Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 162(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270714

RESUMO

Energetic status often affects reproductive function, glucose homeostasis, and feeding in mammals. Malnutrition suppresses pulsatile release of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) and increases gluconeogenesis and feeding. The present study aims to examine whether ß-endorphin-µ-opioid receptor (MOR) signaling mediates the suppression of pulsatile GnRH/LH release and an increase in gluconeogenesis/feeding induced by malnutrition. Ovariectomized female rats treated with a negative feedback level of estradiol-17ß (OVX + low E2) receiving 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, intravenously (iv) were used as a malnutrition model. An administration of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective MOR antagonist, into the third ventricle blocked the suppression of the LH pulse and increase in gluconeogenesis/feeding induced by iv 2DG administration. Histological analysis revealed that arcuate Kiss1 (kisspeptin gene)-expressing cells and preoptic Gnrh1 (GnRH gene)-expressing cells co-expressed little Oprm1 (MOR gene), while around 10% of arcuate Slc17a6 (glutamatergic marker gene)-expressing cells co-expressed Oprm1. Further, the CTOP treatment decreased the number of fos-positive cells in the paraventricular nucleus (PVN) in OVX + low E2 rats treated with iv 2DG but failed to affect the number of arcuate fos-expressing Slc17a6-positive cells. Taken together, these results suggest that the central ß-endorphin-MOR signaling mediates the suppression of pulsatile LH release and that the ß-endorphin may indirectly suppress the arcuate kisspeptin neurons, a master regulator for GnRH/LH pulses during malnutrition. Furthermore, the current study suggests that central ß-endorphin-MOR signaling is also involved in gluconeogenesis and an increase in food intake by directly or indirectly acting on the PVN neurons during malnutrition in female rats.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante/metabolismo , Antagonistas de Entorpecentes/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores Opioides mu/metabolismo , beta-Endorfina/metabolismo , Animais , Glicemia/análise , Feminino , Gluconeogênese , Hipotálamo , Kisspeptinas/metabolismo , Ratos , Ratos Wistar , Receptores Opioides mu/biossíntese , Transdução de Sinais , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
2.
J Comp Neurol ; 529(13): 3313-3320, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34008871

RESUMO

The retrotrapezoid nucleus (RTN) is a hub for respiratory chemoregulation in the mammal brainstem that integrates chemosensory information from peripheral sites and central relays. Chemosensitive neurons of the RTN express specific genetic and molecular determinants, which have been used to identify RTN precise location within the brainstem of rodents and nonhuman primates. Based on a comparative approach, we hypothesized that among mammals, neurons exhibiting the same specific molecular and genetic signature would have the same function. The co-expression of preprogalanin (PPGAL) and SLC17A6 (VGluT2) mRNAs with duplex in situ hybridization has been studied in formalin fixed paraffin-embedded postmortem human brainstems. Two specimens were processed and analyzed in line with RTN descriptions in adult rats and macaques. Double-labeled PPGAL+/SLC17A6+ neurons were only identified in the parafacial region of the brainstem. These neurons were found surrounding the nucleus of the facial nerve, located ventrally to the nucleus VII on caudal sections, and slightly more dorsally on rostral sections. The expression of neuromedin B (NMB) mRNA as a single marker of chemosensitive RTN neurons has not been confirmed in humans. The location of the RTN in human adults is provided. This should help to develop investigation tools combining anatomic high-resolution imaging and respiratory functional investigations to explore the pathogenic role of the RTN in congenital or acquired neurodegenerative diseases.


Assuntos
Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Galanina/biossíntese , Neurônios/metabolismo , Neurônios/patologia , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Biomarcadores/metabolismo , Núcleo do Nervo Facial/metabolismo , Núcleo do Nervo Facial/patologia , Galanina/genética , Expressão Gênica , Humanos , Corpo Trapezoide/metabolismo , Corpo Trapezoide/patologia , Proteína Vesicular 2 de Transporte de Glutamato/genética
3.
Biomolecules ; 11(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669305

RESUMO

This study demonstrates how exposure to psychosocial crowding stress (CS) for 3, 7, and 14 days affects glutamate synapse functioning and signal transduction in the frontal cortex (FC) of rats. CS effects on synaptic activity were evaluated in FC slices of the primary motor cortex (M1) by measuring field potential (FP) amplitude, paired-pulse ratio (PPR), and long-term potentiation (LTP). Protein expression of GluA1, GluN2B mGluR1a/5, VGLUT1, and VGLUT2 was assessed in FC by western blot. The body's response to CS was evaluated by measuring body weight and the plasma level of plasma corticosterone (CORT), adrenocorticotropic hormone (ACTH), and interleukin 1 beta (IL1B). CS 3 14d increased FP and attenuated LTP in M1, while PPR was augmented in CS 14d. The expression of GluA1, GluN2B, and mGluR1a/5 was up-regulated in CS 3d and downregulated in CS 14d. VGLUTs expression tended to increase in CS 7d. The failure to blunt the effects of chronic CS on FP and LTP in M1 suggests the impairment of habituation mechanisms by psychosocial stressors. PPR augmented by chronic CS with increased VGLUTs level in the CS 7d indicates that prolonged CS exposure changed presynaptic signaling within the FC. The CS bidirectional profile of changes in glutamate receptors' expression seems to be a common mechanism evoked by stress in the FC.


Assuntos
Lobo Frontal/metabolismo , Receptores de Glutamato/biossíntese , Hormônio Adrenocorticotrópico/biossíntese , Animais , Peso Corporal , Corticosterona/biossíntese , Aglomeração , Eletrofisiologia , Ácido Glutâmico , Interleucina-1beta/biossíntese , Potenciação de Longa Duração , Masculino , Modelos Animais , Córtex Motor , Tamanho do Órgão , Ratos , Ratos Wistar , Receptores de AMPA/biossíntese , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Baço/patologia , Estresse Psicológico , Transmissão Sináptica/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
4.
J Comp Neurol ; 529(4): 657-693, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32621762

RESUMO

The parabrachial nucleus (PB) is a complex structure located at the junction of the midbrain and hindbrain. Its neurons have diverse genetic profiles and influence a variety of homeostatic functions. While its cytoarchitecture and overall efferent projections are known, we lack comprehensive information on the projection patterns of specific neuronal subtypes in the PB. In this study, we compared the projection patterns of glutamatergic neurons here with a subpopulation expressing the transcription factor Foxp2 and a further subpopulation expressing the neuropeptide Pdyn. To do this, we injected an AAV into the PB region to deliver a Cre-dependent anterograde tracer (synaptophysin-mCherry) in three different strains of Cre-driver mice. We then analyzed 147 neuroanatomical regions for labeled boutons in every brain (n = 11). Overall, glutamatergic neurons in the PB region project to a wide variety of sites in the cerebral cortex, basal forebrain, bed nucleus of the stria terminalis, amygdala, diencephalon, and brainstem. Foxp2 and Pdyn subpopulations project heavily to the hypothalamus, but not to the cortex, basal forebrain, or amygdala. Among the few differences between Foxp2 and Pdyn cases was a notable lack of Pdyn projections to the ventromedial hypothalamic nucleus. Our results indicate that genetic identity determines connectivity (and therefore, function), providing a framework for mapping all PB output projections based on the genetic identity of its neurons. Using genetic markers to systematically classify PB neurons and their efferent projections will enhance the translation of research findings from experimental animals to humans.


Assuntos
Encefalinas/biossíntese , Fatores de Transcrição Forkhead/biossíntese , Núcleos Parabraquiais/metabolismo , Precursores de Proteínas/biossíntese , Proteínas Repressoras/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Tronco Encefálico/química , Tronco Encefálico/metabolismo , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Vias Eferentes/química , Vias Eferentes/metabolismo , Encefalinas/análise , Encefalinas/genética , Feminino , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/genética , Hipotálamo/química , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleos Parabraquiais/química , Precursores de Proteínas/análise , Precursores de Proteínas/genética , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Tálamo/química , Tálamo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/análise , Proteína Vesicular 2 de Transporte de Glutamato/genética
6.
J Neurosci ; 40(43): 8262-8275, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32928885

RESUMO

A subset of adult ventral tegmental area dopamine (DA) neurons expresses vesicular glutamate transporter 2 (VGluT2) and releases glutamate as a second neurotransmitter in the striatum, while only few adult substantia nigra DA neurons have this capacity. Recent work showed that cellular stress created by neurotoxins such as MPTP and 6-hydroxydopamine can upregulate VGluT2 in surviving DA neurons, suggesting the possibility of a role in cell survival, although a high level of overexpression could be toxic to DA neurons. Here we examined the level of VGluT2 upregulation in response to neurotoxins and its impact on postlesional plasticity. We first took advantage of an in vitro neurotoxin model of Parkinson's disease and found that this caused an average 2.5-fold enhancement of Vglut2 mRNA in DA neurons. This could represent a reactivation of a developmental phenotype because using an intersectional genetic lineage-mapping approach, we find that >98% of DA neurons have a VGluT2+ lineage. Expression of VGluT2 was detectable in most DA neurons at embryonic day 11.5 and was localized in developing axons. Finally, compatible with the possibility that enhanced VGluT2 expression in DA neurons promotes axonal outgrowth and reinnervation in the postlesional brain, we observed that DA neurons in female and male mice in which VGluT2 was conditionally removed established fewer striatal connections 7 weeks after a neurotoxin lesion. Thus, we propose here that the developmental expression of VGluT2 in DA neurons can be reactivated at postnatal stages, contributing to postlesional plasticity of dopaminergic axons.SIGNIFICANCE STATEMENT A small subset of dopamine neurons in the adult, healthy brain expresses vesicular glutamate transporter 2 (VGluT2) and thus releases glutamate as a second neurotransmitter in the striatum. This neurochemical phenotype appears to be plastic as exposure to neurotoxins, such as 6-OHDA or MPTP, that model certain aspects of Parkinson's disease pathophysiology, boosts VGluT2 expression in surviving dopamine neurons. Here we show that this enhanced VGluT2 expression in dopamine neurons drives axonal outgrowth and contributes to dopamine neuron axonal plasticity in the postlesional brain. A better understanding of the neurochemical changes that occur during the progression of Parkinson's disease pathology will aid the development of novel therapeutic strategies for this disease.


Assuntos
Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Linhagem da Célula/genética , Sobrevivência Celular/genética , Corpo Estriado/embriologia , Corpo Estriado/crescimento & desenvolvimento , Feminino , Intoxicação por MPTP/genética , Intoxicação por MPTP/metabolismo , Mesencéfalo/embriologia , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/fisiologia , Camundongos , Camundongos Knockout , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Neurotoxinas/toxicidade , Gravidez , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética
7.
Brain Res Bull ; 162: 94-106, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562720

RESUMO

Vesicular glutamate transporter (VGLUT) 1 and VGLUT2 have been reported to distribute complementally in most brain regions and have been assumed to define distinct functional elements. Previous studies have shown the expression of VGLUT1 mRNA and VGLUT2 mRNA in the lateral reticular nucleus (LRN), a key precerebellar nucleus sending mossy fibers to the cerebellum. In the present study, we firstly examined the coexpression of VGLUT1 and VGLUT2 mRNA in the LRN of the rat by dual-fluorescence in situ hybridization. About 81.89 % of glutamatergic LRN neurons coexpressed VGLUT1 and VGLUT2 mRNA, and the others expressed either VGLUT1 or VGLUT2 mRNA. We then injected the retrograde tracer Fluogold (FG) into the vermal cortex of cerebellum, and observed that 95.01 % and 86.80 % of FG-labeled LRN neurons expressed VGLUT1 or VGLUT2 mRNA respectively. We further injected the anterograde tracer biotinylated dextran amine (BDA) into the LRN, and found about 82.6 % of BDA labeled axon terminals in the granular layer of cerebellar cortex showed both VGLUT1- and VGLUT2-immunoreactivities. Afterwards, we observed under electron microscopy that anterogradely labeled axon terminals showing immunoreactivity for VGLUT1 or VGLUT2 made asymmetric synapses with dendritic profiles of cerebellar neurons. Finally, we selectively down-regulated the expression of VGLUT1 mRNA or VGLUT2 mRNA by using viral vector mediated siRNA transfection and detected that the fine movements of the forelimb of rats were disturbed. These results indicated that LRN neurons coexpressing VGLUT1 and VGLUT2 project to the cerebellar cortex and these neurons might be critical in mediating the forelimb movements.


Assuntos
Cerebelo/metabolismo , Neurônios/metabolismo , Formação Reticular/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Cerebelo/citologia , Expressão Gênica , Masculino , Ratos , Ratos Sprague-Dawley , Formação Reticular/citologia , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética
8.
Neuropharmacology ; 164: 107869, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785260

RESUMO

Vesicular glutamate transporter 2 (VGLUT2)-which uptakes glutamate into presynaptic vesicles-is a fundamental component of the glutamate neurotransmitter system. Although several lines of evidence from genetically modified mice suggest a possible association of VGLUT2 with neuropathic pain, the specific role of VGLUT2 in the spinal cord during neuropathic pain, and its regulatory mechanism remain elusive. In this study, we report that spared nerve injury induced an upregulation of VGLUT2 in the spinal cord, and intrathecal administration of small hairpin RNAs (shRNA) against VGLUT2 before or after surgery attenuated mechanical allodynia, and pathologically-enhanced glutamate release. Meanwhile, nerve injury activated the Wnt1/ß-catenin signaling pathway in a quick-onset and sustained manner, and blocking the Wnt1 signaling with a Wnt1 targeting antibody attenuated neuropathic pain. In naïve mice, administration of a Wnt agonist or Wnt1 increased spinal VGLUT2 protein levels. Moreover, intrathecal administration of the Wnt/ß-catenin inhibitor, XAV939 attenuated mechanical allodynia, and this effect was concurrent with that of VGLUT2 downregulation. Pretreatment with VGLUT2 shRNAs abolished the allodynia induced by the Wnt agonist or Wnt1. These findings reveal a novel mechanism wherein there is Wnt1/ß-catenin-dependent VGLUT2 upregulation in neuropathic pain, thus potentiating the development of new therapeutic strategies in pain management.


Assuntos
Neuralgia/fisiopatologia , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Ácido Glutâmico/metabolismo , Hiperalgesia/tratamento farmacológico , Imuno-Histoquímica , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Regulação para Cima , beta Catenina/metabolismo
9.
Neuroscience ; 423: 86-97, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31705888

RESUMO

Synaptosomal-associated protein 25 (SNAP-25) plays an important role in neuropathic pain. However, the underlying mechanism is largely unknown. Vesicular glutamate transporter 2 (VGluT2) is an isoform of vesicular glutamate transporters that controls the storage and release of glutamate. In the present study, we found the expression levels of VGluT2 correlated with the upregulation of SNAP-25 in the spinal cord of rats following chronic constriction injury (CCI)-induced neuropathic pain. Cleavage of SNAP-25 by Botulinum toxin A (BoNT/A) attenuated mechanical allodynia, downregulated the expression of VGluT2 and reduced glutamate release. Overexpression of VGluT2 abolished the antinociceptive effect of BoNT/A. Upregulation of SNAP-25 in naive rats increased VGluT2 expression and induced pain-responsive behaviors. In pheochromocytoma (PC12) cells, the expression of VGluT2 was also depended on SNAP-25 dysregulation. Moreover, we found VGluT2 was involved in SNAP-25-mediated regulation of astrocyte expression and activation of the PKA/p-CREB pathway mediated the upregulation of SNAP-25 in neuropathic pain. The findings of our study indicate that VGluT2 contributes to the effect of SNAP-25 in maintaining the development of neuropathic pain and suggests a novel mechanism underlying SNAP-25 regulation of neuropathic pain.


Assuntos
Hiperalgesia/prevenção & controle , Neuralgia/fisiopatologia , Proteína 25 Associada a Sinaptossoma/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Astrócitos/metabolismo , Toxinas Botulínicas Tipo A/farmacologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Proteínas Quinases/metabolismo , Ratos , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Regulação para Cima
10.
J Neurosci ; 39(49): 9852-9863, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31666356

RESUMO

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading monogenetic cause of autism. One symptom of FXS and autism is sensory hypersensitivity (also called sensory over-responsivity). Perhaps related to this, the audiogenic seizure (AGS) is arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knock-out (KO) mouse. Therefore, the AGS may be considered a mouse model of sensory hypersensitivity. Hyperactive circuits are hypothesized to underlie dysfunction in a number of brain regions in patients with FXS and Fmr1 KO mice, and the AGS may be a result of this. But the specific cell types and brain regions underlying AGSs in the Fmr1 KO are unknown. We used conditional deletion or expression of Fmr1 in different cell populations to determine whether Fmr1 deletion in those cells was sufficient or necessary, respectively, for the AGS phenotype in males. Our data indicate that Fmr1 deletion in glutamatergic neurons that express vesicular glutamate transporter 2 (VGlut2) and are located in subcortical brain regions is sufficient and necessary to cause AGSs. Furthermore, the deletion of Fmr1 in glutamatergic neurons of the inferior colliculus is necessary for AGSs. When we demonstrate necessity, we show that Fmr1 expression in either the larger population of VGlut2-expressing glutamatergic neurons or the smaller population of inferior collicular glutamatergic neurons-in an otherwise Fmr1 KO mouse-eliminates AGSs. Therefore, targeting these neuronal populations in FXS and autism may be part of a therapeutic strategy to alleviate sensory hypersensitivity.SIGNIFICANCE STATEMENT Sensory hypersensitivity in fragile X syndrome (FXS) and autism patients significantly interferes with quality of life. Audiogenic seizures (AGSs) are arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knockout-and may be considered a model of sensory hypersensitivity in FXS. We provide the clearest and most precise genetic evidence to date for the cell types and brain regions involved in causing AGSs in the Fmr1 knockout and, more broadly, for any mouse mutant. The expression of Fmr1 in these same cell types in an otherwise Fmr1 knockout eliminates AGSs indicating possible cellular targets for alleviating sensory hypersensitivity in FXS and other forms of autism.


Assuntos
Epilepsia Reflexa/genética , Epilepsia Reflexa/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual/genética , Colículos Inferiores/fisiopatologia , Neurônios/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Órgão Espiral/metabolismo , Órgão Espiral/fisiopatologia , Proteína Vesicular 2 de Transporte de Glutamato/genética
11.
Neuron ; 101(1): 133-151.e7, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503173

RESUMO

Ventral tegmental area (VTA) dopamine (DA) neurons play a central role in mediating motivated behaviors, but the circuitry through which they signal positive and negative motivational stimuli is incompletely understood. Using in vivo fiber photometry, we simultaneously recorded activity in DA terminals in different nucleus accumbens (NAc) subnuclei during an aversive and reward conditioning task. We find that DA terminals in the ventral NAc medial shell (vNAcMed) are excited by unexpected aversive outcomes and to cues that predict them, whereas DA terminals in other NAc subregions are persistently depressed. Excitation to reward-predictive cues dominated in the NAc lateral shell and was largely absent in the vNAcMed. Moreover, we demonstrate that glutamatergic (VGLUT2-expressing) neurons in the lateral hypothalamus represent a key afferent input for providing information about aversive outcomes to vNAcMed-projecting DA neurons. Collectively, we reveal the distinct functional contributions of separate mesolimbic DA subsystems and their afferent pathways underlying motivated behaviors. VIDEO ABSTRACT.


Assuntos
Aprendizagem da Esquiva/fisiologia , Neurônios Dopaminérgicos/metabolismo , Sistema Límbico/metabolismo , Rede Nervosa/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Sistema Límbico/citologia , Masculino , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/citologia , Técnicas de Cultura de Órgãos , Fotometria/métodos , Área Tegmentar Ventral/citologia , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
12.
J Comp Neurol ; 526(10): 1690-1702, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29603220

RESUMO

The distribution of glutamatergic neurons has been extensively studied in mammalian and avian brains, but its distribution in a reptilian brain remains unknown. In the present study, the distribution of subpopulations of glutamatergic neurons in the turtle brain was examined by in situ hybridization using probes for vesicular glutamate transporter (VGLUT) 1-3. Strong VGLUT1 expression was observed in the telencephalic pallium; the mitral cells of the olfactory bulb, the medial, dorsomedial, dorsal, and lateral parts of the cerebral cortex, pallial thickening, and dorsal ventricular ridge; and also, in granule cells of the cerebellar cortex. Moderate to weak expression was found in the lateral and medial amygdaloid nuclei, the periventricular cellular layer of the optic tectum, and in some brainstem nuclei. VGLUT2 was weakly expressed in the telencephalon but was intensely expressed in the dorsal thalamic nuclei, magnocellular part of the isthmic nucleus, brainstem nuclei, and the rostral cervical segment of the spinal cord. The cerebellar cortex was devoid of VGLUT2 expression. The central amygdaloid nucleus did not express VGLUT1 or VGLUT2. VGLUT3 was localized in the parvocellular part of the isthmic nucleus, superior and inferior raphe nuclei, and cochlear nucleus. Our results indicate that the distribution of VGLUTs in the turtle brain is similar to that in the mammalian brain rather than that in the avian brain.


Assuntos
Química Encefálica/fisiologia , Tartarugas/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Diencéfalo/metabolismo , Feminino , Masculino , Mesencéfalo/metabolismo , Rombencéfalo/metabolismo , Medula Espinal/metabolismo , Telencéfalo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
13.
Mol Med Rep ; 17(5): 6465-6471, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29532891

RESUMO

Glutamate is a major excitatory neurotransmitter that is stored in vesicles located in the presynaptic terminal. Glutamate is transported into vesicles via the vesicular glutamate transporter (VGLUT). In the present study, the age­associated changes of the major VGLUTs, VGLUT1 and VGLUT2, in the hippocampus were investigated, based on immunohistochemistry and western blot analysis at postnatal month 1 (PM1; adolescent), PM6, PM12 (adult group), PM18 and PM24 (the aged groups). VGLUT1 immunoreactivity was primarily detected in the mossy fibers, Schaffer collaterals and stratum lacunosum­moleculare. By contrast, VGLUT2 immunoreactivity was observed in the granule cell layer and the outer molecular layer of the dentate gyrus, stratum pyramidale, Schaffer collaterals and stratum lacunosum­moleculare in the hippocampal CA1­3 regions. VGLUT1 immunoreactivity and protein levels remained constant across all age groups. However, VGLUT2 immunoreactivity and protein levels decreased in the PM3 group when compared with the PM1 group. VGLUT2 immunoreactivity and protein levels were not altered in the PM12 group; however, they increased in the PM18 group. In addition, in the PM18 group, highly immunoreactive VGLUT2 cells were also identified in the stratum radiatum and oriens of the hippocampal CA1 region. In the PM24 group, VGLUT2 immunoreactivity and protein levels were significantly decreased and were the lowest levels observed amongst the different groups. These results suggested that VGLUT1 may be less susceptible to the aging process; however, the increase of VGLUT2 in the non­pyramidal cells in the PM18 group, and the consequent decrease in VGLUT2, may be closely linked to age­associated memory impairment in the hippocampus.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Gerbillinae
14.
BMC Musculoskelet Disord ; 18(1): 218, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545490

RESUMO

BACKGROUND: A body of evidence demonstrating changes to the glutaminergic system in tendinopathy has recently emerged. This hypothesis was further tested by studying the effects of glutamate on the tenocyte phenotype, and the impact of loading and exposure to glucocorticoids on the glutamate signaling machinery. METHODS: Plantaris tendon tissue and cultured plantaris tendon derived cells were immunohisto-/cytochemically stained for glutamate, N-Methyl-D-Aspartate receptor 1 (NMDAR1) and vesicular glutamate transporter 2 (VGluT2). Primary cells were exposed to glutamate or receptor agonist NMDA. Cell death/viability was measured via LDH/MTS assays, and Western blot for cleaved caspase 3 (c-caspase 3) and cleaved poly (ADP-ribose) polymerase (c-PARP). Scleraxis mRNA (Scx)/protein(SCX) were analyzed by qPCR and Western blot, respectively. A FlexCell system was used to apply cyclic strain. The effect of glucocorticoids was studies by adding dexamethasone (Dex). The mRNA of the glutamate synthesizing enzymes Got1 and Gls, and NMDAR1 protein were measured. Levels of free glutamate were determined by a colorimetric assay. RESULTS: Immunoreactions for glutamate, VGluT2, and NMDAR1 were found in tenocytes and peritendinous cells in tissue sections and in cultured cells. Cell death was induced by high concentrations of glutamate but not by NMDA. Scleraxis mRNA/protein was down-regulated in response to NMDA/glutamate stimulation. Cyclic strain increased, and Dex decreased, Gls and Got1 mRNA expression. Free glutamate levels were lower after Dex exposure. CONCLUSIONS: In conclusion, NMDA receptor stimulation leads to a reduction of scleraxis expression that may be involved in a change of phenotype in tendon cells. Glutamate synthesis is increased in tendon cells in response to strain and decreased by glucocorticoid stimulation. This implies that locally produced glutamate could be involved in the tissue changes observed in tendinopathy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Ácido Glutâmico/farmacologia , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Tendões/metabolismo , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Proteínas do Tecido Nervoso/agonistas , Receptores de N-Metil-D-Aspartato/agonistas , Tendões/citologia , Tendões/efeitos dos fármacos , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Adulto Jovem
15.
Neurochem Int ; 99: 9-15, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27210824

RESUMO

Disturbance of glutamate homeostasis is a well-characterized mechanism of neuropathic pain. Vesicular glutamate transporters (VGLUTs) determine glutamate accumulation in synaptic vesicles and their roles in neuropathic pain have been suggested by gene-knockout studies. Here, we investigated the spatio-temporal changes in VGLUT expression during the development of neuropathic pain in wild-type rats. Spared nerve injury (SNI) induced mechanical allodynia from postoperative day 1 to at least day 14. Expression of VGLUT1 and VGLUT2 in dorsal root ganglia and spinal cord was examined by western blot analyses on different postoperative days. We observed that VGLUT2 were selectively upregulated in crude vesicle fractions from the ipsilateral lumbar enlargement on postoperative days 7 and 14, while VGLUT1 was transiently downregulated in ipsilateral DRG (day 4) and contralateral lumbar enlargement (day 1). Upregulation of VGLUT2 was not accompanied by alterations in vesicular expression of synaptotagmin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thus, VGLUTs expression, especially VGLUT2, is regulated following peripheral nerve injury. Temporal regulation of VGLUT2 expression in spinal cord may represent a novel presynaptic mechanism contributing to injury-induced glutamate imbalance and associated neuropathic pain.


Assuntos
Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Neuropatia Ciática/metabolismo , Medula Espinal/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Expressão Gênica , Masculino , Neuralgia/genética , Nervo Fibular/lesões , Nervo Fibular/metabolismo , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/genética , Nervo Sural/lesões , Nervo Sural/metabolismo , Nervo Tibial/lesões , Nervo Tibial/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética
16.
J Comp Neurol ; 524(6): 1222-35, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26361382

RESUMO

Hypothalamic proopiomelanocortin (POMC) neurons are important regulators of energy balance. Recent studies indicate that in addition to their peptides, POMC neurons can release either the amino acid (AA) transmitter gamma-aminobutyric acid (GABA) or glutamate. A small subset of POMC neurons appears to have a dual AA phenotype based on coexpression of mRNA for the vesicular glutamate transporter (vGlut2) and the GABA synthetic enzyme Gad67. To determine whether the colocalization of GABAergic and glutamatergic markers may be indicative of a switch in AA transmitter phenotype, fluorescent in situ hybridization was used to detect vGlut2 and Gad mRNA in POMC neurons during early postnatal development. The percentage of POMC neurons expressing vGlut2 mRNA in POMC neurons progressively decreased from ∼40% at day 1 to less than 10% by 8 weeks of age, whereas Gad67 was only expressed in ∼10% of POMC neurons at day 1 and increased until ∼45% of POMC neurons coexpressed Gad67 at 8 weeks of age. To determine whether the expression of vGlut2 may play a role in energy balance regulation, genetic deletion of vGlut2 in POMC neurons was accomplished using Cre-lox technology. Male, but not female, mice lacking vGlut2 in POMC neurons were unable to maintain energy balance to the same extent as control mice when fed a high-fat diet. Altogether, the results indicate that POMC neurons are largely glutamatergic early in life and that the release of glutamate from these cells is involved in sex- and diet-specific regulation of energy balance.


Assuntos
Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Fenótipo , Pró-Opiomelanocortina/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Fatores Etários , Aminoácidos/biossíntese , Animais , Animais Recém-Nascidos , Dieta Hiperlipídica , Feminino , Hipotálamo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores Sexuais
17.
J Neurochem ; 132(2): 218-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351927

RESUMO

It has recently been proposed that extracellular signal-regulated kinases 1 and 2 (ERK1/2) are one of the factors mediating seizure development. We hypothesized that inhibition of ERK1/2 activity could prevent audiogenic seizures by altering GABA and glutamate release mechanisms. Krushinsky-Molodkina rats, genetically prone to audiogenic seizure, were recruited in the experiments. Animals were i.p. injected with an inhibitor of ERK1/2 SL 327 at different doses 60 min before audio stimulation. We demonstrated for the first time that inhibition of ERK1/2 activity by SL 327 injections prevented seizure behavior and this effect was dose-dependent and correlated with ERK1/2 activity. The obtained data also demonstrated unchanged levels of GABA production, and an increase in the level of vesicular glutamate transporter 2. The study of exocytosis protein expression showed that SL 327 treatment leads to downregulation of vesicle-associated membrane protein 2 and synapsin I, and accumulation of synaptosomal-associated protein 25 (SNAP-25). The obtained data indicate that the inhibition of ERK1/2 blocks seizure behavior presumably by altering the exocytosis machinery, and identifies ERK1/2 as a potential target for the development of new strategies for seizure treatment. Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are one of the factors mediating seizure development. Here we report that inhibition of ERK1/2 by SL 327 prevented seizure behavior and this effect was dose-dependent and correlated with ERK1/2 activity. Accumulation of VGLUT2 was associated with differential changing of synaptic proteins VAMP2, SNAP-25 and synapsin I. The obtained data indicate that the inhibition of ERK1/2 alters neurotransmitter release by changing the exocytosis machinery, thus preventing seizures.


Assuntos
Aminoacetonitrila/análogos & derivados , Epilepsia Reflexa/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Estimulação Acústica/efeitos adversos , Aminoacetonitrila/farmacologia , Aminoacetonitrila/uso terapêutico , Animais , Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Epilepsia Reflexa/enzimologia , Epilepsia Reflexa/genética , Exocitose/efeitos dos fármacos , Feminino , Ácido Glutâmico/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Mutantes , Tempo de Reação/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapsinas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/genética , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo
18.
J Neurosci ; 34(42): 14055-68, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319702

RESUMO

Primary afferents are known to use glutamate as their principal fast neurotransmitter. However, it has become increasingly clear that peptides have an influential role in both mediating and modulating sensory transmission. Here we describe the transmission accounting for different acute pain states and itch transmitted via the transient receptor potential cation channel subfamily V member 1 (TRPV1) population by either ablating Trpv1-Cre-expressing neurons or inducing vesicular glutamate transporter 2 (VGLUT2) deficiency in Trpv1-Cre-expressing neurons. Furthermore, by pharmacological inhibition of substance P or calcitonin gene-related peptide (CGRP) signaling in Vglut2-deficient mice, we evaluated the contribution of substance P or CGRP to these sensory modulations, with or without the presence of VGLUT2-mediated glutamatergic transmission in Trpv1-Cre neurons. This examination, together with c-Fos analyses, showed that glutamate via VGLUT2 in the Trpv1-Cre population together with substance P mediate acute cold pain, whereas glutamate together with CGRP mediate noxious heat. Moreover, we demonstrate that glutamate together with both substance P and CGRP mediate tissue-injury associated pain. We further show that itch, regulated by the VGLUT2-mediated transmission via the Trpv1-Cre population, depends on CGRP and gastrin-releasing peptide receptor (GRPR) transmission because pharmacological blockade of the CGRP or GRPR pathway, or genetic ablation of Grpr, led to a drastically attenuated itch. Our study reveals how different neurotransmitters combined can cooperate with each other to transmit or regulate various acute sensations, including itch.


Assuntos
Dor Aguda/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Prurido/metabolismo , Substância P/biossíntese , Canais de Cátion TRPV/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Dor Aguda/patologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Medição da Dor/métodos , Prurido/patologia , Substância P/antagonistas & inibidores , Proteína Vesicular 2 de Transporte de Glutamato/deficiência
19.
Histochem Cell Biol ; 141(3): 321-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24203088

RESUMO

The calcitonin-gene-related peptide (CGRP) receptor is a heterodimer of calcitonin-receptor-like receptor (CLR) and receptor-activity-modifying protein 1 (RAMP1). Despite the importance of CGRP in regulating gastrointestinal functions, nothing is known about the distribution and function of CLR/RAMP1 in the esophagus, where up to 90 % of spinal afferent neurons contain CGRP. We detected CLR/RAMP1 in the mouse esophagus using immunofluorescence and confocal laser scanning microscopy and examined their relationship with neuronal elements of the myenteric plexus. Immunoreactivity for CLR and RAMP1 colocalized with VGLUT2-positive intraganglionic laminar endings (IGLEs), which were contacted by CGRP-positive varicose axons presumably of spinal afferent origin, typically at sites of CRL/RAMP1 immunoreactivity. This provides an anatomical basis for interaction between spinal afferent fibers and IGLEs. Immunoreactive CLR and RAMP1 also colocalized in myenteric neurons. Thus, CGRP-containing spinal afferents may interact with both vagal IGLEs and myenteric neurons in the mouse esophagus, possibly modulating motility reflexes and inflammatory hypersensitivity.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , Esôfago/inervação , Esôfago/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Distribuição Tecidual , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
20.
J Chem Neuroanat ; 50-51: 21-38, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23524295

RESUMO

Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006).


Assuntos
Transmissão Sináptica/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Córtex Visual/metabolismo , Vias Visuais/metabolismo , Animais , Western Blotting , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Macaca fascicularis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...