA; BD: Behcet's disease; SNP: single nucleotide polymorphism; PBMCs: peripheral blood mononuclear cells; PTPs: Protein tyrosine phosphatases; PTPN6: protein tyrosine phosphatase non-receptor 6; GWAS: genome-wide association study; HWE: Hardy-Weinberg equilibrium; LD: linkage disequilibrium; OR: odds ratio; CI: confidence interval; eQTL: expression quantitative trait loci; IBD: inflammatory bowel disease; RA: rheumatoid arthritis; Padj: Bonferroni corrected P value; NS: non-significant.


Assuntos
Síndrome de Behçet , RNA Longo não Codificante , Humanos , Masculino , Feminino , RNA Longo não Codificante/genética , Síndrome de Behçet/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Leucócitos Mononucleares , Genótipo , Polimorfismo de Nucleotídeo Único , China/epidemiologia , Frequência do Gene , Estudos de Casos e Controles , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Serina Endopeptidases/genética
4.
J Lipid Res ; 64(11): 100454, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827334

RESUMO

Small heterodimer partner (SHP, Nr0b2) is an orphan nuclear receptor that regulates bile acid, lipid, and glucose metabolism. Shp-/- mice are resistant to diet-induced obesity and hepatic steatosis. In this study, we explored the potential role of SHP in the development of nonalcoholic steatohepatitis (NASH). A 6-month Western diet (WD) regimen was used to induce NASH. Shp deletion protected mice from NASH progression by inhibiting inflammatory and fibrotic genes, oxidative stress, and macrophage infiltration. WD feeding disrupted the ultrastructure of hepatic mitochondria in WT mice but not in Shp-/- mice. In ApoE-/- mice, Shp deletion also effectively ameliorated hepatic inflammation after a 1 week WD regimen without an apparent antisteatotic effect. Moreover, Shp-/- mice resisted fibrogenesis induced by a methionine- and choline-deficient diet. Notably, the observed protection against NASH was recapitulated in liver-specific Shp-/- mice fed either the WD or methionine- and choline-deficient diet. Hepatic cholesterol was consistently reduced in the studied mouse models with Shp deletion. Our data suggest that Shp deficiency ameliorates NASH development likely by modulating hepatic cholesterol metabolism and inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Colesterol/metabolismo , Colina , Inflamação/metabolismo , Fígado/metabolismo , Metionina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
5.
Kidney Int ; 104(4): 787-802, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507049

RESUMO

Both clinical and experimental data suggest that podocyte injury is involved in the onset and progression of diabetic kidney disease (DKD). Although the mechanisms underlying the development of podocyte loss are not completely understood, critical structural proteins such as podocin play a major role in podocyte survival and function. We have reported that the protein tyrosine phosphatase SHP-1 expression increased in podocytes of diabetic mice and glomeruli of patients with diabetes. However, the in vivo contribution of SHP-1 in podocytes is unknown. Conditional podocyte-specific SHP-1-deficient mice (Podo-SHP-1-/-) were generated to evaluate the impact of SHP-1 deletion at four weeks of age (early) prior to the onset of diabetes and after 20 weeks (late) of diabetes (DM; Ins2+/C96Y) on kidney function (albuminuria and glomerular filtration rate) and kidney pathology. Ablation of the SHP-1 gene specifically in podocytes prevented and even reversed the elevated albumin/creatinine ratio, glomerular filtration rate progression, mesangial cell expansion, glomerular hypertrophy, glomerular basement membrane thickening and podocyte foot process effacement induced by diabetes. Moreover, podocyte-specific deletion of SHP-1 at an early and late stage prevented diabetes-induced expression of collagen IV, fibronectin, transforming growth factor-ß, transforming protein RhoA, and serine/threonine kinase ROCK1, whereas it restored nephrin, podocin and cation channel TRPC6 expression. Mass spectrometry analysis revealed that SHP-1 reduced SUMO2 post-translational modification of podocin while podocyte-specific deletion of SHP-1 preserved slit diaphragm protein complexes in the diabetic context. Thus, our data uncovered a new role of SHP-1 in the regulation of cytoskeleton dynamics and slit diaphragm protein expression/stability, and its inhibition preserved podocyte function preventing DKD progression.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Animais , Camundongos , Diabetes Mellitus Experimental/induzido quimicamente , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Podócitos/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Quinases Associadas a rho/metabolismo , Sumoilação
6.
Sci Signal ; 16(784): eade1274, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37159521

RESUMO

The T cell lineage-restricted protein THEMIS plays a critical role in T cell development at the positive selection stage. In the SHP1 activation model, THEMIS is proposed to enhance the activity of the tyrosine phosphatase SHP1 (encoded by Ptpn6), thereby dampening T cell antigen receptor (TCR) signaling and preventing the inappropriate negative selection of CD4+CD8+ thymocytes by positively selecting ligands. In contrast, in the SHP1 inhibition model, THEMIS is proposed to suppress SHP1 activity, rendering CD4+CD8+ thymocytes more sensitive to TCR signaling initiated by low-affinity ligands to promote positive selection. We sought to resolve the controversy regarding the molecular function of THEMIS. We found that the defect in positive selection in Themis-/- thymocytes was ameliorated by pharmacologic inhibition of SHP1 or by deletion of Ptpn6 and was exacerbated by SHP1 overexpression. Moreover, overexpression of SHP1 phenocopied the Themis-/- developmental defect, whereas deletion of Ptpn6, Ptpn11 (encoding SHP2), or both did not result in a phenotype resembling that of Themis deficiency. Last, we found that thymocyte negative selection was not enhanced but was instead impaired in the absence of THEMIS. Together, these results provide evidence favoring the SHP1 inhibition model, supporting a mechanism whereby THEMIS functions to enhance the sensitivity of CD4+CD8+ thymocytes to TCR signaling, enabling positive selection by low-affinity, self-ligand-TCR interactions.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Timócitos , Linfócitos T CD8-Positivos , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Animais , Peptídeos e Proteínas de Sinalização Intercelular/genética
7.
Front Immunol ; 14: 1139326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006301

RESUMO

Introduction: To achieve a healthy and functional immune system, a delicate balance exists between the activation of conventional T cells (Tcon cells) and the suppression by regulatory T cells (Treg). The tyrosine phosphatase SHP-1, a negative regulator of TCR signaling, shapes this 'activation-suppression' balance by modulating Tcon cell resistance to Treg-mediated suppression. Treg cells also express SHP-1, but its role in influencing Treg function is still not fully understood. Methods: We generated a Treg-specific SHP-1 deletion model, Foxp3Cre+ Shp-1f/f , to address how SHP-1 affects Treg function and thereby contributes to T cell homeostasis using a combination of ex vivo studies and in vivo models of inflammation and autoimmunity. Results: We show that SHP-1 modulates Treg suppressive function at different levels. First, at the intracellular signaling level in Treg cells, SHP-1 attenuates TCR-dependent Akt phosphorylation, with loss of SHP-1 driving Treg cells towards a glycolysis pathway. At the functional level, SHP-1 expression limits the in vivo accumulation of CD44hiCD62Llo T cells within the steady state Tcon populations (both CD8+ as well as CD4+ Tcon). Further, SHP-1-deficient Treg cells are less efficient in suppressing inflammation in vivo; mechanistically, this appears to be due to a failure to survive or a defect in migration of SHP-1-deficient Treg cells to peripheral inflammation sites. Conclusion: Our data identify SHP-1 as an important intracellular mediator for fine-tuning the balance between Treg-mediated suppression and Tcon activation/resistance.


Assuntos
Proteínas Tirosina Fosfatases , Linfócitos T Reguladores , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Antígenos de Linfócitos T
8.
Dis Model Mech ; 16(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645087

RESUMO

PTPN6 encodes SHP1, a protein tyrosine phosphatase with an essential role in immune cell function. SHP1 mutations are associated with neutrophilic dermatoses and emphysema in humans, which resembles the phenotype seen in motheaten mice that lack functional SHP1. To investigate the function of Shp1 in developing zebrafish embryos, we generated a ptpn6 knockout zebrafish line lacking functional Shp1. Shp1 knockout caused severe inflammation and lethality around 17 days post fertilization (dpf). During early development, the myeloid lineage was affected, resulting in a decrease in the number of neutrophils and a concomitant increase in the number of macrophages. The number of emerging hematopoietic stem and progenitor cells (HSPCs) was decreased, but due to hyperproliferation, the number of HSPCs was higher in ptpn6 mutants than in siblings at 5 dpf. Finally, the directional migration of neutrophils and macrophages was decreased in response to wounding, and fewer macrophages were recruited to the wound site. Yet, regeneration of the caudal fin fold was normal. We conclude that loss of Shp1 impaired neutrophil and macrophage function, and caused severe inflammation and lethality at the larval stage.


Assuntos
Inflamação , Peixe-Zebra , Animais , Humanos , Camundongos , Inflamação/genética , Células Mieloides/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Peixe-Zebra/metabolismo , Larva
9.
Sci Adv ; 9(1): eade3942, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608128

RESUMO

Mice with SHP1 proteins, which have a single amino acid substitution from tyrosine-208 residue to asparagine (hereafter Ptpn6spin mice), develop an autoinflammatory disease with inflamed footpads. Genetic crosses to study CD47 function in Ptpn6spin mice bred Ptpn6spin × Cd47-/- mice that were not born at the expected Mendelian ratio. Ptpn6spin bone marrow cells, when transferred into lethally irradiated Cd47-deficient mice, caused marked weight loss and subsequent death. At a cellular level, Ptpn6-deficient neutrophils promoted weight loss and death of the lethally irradiated Cd47-/- recipients. We posited that leakage of gut microbiota promotes morbidity and mortality in Cd47-/- mice receiving Ptpn6spin cells. Colonic cell death and gut leakage were substantially increased in the diseased Cd47-/- mice. Last, IL-1 blockade using anakinra rescued the morbidity and mortality observed in the diseased Cd47-/- mice. These data together demonstrate a protective role for CD47 in tempering pathogenic neutrophils in the Ptpn6spin mice.


Assuntos
Antígeno CD47 , Neutrófilos , Animais , Camundongos , Neutrófilos/metabolismo , Antígeno CD47/genética , Inflamação/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
10.
Oncogene ; 42(6): 409-420, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482202

RESUMO

SHP1, a tyrosine phosphatase, negatively regulates B-cell receptor (BCR) signaling. Ibrutinib selectively inhibits BTK and has been approved for the treatment of several types of B-cell lymphomas, but not yet in diffuse large B-cell lymphoma (DLBCL). A phase 3 clinical trial of ibrutinib-containing regimen has been completed to evaluate its activity in subtypes or subsets of DLBCL patients. Although the subtype of activated B-cell like (ABC) DLBCL is characterized by chronic active BCR signaling, only a fraction of ABC-DLBCL patients seem to benefit from ibrutinib-containing regimen. New alternative predictive biomarkers are needed to identify patients who better respond. We investigated if SHP1 plays a role in defining the level of the BCR activity and impacts the response to ibrutinib. A meta-analysis revealed that lack of SHP1 protein expression as well as SHP1 promoter hypermethylation is strongly associated with NHL including DLBCL. On a tissue microarray of 95 DLBCL samples, no substantial difference in SHP1 expression was found between the GCB and non-GCB subtypes of DLBCL. However, we identified a strong reverse correlation between SHP1 expression and promoter methylation suggesting that promoter hypermethylation is responsible for SHP1 loss. SHP1 knockout in BCR-dependent GCB and ABC cell lines increased BCR signaling activities and sensitize lymphoma cells to the action of ibrutinib. Rescue of SHP1 in the knockout clones, on the other hand, restored BCR signaling and ibrutinib resistance. Further, pharmacological inhibition of SHP1 in both cell lines and patient-derived primary cells demonstrate that SHP1 inhibition synergized with ibrutinib in suppressing tumor cell growth. Thus, SHP1 loss may serve as an alternative biomarker to cell-of-origin to identify patients who potentially benefit from ibrutinib treatment. Our results further suggest that reducing SHP1 pharmacologically may represent a new strategy to augment tumor response to BCR-directed therapies. Schematic diagram summarizing the major findings. Left panel. When SHP1 is present and functional, it negatively regulates the activity of the BCR pathway. Right pane. When SHP1 is diminished or lost, cells depend more on the increased BCR signaling and making them vulnerable to BTK inhibitor, ibrutinib. Diagram was generated using BioRender.


Assuntos
Linfoma Difuso de Grandes Células B , Transdução de Sinais , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linhagem Celular Tumoral , Biomarcadores
11.
EMBO Rep ; 23(11): e55399, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36194675

RESUMO

Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.


Assuntos
Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais
12.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232407

RESUMO

Ferroptosis is a type of iron-dependent cell death pertaining to an excess of lipid peroxidation. It has been suggested that sorafenib-an anti-angiogenic medication for hepatocellular carcinoma (HCC)-induces ferroptosis, but the underlying mechanism for this remains largely unknown. We employed siRNA-mediated gene silencing to investigate the role of Src homology region 2 domain-containing phosphatase-1 (SHP-1), following sorafenib treatment, in cystine/glutamate-antiporter-system-Xc--regulated cystine uptake. Co-immunoprecipitation was also performed to examine the interactions between MCL1, beclin 1 (BECN1), and solute carrier family 7 member 11 (SLC7A11), which functions as the catalytic subunit of system Xc-. The results of this study showed that sorafenib enhanced the activity of SHP-1, dephosphorylated STAT3, downregulated the expression of MCL1 and, consequently, reduced the association between MCL1 and BECN1. In contrast, increased binding between BECN1 and SLC7A11 was observed following sorafenib treatment. The elevated interaction between BECN1 and SLC7A11 inhibited the activity of system Xc-, whereas BECN1 silencing restored cystine intake and protected cells from ferroptosis. Notably, ectopic expression of MCL1 uncoupled BECN1 from SLC7A11 and rescued cell viability by attenuating lipid peroxidation. The results revealed that ferroptosis could be induced in HCC via SHP-1/STAT3-mediated downregulation of MCL1 and subsequent inhibition of SLC7A11 by increased BECN1 binding.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antiporters , Apoptose , Proteína Beclina-1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Cistina/metabolismo , Glutamatos/uso terapêutico , Humanos , Ferro/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , RNA Interferente Pequeno/uso terapêutico , Fator de Transcrição STAT3 , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
13.
Bioengineered ; 13(5): 13534-13543, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35659197

RESUMO

The prevalence of atrial fibrillation (AF), which is one of the common arrhythmias in clinics, is increasing sharply and has affected millions of patients, which is expected to triple by 2050. The purpose of the study was to explore the regulatory relationship between Src-homology domain 2 containing protein tyrosine phosphatase-1 (SHP-1) and proto-oncogene tyrosine-protein kinase Src (c-Src) and the regulation of Connexins 43 (Cx43), and its effect on AF was also studied. Mouse atrial myocyte line (HL-1 cell line) was used as the research object. After overexpression of SHP-1, the expressions of p-c-Src, Cx43, and SHP-1 were detected by Western blot and cellular immunofluorescence, respectively. The location and interaction of SHP-1 and c-Src in the cells were detected by immunofluorescence co-localization and co-immunoprecipitation (Co-IP). The regulation of c-Src and Cx43 was detected by DNA pull down, chromatin co-immunoprecipitation (CHIP), and dual-luciferase reporter system. The results revealed that overexpression of SHP-1 could inhibit the phosphorylation and activation of c-Src and increase the expression of Cx43. Moreover, there was a direct binding between SHP-1 and c-Src, and c-Src could bind to the promoter region of Cx43 and inhibit the transcription of Cx43. In conclusion, SHP-1 could bind to c-Src and inhibit the activity of c-Src, thus enhancing the transcriptional activation of Cx43 and improving the function of gap junction.


Assuntos
Conexina 43 , Tirosina , Animais , Conexina 43/genética , Conexina 43/metabolismo , Camundongos , Fosforilação , Proteína Fosfatase 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proto-Oncogenes , Ativação Transcricional/genética , Tirosina/metabolismo
14.
Biochem Biophys Res Commun ; 600: 150-155, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35219918

RESUMO

SHP1 is a non-receptor protein tyrosine phosphatase that is widely expressed in hematopoietic cells such as white blood cells, neutrophils, and immune cells. SHP1 can regulate the occurrence and differentiation of immune cells and plays an important role as a tumor suppressor. Previous studies have suggested that SHP2, the homologous protein of phosphatase SHP1, can undergo liquid-liquid phase separation (LLPS). Therefore, in this study, we investigated if SHP1 is also capable of LLPS. To the best of our knowledge, our study is the first to reveal that SHP1 has the ability to undergo LLPS. In addition, we identified an important residue, SHP1-R360E, that can completely inhibit the LLPS ability of SHP1, but this mutation has no remarkable effect on SHP1's enzymatic activity. This allows us to explore the phosphatase activity and phase separation ability of SHP1 separately, providing a basis for future exploration of the phase separation mechanism of phosphatases.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11 , Diferenciação Celular , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo
15.
Aging (Albany NY) ; 13(24): 25903-25919, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910686

RESUMO

Imbalanced osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is considered the core pathological characteristic of steroid-associated osteonecrosis of the femoral head (SONFH). N6-Methyladenosine (m6A) is the most common type of RNA modification in eukaryotic cells and participates in various physiological and pathological processes. However, the relationship between m6A modification and SONFH has not been reported. In the present study, we aimed to explore the roles of m6A modifications and methyltransferase METTL14 in SONFH. Our results showed that the m6A levels were down-regulated in femoral head tissues and BMSCs from SONFH patients, and this effect was attributed to the reduction of METTL14. Furthermore, METTL14 overexpression in BMSCs from SONFH patients enhanced cell proliferation and osteogenic differentiation. We further identified PTPN6 as the downstream target of METTL14 by mRNA sequencing. Mechanistically, METTL14 regulated PTPN6 expression by increasing PTPN6 mRNA stability in an m6A-dependent manner. Moreover, PTPN6 knockdown abrogated the beneficial effects of METTL14 overexpression on BMSCs. Additionally, we found that METTL14 activated the Wnt signaling pathway, and this effect was caused by the interaction of PTPN6 and GSK-3ß. In conclusion, we elucidated the functional roles of METTL14 and m6A methylation in SONFH BMSCs and identified a novel RNA regulatory mechanism, providing a potential therapeutic target for SONFH.


Assuntos
Adenosina/análogos & derivados , Cabeça do Fêmur , Células-Tronco Mesenquimais/metabolismo , Metiltransferases/genética , Osteonecrose , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Adenosina/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Cabeça do Fêmur/metabolismo , Cabeça do Fêmur/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Osteogênese/efeitos dos fármacos , Osteonecrose/induzido quimicamente , Osteonecrose/genética , Esteroides/efeitos adversos
16.
Exp Cell Res ; 409(2): 112914, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780782

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide. CLEC12B, a C-type lectin-like receptor, is low-expressed in lung cancer tissues. However, the function of CLEC12B in lung cancer and its underlying mechanism remain unclear. Here, an obvious down-regulation of CLEC12B was observed in lung cancer cells compared with the normal lung epithelial cells. CLEC12B over-expression suppressed cell viability and cell cycle entry in lung cancer, along with the reduction of PCNA and cyclin D1 expressions, while silencing CLEC12B possessed the opposite effects. Over-expression of CLEC12B promoted lung cancer cell apoptosis, accompanied by decreased Bcl-2 and increased Bax, cleaved caspase-3 and cleaved caspase-9. Moreover, CLEC12B decreased phosphorylation of PI3K-p85 and AKT proteins. By contrast, CLEC12B knockdown activated the PI3K/AKT pathway. In vivo, CLEC12B inhibited tumor growth in lung cancer, which can be reversed by CLEC12B inhibition. Co-IP and immunofluorescence assays confirmed the interaction between CLEC12B and SHP-1, and CLEC12B over-expression increased SHP-1 level. Furthermore, knocking down SHP-1 abrogated the above biological phenotypes caused by CLEC12B elevation. Taken together, our findings demonstrate that CLEC12B serves as a tumor-suppressing gene in lung cancer through positively regulating SHP-1 expression, which may be mediated by the PI3K/AKT signaling pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/prevenção & controle , Fosfatidilinositol 3-Quinases/química , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Receptores Mitogênicos/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Proliferação de Células , Humanos , Lectinas Tipo C/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Mitogênicos/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Elife ; 102021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734802

RESUMO

A large number of inhibitory receptors recruit SHP1 and/or SHP2, tandem-SH2-containing phosphatases through phosphotyrosine-based motifs immunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM). Despite the similarity, these receptors exhibit differential effector binding specificities, as exemplified by the immune checkpoint receptors PD-1 and BTLA, which preferentially recruit SHP2 and SHP1, respectively. The molecular basis by which structurally similar receptors discriminate SHP1 and SHP2 is unclear. Here, we provide evidence that human PD-1 and BTLA optimally bind to SHP1 and SHP2 via a bivalent, parallel mode that involves both SH2 domains of SHP1 or SHP2. PD-1 mainly uses its ITSM to prefer SHP2 over SHP1 via their C-terminal SH2 domains (cSH2): swapping SHP1-cSH2 with SHP2-cSH2 enabled PD-1:SHP1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to prefer SHP1 over SHP2 via their N-terminal SH2 domains (nSH2). The ITIM of PD-1, however, appeared to be de-emphasized due to a glycine at pY+1 position. Substitution of this glycine with alanine, a residue conserved in BTLA and several SHP1-recruiting receptors, was sufficient to induce PD-1:SHP1 interaction in T cells. Finally, structural simulation and mutagenesis screening showed that SHP1 recruitment activity exhibits a bell-shaped dependence on the molecular volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the SHP1/SHP2-binding specificities of PD-1 and BTLA, with implications for the mechanisms of a large family of therapeutically relevant receptors.


Assuntos
Receptor de Morte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores Imunológicos/metabolismo , Domínios de Homologia de src , Comunicação Celular , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Células Jurkat , Receptor de Morte Celular Programada 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Receptores Imunológicos/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
18.
IUBMB Life ; 73(11): 1348-1362, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514729

RESUMO

STAT3 is a key oncogenic transcription factor, often overactivated in several human cancers including hepatocellular carcinoma (HCC). STAT3 modulates the expression of genes that are connected with cell proliferation, antiapoptosis, metastasis, angiogenesis, and immune evasion in tumor cells. In this study, we investigated the effect of crocetin on the growth of HCC cells and dissected its underlying molecular mechanism in imparting a cytotoxic effect. Crocetin suppressed proliferation, promoted apoptosis, and counteracted the invasive capacity of HCC cells. Besides, crocetin downregulated the constitutive/inducible STAT3 activation (STAT3Y705 ), nuclear accumulation of STAT3 along with suppression of its DNA binding activity in HCC cells with no effect on STAT5 activation. Crocetin suppressed the activity of upstream kinases such as Src, JAK1, and JAK2. Sodium pervanadate treatment terminated the crocetin-propelled STAT3 inhibition suggesting the involvement of tyrosine phosphatases. Crocetin increased the expression of SHP-1 and siRNA-mediated SHP-1 silencing resulted in the negation of crocetin-driven STAT3 inhibition. Further investigation revealed that crocetin treatment inhibited the expression of STAT3 regulated genes (Bcl-2, Bcl-xL, cyclin D1, survivin, VEGF, COX-2, and MMP-9). Taken together, this report presents crocetin as a novel abrogator of the STAT3 pathway in HCC cell lines.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carotenoides/farmacologia , Fator de Transcrição STAT3/metabolismo , Vitamina A/análogos & derivados , Caspase 3/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Janus Quinase 2/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vitamina A/farmacologia
19.
Mol Med ; 27(1): 113, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535085

RESUMO

BACKGROUND: Increasing evidence has indicated that circular RNAs (circRNAs) play a role in various diseases. However, the influence of circRNAs in nephritis remains unknown. METHODS: Microarray analysis and RT-qPCR were used to detect the expression of circRNA. Type I IFN were administrated to RMC and HEK293 cells to establish a nephritis cell model. CCK-8, MTT assay, and flow cytometry were used to assess cell proliferation, viability, and apoptosis of cells. Bioinformatics analysis and dual luciferase reporter assay detect the interaction of circ_0007059, miRNA-1278, and SHP-1. Glomerulonephritis was performed in a mouse model by administration of IFNα-expressing adenovirus. IHC staining showed the pathogenic changes. RESULTS: In the present study, the expression of circ_0007059 in type I interferon (IFN)-treated renal mesangial cells (RMCs), lupus nephritis (LN) specimens, and HEK293 cells was downregulated compared with that in normal healthy samples and untreated cells. Circ_0007059 overexpression resulted in increased cell proliferation, cell viability, apoptosis, and inflammation-associated factors (CXCL10, IFIT1, ISG15, and MX1) in RMCs and HEK293 cells. In addition, circ_0007059 overexpression significantly restored cell proliferation and viability and inhibited IFN-induced apoptosis. Further, the increased expression resulted in reduced inflammation and the downregulation of CXCL10, IFIT1, ISG15, and MX1 in RMCs and HEK293 cells. Circ_0007059 serves as a sponge for miR-1278 so that the latter can target the 3'-untranslated region of SHP-1. Overexpressed circ_0007059 inhibited miR-1278 expression and elevated SHP-1 expression, subsequently reducing STAT3 phosphorylation. Meanwhile, miR-1278 was upregulated and SHP-1 was downregulated in LN samples and IFN-treated cells. The restoration of miR-1278 counteracted the effect of circ_0007059 on viability, apoptosis, and inflammation as well as on SHP-1/STAT3 signaling in RMCs and HEK293 cells. We also investigated the role of SHP-1 overexpression in IFN-treated RMCs and HEK293 cells; SHP-1 overexpression resulted in a similar phenotype as that observed with circ_0007059 expression. CONCLUSIONS: The study indicates that circ_0007059 protects RMCs against apoptosis and inflammation during nephritis by attenuating miR-1278/SHP-1/STAT3 signaling.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Nefrite/etiologia , Nefrite/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , RNA Circular , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Adulto , Animais , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Nefrite Lúpica , Masculino , Camundongos , Pessoa de Meia-Idade , Nefrite/patologia , Adulto Jovem
20.
Arterioscler Thromb Vasc Biol ; 41(9): 2469-2482, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320834

RESUMO

Objective: Critical limb ischemia is a major complication of diabetes characterized by insufficient collateral vessel development and proper growth factor signaling unresponsiveness. Although mainly deactivated by hypoxia, phosphatases are important players in the deregulation of proangiogenetic pathways. Previously, SHP-1 (Scr homology 2-containing phosphatase-1) was found to be associated with the downregulation of growth factor actions in the diabetic muscle. Thus, we aimed to gain further understanding of the impact of SHP-1 on smooth muscle cell (SMC) function under hypoxic and diabetic conditions. Approach and Results: Despite being inactivated under hypoxic conditions, high glucose level exposure sustained SHP-1 phosphatase activity in SMC and increased its interaction with PDGFR (platelet-derived growth factor receptor)-ß, thus reducing PDGF proangiogenic actions. Overexpression of an inactive form of SHP-1 fully restored PDGF-induced proliferation, migration, and signaling pathways in SMC exposed to high glucose and hypoxia. Nondiabetic and diabetic mice with deletion of SHP-1 specifically in SMC were generated. Ligation of the femoral artery was performed, and blood flow was measured for 4 weeks. Blood flow reperfusion, vascular density and maturation, and limb survival were all improved while vascular apoptosis was attenuated in diabetic SMC-specific SHP-1 null mice as compared to diabetic mice. Conclusions: Diabetes and high glucose level exposure maintained SHP-1 activity preventing hypoxia-induced PDGF actions in SMC. Specific deletion of SHP-1 in SMC partially restored blood flow reperfusion in the diabetic ischemic limb. Therefore, local modulation of SHP-1 activity in SMC could represent a potential therapeutic avenue to improve the proangiogenic properties of SMC under ischemia and diabetes.


Assuntos
Indutores da Angiogênese/farmacologia , Diabetes Mellitus Experimental/enzimologia , Angiopatias Diabéticas/enzimologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Animais , Glicemia/metabolismo , Estudos de Casos e Controles , Bovinos , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...