Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.508
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 78, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769536

RESUMO

Neurologic Rosai-Dorfman disease (RDD) is a rare type of non-Langerhans cell histiocytosis that affects the central nervous system. Most neurologic RDDs grow like meningiomas, have clear boundaries, and can be completely resected. However, a few RDDs are invasive and aggressive, and no effective treatment options are available because the molecular mechanisms involved remain unknown. Here, we report a case of deadly and glucocorticoid-resistant neurologic RDD and explore its possible pathogenic mechanisms via single-cell RNA sequencing. First, we identified two distinct but evolutionarily related histiocyte subpopulations (the C1Q+ and SPP1+ histiocytes) that accumulated in the biopsy sample. The expression of genes in the KRAS signaling pathway was upregulated, indicating gain-of-function of KRAS mutations. The C1Q+ and SPP1+ histiocytes were highly differentiated and arrested in the G1 phase, excluding the idea that RDD is a lympho-histio-proliferative disorder. Second, although C1Q+ histiocytes were the primary RDD cell type, SPP1+ histiocytes highly expressed several severe inflammation-related and invasive factors, such as WNT5A, IL-6, and MMP12, suggesting that SPP1+ histiocytes plays a central role in driving the progression of this disease. Third, oligodendrocytes were found to be the prominent cell type that initiates RDD via MIF and may resist glucocorticoid treatment via the MDK and PTN signaling pathways. In summary, in this case, we report a rare presentation of neurologic RDD and provided new insight into the pathogenic mechanisms of progressive neurologic RDD. This study will also offer evidence for developing precision therapies targeting this complex disease.


Assuntos
Histiocitose Sinusal , Análise de Célula Única , Humanos , Masculino , Histiócitos/patologia , Histiocitose Sinusal/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Pessoa de Meia-Idade
2.
J Clin Invest ; 134(10)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747285

RESUMO

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Assuntos
Fibroblastos , Fibrose , Fator de Crescimento Transformador beta , Proteína Wnt-5a , Quinases Associadas a rho , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Animais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Camundongos , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/genética , Camundongos Knockout , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Sistema de Sinalização das MAP Quinases , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Transdução de Sinais , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/genética
4.
Cancer Med ; 13(7): e7148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558536

RESUMO

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
5.
Dev Cell ; 59(10): 1302-1316.e5, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569553

RESUMO

The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.


Assuntos
Polaridade Celular , Pulmão , Mesoderma , Morfogênese , Proteínas do Tecido Nervoso , Animais , Mesoderma/metabolismo , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/embriologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Organogênese/genética , Receptores Acoplados a Proteínas G
6.
Cell Signal ; 119: 111171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604345

RESUMO

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS: qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1ß, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS: Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION: Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , MicroRNAs , NF-kappa B , Psoríase , Proteína Wnt-5a , Psoríase/genética , Psoríase/patologia , Psoríase/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , NF-kappa B/metabolismo , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação para Cima , Regulação para Baixo , Proliferação de Células , Masculino , Células HaCaT , Feminino , Imiquimode , Adulto , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Pessoa de Meia-Idade
7.
J Neuroinflammation ; 21(1): 75, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532410

RESUMO

BACKGROUND: Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS: In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a ß-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFß1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS: The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of ß-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active ß-catenin labeling. In vitro, Wnt5a/ROR1, active ß-catenin, and some other Wnt signaling molecules were upregulated in the TGFß1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active ß-catenin, as well as the EMT in TGFß1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS: Our study reveals a reciprocal activation between Wnt5a and ß-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.


Assuntos
Degeneração Macular , Sulfonamidas , beta Catenina , Humanos , Masculino , Animais , Camundongos , beta Catenina/metabolismo , Proteína Wnt-5a , Camundongos Endogâmicos C57BL , Epitélio Pigmentado da Retina/metabolismo , Transição Epitelial-Mesenquimal , Degeneração Macular/metabolismo , Fibrose , RNA Interferente Pequeno/metabolismo
8.
Histol Histopathol ; 39(6): 715-727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445662

RESUMO

Wnt ligands belong to a family of secreted glycoproteins in which binding to a range of receptors/co-receptors activates several intracellular pathways. WNT5A, a member of the Wnt family, is classified as a non-canonical Wnt whose activation triggers planar cell polarity (PCP) and Ca+2 downstream pathways. Aberrant expression of WNT5A has been shown to play both protective and harmful roles in an array of conditions, such as inflammatory disease and cancer. In the present study, using histological, immunohistochemical, and molecular methods, we investigated the expression of two isoforms of WNT5A, WNT5A-Short (WNT5A-S) and WNT5A-Long (WNT5A-L) in bladder urothelial carcinoma (UC). Three UC cell lines (RT4, J82, and T24), as well as a normal urothelial cell line, and formalin-fixed, paraffin-embedded (FFPE) transurethral resection (TUR) tissue samples from 17 patients diagnosed with UC were included in the study. WNT5A-L was the predominantly expressed isoform in urothelial cells, although WNT5A-S was also detectable. Further, although no statistically significant difference was found between the percentage of WNT5A-S transcripts in low-grade versus high-grade tumors, we did find a difference between the percentage of WNT5A-S transcripts found in non-invasion versus invasion of the lamina propria, subgroups of non-muscle-invasive tumors. In conclusion, both WNT5A-S and WNT5A-L isoforms are expressed in UC, and the percentage of their expression levels suggests that a higher proportion of WNT5A-S transcription may be associated with lamina propria invasion, a process preceding muscle invasion.


Assuntos
Carcinoma de Células de Transição , Isoformas de Proteínas , Neoplasias da Bexiga Urinária , Proteína Wnt-5a , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Isoformas de Proteínas/metabolismo , Idoso , Masculino , Feminino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/genética , Urotélio/patologia , Urotélio/metabolismo , Imuno-Histoquímica , Idoso de 80 Anos ou mais , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
9.
Cell Mol Life Sci ; 81(1): 93, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367191

RESUMO

Stem Leydig cells (SLCs) are essential for maintaining normal spermatogenesis as the significant component of testis microenvironment and gonadal aging. Although progress has been achieved in the regulation of male germ cells in mammals and humans, it remains unknown about the genes and signaling pathways of human SLCs. Here we have demonstrated, for the first time, that WNT5A (Wnt family member 5a) mediates the proliferation, apoptosis, and stemness of human SLCs, namely NGFR+ Leydig cells. We revealed that NGFR+ Leydig cells expressed NGFR, PDGFRA, NES, NR2F2, and THY1, hallmarks for SLCs. RNA-sequencing showed that WNT5A was expressed at a higher level in human SLCs than non-SLCs, while immunohistochemistry and Western blots further illustrated that WNT5A was predominantly expressed in human SLCs. Notably, CCK-8, EdU and Western blots displayed that WNT5A enhanced the proliferation and DNA synthesis and retained stemness of human SLCs, whereas flow cytometry and TUNEL analyses demonstrated that WNT5A inhibited the apoptosis of these cells. WNT5A knockdown caused an increase in LC lineage differentiation of human SLCs and reversed the effect of WNT5A overexpression on fate decisions of human SLCs. In addition, WNT5A silencing  resulted in the decreases in nuclear translocation of ß-catenin and expression levels of c-Myc, CD44, and Cyclin D1. Collectively, these results implicate that WNT5A regulates the proliferation, apoptosis and stemness of human SLCs through the activation of the ß-catenin signaling pathway. This study thus provides a novel molecular mechanism underlying the fate determinations of human SLCs, and it offers a new insight into the niche regulation of human testis.


Assuntos
Células Intersticiais do Testículo , beta Catenina , Animais , Humanos , Masculino , Células Intersticiais do Testículo/metabolismo , beta Catenina/metabolismo , Testículo/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Transdução de Sinais , Apoptose , Proliferação de Células , Via de Sinalização Wnt/genética , Mamíferos/metabolismo
10.
J Appl Oral Sci ; 32: e20230353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359266

RESUMO

BACKGROUND: Associations between the WNT5A rs566926 variant and non-syndromic orofacial cleft (NSOC) have been reported in different populations. OBJECTIVE: This study aimed to investigate the role of the rs566926 single nucleotide polymorphism (SNP) in WNT5A and its interactions with SNPs in BMP4, FGFR1, GREM1, MMP2, and WNT3 in the occurrence of NSOC in a Brazilian population. METHODOLOGY: A case-control genetic association study was carried out involving participants from four regions of Brazil, totaling 801 patients with non-syndromic cleft lip with or without cleft palate (NSCL±P), 273 patients with cleft palate only (NSCPO), and 881 health volunteers without any congenital condition (control). Applying TaqMan allelic discrimination assays, we evaluated WNT5A rs566926 in an ancestry-structured multiple logistic regression analysis, considering sex and genomic ancestry as covariates. Interactions between rs566926 and variants in genes involved in the WNT5A signaling pathway (BMP4, FGFR1, GREM1, MMP2, and WNT3) were also explored. RESULTS: WNT5A rs566926 was significantly associated with an increased risk of NSCL±P, particularly due to a strong association with non-syndromic cleft lip only (NSCLO), in which the C allele increased the risk by 32% (OR: 1.32, 95% CI: 1.04-1.67, p=0.01). According to the proportions of European and African genomic ancestry, the association of rs566926 reached significant levels only in patients with European ancestry. Multiple interactions were detected between WNT5A rs566926 and BMP4 rs2071047, GREM1 rs16969681 and rs16969862, and FGFR1 rs7829058. CONCLUSION: The WNT5A rs566926 polymorphism was associated with NSCL±P, particularly in individuals with NSCLO and high European ancestry. Epistatic interactions involving WNT5A rs566926 and variants in BMP4, GREM1, and FGFR1 may contribute to the risk of NSCL±P in the Brazilian population.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Genótipo , Brasil , Metaloproteinase 2 da Matriz , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Proteína Wnt-5a/genética
11.
Mol Cancer Res ; 22(5): 495-507, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334461

RESUMO

Adhesion to and clearance of the mesothelial monolayer are key early events in metastatic seeding of ovarian cancer. ROR2 is a receptor tyrosine kinase that interacts with Wnt5a ligand to activate noncanonical Wnt signaling and has been previously shown to be upregulated in ovarian cancer tissue. However, no prior study has evaluated the mechanistic role of ROR2 in ovarian cancer. Through a cellular high-throughput genetic screen, we independently identified ROR2 as a driver of ovarian tumor cell adhesion and invasion. ROR2 expression in ovarian tumor cells serves to drive directed cell migration preferentially toward areas of high Wnt5a ligand, such as the mesothelial lined omentum. In addition, ROR2 promotes ovarian tumor cell adhesion and clearance of a mesothelial monolayer. Depletion of ROR2, in tumor cells, reduces metastatic tumor burden in a syngeneic model of ovarian cancer. These findings support the role of ROR2 in ovarian tumor cells as a critical factor contributing to the early steps of metastasis. Therapeutic targeting of the ROR2/Wnt5a signaling axis could provide a means of improving treatment for patients with advanced ovarian cancer. IMPLICATIONS: This study demonstrates that ROR2 in ovarian cancer cells is important for directed migration to the metastatic niche and provides a potential signaling axis of interest for therapeutic targeting in ovarian cancer.


Assuntos
Movimento Celular , Invasividade Neoplásica , Neoplasias Ovarianas , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteína Wnt-5a , Feminino , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Via de Sinalização Wnt , Transdução de Sinais
12.
Nat Commun ; 15(1): 36, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167296

RESUMO

While canonical Wnt signaling is well recognized for its crucial regulatory functions in cell fate decisions, the role of non-canonical Wnt signaling in adult stem cells remains elusive and contradictory. Here, we identified Mcam, a potential member of the non-canonical Wnt signaling, as an important negative regulator of mammary gland epithelial cells (MECs) by genome-scale CRISPR-Cas9 knockout (GeCKO) library screening. Loss of Mcam increases the clonogenicity and regenerative capacity of MECs, and promotes the proliferation, differentiation, and ductal morphogenesis of mammary epithelial in knockout mice. Mechanically, Mcam knockout recruits and polarizes macrophages through the Il4-Stat6 axis, thereby promoting secretion of the non-canonical Wnt ligand Wnt5a and its binding to the non-canonical Wnt signaling receptor Ryk to induce the above phenotypes. These findings reveal Mcam roles in mammary gland development by orchestrating communications between MECs and macrophages via a Wnt5a/Ryk axis, providing evidences for non-canonical Wnt signaling in mammary development.


Assuntos
Proteínas Wnt , Via de Sinalização Wnt , Camundongos , Animais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Diferenciação Celular , Morfogênese , Camundongos Knockout , Macrófagos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
13.
Glia ; 72(2): 411-432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37904612

RESUMO

Astrocytes, a type of glial cells, play critical roles in promoting the protection and repair of damaged tissues after brain injury. Inflammatory cytokines and growth factors can affect gene expression in astrocytes in injured brains, but signaling pathways and transcriptional mechanisms that regulate tissue protective functions of astrocytes are still poorly understood. In this study, we investigated the molecular mechanisms regulating the function of reactive astrocytes induced in mouse models of stab wound (SW) brain injury and collagenase-induced intracerebral hemorrhage (ICH). We show that basic fibroblast growth factor (bFGF), whose expression is up-regulated in mouse brains after SW injury and ICH, acts synergistically with inflammatory cytokines to activate E2F1-mediated transcription of a gene encoding the Ror-family protein Ror2, a receptor for Wnt5a, in cultured astrocytes. We also found that subsequent activation of Wnt5a/Ror2 signaling in astrocytes results in nuclear accumulation of antioxidative transcription factor Nrf2 at least partly by increased expression of p62/Sqstm1, leading to promoted expression of several Nrf2 target genes, including heme oxygenase 1. Finally, we provide evidence demonstrating that enhanced activation of Wnt5a/Ror2 signaling in astrocytes reduces cellular damage caused by hemin, a degradation product of hemoglobin, and promotes repair of the damaged blood brain barrier after brain hemorrhage.


Assuntos
Lesões Encefálicas , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Astrócitos/metabolismo , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Citocinas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Proteína Wnt-5a/metabolismo
14.
J Hazard Mater ; 464: 132917, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979429

RESUMO

Zearalenone (ZEA) poses severe reproductive toxicity to both humans and animals. Scutellarin has been demonstrated to rescue ZEA-induced apoptosis in mouse ovarian granulosa cells (GCs), but its specific targets remain unclear. In the present study, the potential targets of scutellarin were determined to clarify the mechanisms of scutellarin against ZEA-induced ovarian damage. 287 targets of scutellarin in mouse ovarian GCs were obtained by magnetic nano-probe-based fishing assay and liquid chromatography-tandem mass spectrometry. Wnt5a had the lowest binding free energy with scutellarin at - 8.3 kcal/mol. QRT-PCR and western blot showed that scutellarin significantly increased the Wnt5a and ß-catenin expression compared with the ZEA-treated group, and cleaved-caspase-3 expression was significantly increased in the scutellarin-treated group after interfering with the expression of Wnt5a. The affinity constant (KD) of Wnt5a and scutellarin was 1.7 × 10-5 M. The pull-down assay also demonstrated that scutellarin could specifically bind to Wnt5a protein. Molecular docking results showed that scutellarin could form hydrogen bonds with TRY52, GLN56, and SER90 on Wnt5a protein, and western blot assay confirmed SER90 was an important site for the binding. Scutellarin significantly increased Wnt5a and ß-catenin expression and decreased cleaved-caspase-3 expression in ovarian tissues of mice. In conclusion, scutellarin exerted anti-apoptotic effects on ZEA-induced mouse ovarian GCs by targeting Wnt5a.


Assuntos
Zearalenona , Humanos , Feminino , Camundongos , Animais , Zearalenona/toxicidade , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , beta Catenina/metabolismo , beta Catenina/farmacologia , Células da Granulosa/metabolismo , Simulação de Acoplamento Molecular , Apoptose
15.
BMC Infect Dis ; 23(1): 860, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062395

RESUMO

BACKGROUND: Aberrant Wnt5a expression contributes to immunity, inflammation and tissue damage. However, it remains unknown whether Wnt5a is associated with liver injury in chronic hepatitis B virus (HBV) infection. We aimed to explore the potential role of Wnt5a expression in liver injury caused by chronic HBV infection. METHODS: Wnt5a mRNA levels in peripheral blood mononuclear cells (PBMCs) were analyzed in 31 acute-on-chronic hepatitis B liver failure (ACHBLF) patients, 82 chronic hepatitis B (CHB) patients, and 20 healthy controls using quantitative real-time polymerase chain reaction. Intrahepatic Wnt5a protein expression from 32 chronic HBV infection patients and 6 normal controls was evaluated by immunohistochemical staining. RESULTS: Wnt5a mRNA expression was increased in CHB patients and ACHBLF patients compared to healthy controls and correlated positively with liver injury markers. Additionally, there was a significant correlation between Wnt5a mRNA expression and HBV DNA load in all patients and CHB patients but not in ACHBLF patients. Furthermore, intrahepatic Wnt5a protein expression was elevated in chronic HBV infection patients compared to that in normal controls. Moreover, chronic HBV infection patients with higher hepatic inflammatory grades had increased intrahepatic Wnt5a protein expression compared with lower hepatic inflammatory grades. In addition, the cut-off value of 12.59 for Wnt5a mRNA level was a strong indicator in predicting ACHBLF in CHB patients. CONCLUSIONS: We found that Wnt5a expression was associated with liver injury in chronic HBV infection patients. Wnt5a might be involved in exacerbation of chronic HBV infection.


Assuntos
Insuficiência Hepática Crônica Agudizada , Hepatite B Crônica , Hepatite B , Humanos , Insuficiência Hepática Crônica Agudizada/complicações , Hepatite B/complicações , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/genética , Proteína Wnt-5a/genética
16.
Cell Death Dis ; 14(11): 713, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914721

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. Currently, the first-line chemotherapeutic agent for PDAC is gemcitabine (GEM). However, the chemotherapy resistance to GEM is often overlooked in the clinical treatment of PDAC due to the lack of effective biological markers. Therefore, it is crucial to find new prognostic markers and therapeutic targets for patients with PDAC. In this study, we identified a novel regulatory mechanism in the development of resistance to GEM in PDAC. Here, we report that LINC01134 was significantly upregulated in primary tumors from PDAC patients. In vitro and in vivo functional studies revealed that LINC01134 promotes PDAC resistance to GEM through facilitating stem cell features and modulating the cell cycle. Mechanistically, LINC01134 interactes with tumor suppressor miR-497-5p in PDAC cells. Increased LINC01134 downregulates miR-140-3p to promotes the oncogenic WNT5A expression. Moreover, m6A demethylase FTO participated in the upregulation of LINC01134 by maintaining LINC01134 mRNA stability through YTHDF2. Taken together, the present study suggested FTO-mediated LINC01134 stabilization to promote chemotherapy resistance to GEM through miR-140-3p/WNT5A/WNT pathway in PDAC. Our study identified new prognostic markers and new therapeutic targets for patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Via de Sinalização Wnt/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proteína Wnt-5a/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Neoplasias Pancreáticas
17.
Cells ; 12(22)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998393

RESUMO

WNT/ß-catenin signaling is essential for colon cancer development and progression. WNT5A (ligand of non-canonical WNT signaling) and its mimicking peptide Foxy5 impair ß-catenin signaling in colon cancer cells via unknown mechanisms. Therefore, we investigated whether and how WNT5A signaling affects two promoters of ß-catenin signaling: the LGR5 receptor and its ligand RSPO3, as well as ß-catenin activity and its target gene VEGFA. Protein and gene expression in colon cancer cohorts were analyzed by immunohistochemistry and qRT-PCR, respectively. Three colon cancer cell lines were used for in vitro and one cell line for in vivo experiments and results were analyzed by Western blotting, RT-PCR, clonogenic and sphere formation assays, immunofluorescence, and immunohistochemistry. Expression of WNT5A (a tumor suppressor) negatively correlated with that of LGR5/RSPO3 (tumor promoters) in colon cancer cohorts. Experimentally, WNT5A signaling suppressed ß-catenin activity, LGR5, RSPO3, and VEGFA expression, and colony and spheroid formations. Since ß-catenin signaling promotes colon cancer stemness, we explored how WNT5A expression is related to that of the cancer stem cell marker DCLK1. DCLK1 expression was negatively correlated with WNT5A expression in colon cancer cohorts and was experimentally reduced by WNT5A signaling. Thus, WNT5A and Foxy5 decrease LGR5/RSPO3 expression and ß-catenin activity. This inhibits stemness and VEGFA expression, suggesting novel treatment strategies for the drug candidate Foxy5 in the handling of colon cancer patients.


Assuntos
Neoplasias do Colo , beta Catenina , Humanos , beta Catenina/metabolismo , Ligantes , Neoplasias do Colo/patologia , Via de Sinalização Wnt/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Receptores Acoplados a Proteínas G/genética , Quinases Semelhantes a Duplacortina
18.
Cytokine ; 172: 156381, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806072

RESUMO

BACKGROUND: Wnt5a is a member of the Wnt protein family, which acts on classical or multiple non-classical Wnt signaling pathways by binding to different receptors. The expression regulation and signal transduction of Wnt5a is closely related to the inflammatory response. Abnormal activation of Wnt5a signaling is an important part of inflammation and rheumatoid arthritis (RA). OBJECTIVES: This paper mainly focuses on Wnt5a protein and its mediated signaling pathway, summarizes the latest research progress of Wnt5a in the pathological process of inflammation and RA, and looks forward to the main directions of Wnt5a in RA research, aiming to provide a theoretical basis for the prevention and treatment of RA diseases by targeting Wnt5a. RESULTS: Wnt5a is highly expressed in activated blood vessels, histocytes and synoviocytes in inflammatory diseases such as sepsis, sepsis, atherosclerosis and rheumatoid arthritis. It mediates the production of pro-inflammatory cytokines and chemokines, regulates the migration and recruitment of various immune effector cells, and thus participates in the inflammatory response. Wnt5a plays a pathological role in synovial inflammation and bone destruction of RA, and may be an important clinical therapeutic target for RA. CONCLUSION: Wnt5a is involved in the pathological process of inflammation and interacts with inflammatory factors. Wnt5a may be a new target for regulating the progression of RA disease and intervening therapy because of its multi-modal effects on the etiology of RA, especially as a regulator of osteoclast activity and inflammation.


Assuntos
Artrite Reumatoide , Sepse , Humanos , Proteína Wnt-5a , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Via de Sinalização Wnt , Sepse/metabolismo , Fibroblastos/metabolismo , Células Cultivadas
19.
Dis Model Mech ; 16(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815464

RESUMO

Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.


Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Via de Sinalização Wnt , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/genética , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patologia , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Neoplasias Renais/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
20.
J Biol Chem ; 299(11): 105350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832874

RESUMO

Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein-coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Via de Sinalização Wnt , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Neurônios/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Dimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...