Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(12): 2420-2432, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607932

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer, with a high predisposition for locally invasive and metastatic cancer. With the objective to reduce cancer metastasis, we developed small molecule inhibitors to target the drivers of metastasis, the Rho GTPases Rac and Cdc42. Of these, MBQ-167 inhibits both Rac and Cdc42 with IC50s of 103 and 78 nmol/L, respectively; and consequently, inhibits p21-activated kinase (PAK) signaling, metastatic cancer cell proliferation, migration, and mammosphere growth; induces cell-cycle arrest and apoptosis; and decreases HER2-type mammary fatpad tumor growth and metastasis (Humphries-Bickley and colleagues, 2017). Herein, we used nuclear magnetic resonance to show that MBQ-167 directly interacts with Rac1 to displace specific amino acids, and consequently inhibits Rac.GTP loading and viability in TNBC cell lines. Phosphokinome arrays in the MDA-MB-231 human TNBC cells show that phosphorylation status of kinases independent of the Rac/Cdc42/PAK pathway are not significantly changed following 200 nmol/L MBQ-167 treatment. Western blotting shows that initial increases in phospho-c-Jun and phospho-CREB in response to MBQ-167 are not sustained with prolonged exposure, as also confirmed by a decrease in their transcriptional targets. MBQ-167 inhibits tumor growth, and spontaneous and experimental metastasis in immunocompromised (human TNBC) and immunocompetent (mouse TNBC) models. Moreover, per oral administration of MBQ-167 at 100 mg/kg body weight is not toxic to immunocompetent BALB/c mice and has a half-life of 4.6 hours in plasma. These results highlight the specificity, potency, and bioavailability of MBQ-167, and support its clinical potential as a TNBC therapeutic.


Assuntos
Neoplasias de Mama Triplo Negativas/genética , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos SCID , Neoplasias de Mama Triplo Negativas/patologia
2.
FASEB J ; 35(8): e21723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34224609

RESUMO

Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+ -dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.


Assuntos
Canais de Cálcio/metabolismo , Espermatozoides/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Sinalização do Cálcio , AMP Cíclico/metabolismo , Feminino , Fertilização in vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Transdução de Sinais , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/ultraestrutura , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores
3.
Cancer Res ; 78(12): 3101-3111, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29858187

RESUMO

Rac and Cdc42 are small GTPases that have been linked to multiple human cancers and are implicated in epithelial to mesenchymal transition, cell-cycle progression, migration/invasion, tumor growth, angiogenesis, and oncogenic transformation. With the exception of the P29S driver mutation in melanoma, Rac and Cdc42 are not generally mutated in cancer, but are overexpressed (gene amplification and mRNA upregulation) or hyperactivated. Rac and Cdc42 are hyperactivated via signaling through oncogenic cell surface receptors, such as growth factor receptors, which converge on the guanine nucleotide exchange factors that regulate their GDP/GTP exchange. Hence, targeting Rac and Cdc42 represents a promising strategy for precise cancer therapy, as well as for inhibition of bypass signaling that promotes resistance to cell surface receptor-targeted therapies. Therefore, an understanding of the regulatory mechanisms of these pivotal signaling intermediates is key for the development of effective inhibitors. In this review, we focus on the role of Rac and Cdc42 in cancer and summarize the regulatory mechanisms, inhibitory efficacy, and the anticancer potential of Rac- and Cdc42-targeting agents. Cancer Res; 78(12); 3101-11. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
4.
Toxicology ; 394: 35-44, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197552

RESUMO

Methylmercury (MeHg) is an environmental neurotoxicant that inhibits neuronal migration. This process requires several cyclic steps involving the formation of membrane protrusions (lamellipodia and filopodia) and focal adhesion turnover. FAK and Src are critical proteins that regulate both processes. The FAK-Src complex promotes the activation of Rac1 and Cdc42, two GTPases involved in the remodeling of the actin cytoskeletal network. Here, we studied the effect of MeHg (1, 10, 100, 500 and 1000nM) on cell migration, the formation of cell protrusions, focal adhesion location and the activation of FAK, Src, Rac1 and Cdc42 using the SH-SY5Y neuroblastoma cell line stimulated with PDGF-BB (PDGF). The data show that MeHg (1-500nM) inhibited PDGF-stimulated cell migration. In PDGF-stimulated cells, MeHg (100-1000nM) decreased protrusions and increased the size of the p-FAKY397 clusters. MeHg also inhibited PDGF-induced FAK and Src activation and, at 100nM, MeHg inhibited the activation of Rac1 and Cdc42. Altogether, the findings show that low concentrations of MeHg inhibit SH-SY5Y cell migration by disrupting the activation and disassembly of FAK. This negatively affects the activation of Src, Rac1 and Cdc42, all of which are critical proteins for the regulation of cell movement. These effects could be related to the MeHg-mediated inhibition of PDGF-induced formation of lamellipodia and filopodia, focal adhesion disassembly and PDGF-induced movement.


Assuntos
Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Compostos de Metilmercúrio/farmacologia , Neuroblastoma/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
5.
Mol Cancer Ther ; 16(5): 805-818, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28450422

RESUMO

The Rho GTPases Rac (Ras-related C3 botulinum toxin substrate) and Cdc42 (cell division control protein 42 homolog) regulate cell functions governing cancer malignancy, including cell polarity, migration, and cell-cycle progression. Accordingly, our recently developed Rac inhibitor EHop-016 (IC50, 1,100 nmol/L) inhibits cancer cell migration and viability and reduces tumor growth, metastasis, and angiogenesis in vivo Herein, we describe MBQ-167, which inhibits Rac and Cdc42 with IC50 values of 103 and 78 nmol/L, respectively, in metastatic breast cancer cells. Consequently, MBQ-167 significantly decreases Rac and Cdc42 downstream effector p21-activated kinase (PAK) signaling and the activity of STAT3, without affecting Rho, MAPK, or Akt activities. MBQ-167 also inhibits breast cancer cell migration, viability, and mammosphere formation. Moreover, MBQ-167 affects cancer cells that have undergone epithelial-to-mesenchymal transition by a loss of cell polarity and inhibition of cell surface actin-based extensions to ultimately result in detachment from the substratum. Prolonged incubation (120 hours) in MBQ-167 decreases metastatic cancer cell viability with a GI50 of approximately 130 nmol/L, without affecting noncancer mammary epithelial cells. The loss in cancer cell viability is due to MBQ-167-mediated G2-M cell-cycle arrest and subsequent apoptosis, especially of the detached cells. In vivo, MBQ-167 inhibits mammary tumor growth and metastasis in immunocompromised mice by approximately 90%. In conclusion, MBQ-167 is 10× more potent than other currently available Rac/Cdc42 inhibitors and has the potential to be developed as an anticancer drug, as well as a dual inhibitory probe for the study of Rac and Cdc42. Mol Cancer Ther; 16(5); 805-18. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carbazóis/administração & dosagem , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Pirimidinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
6.
Reproduction ; 144(1): 123-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22596063

RESUMO

In the mammalian sperm, the acrosome reaction (AR) is considered to be a regulated secretion that is an essential requirement for physiological fertilization. The AR is the all-or-nothing secretion system that allows for multiple membrane fusion events. It is a Ca(2)(+)-regulated exocytosis reaction that has also been shown to be regulated by several signaling pathways. CDC42 has a central role in the regulated exocytosis through the activation of SNARE proteins and actin polymerization. Furthermore, the lipid raft protein caveolin-1 (CAV1) functions as a scaffold and guanine nucleotide dissociation inhibitor protein for CDC42, which is inactivated when associated with CAV1. CDC42 and other RHO proteins have been shown to localize in the acrosome region of mammalian sperm; however, their relationship with the AR is unknown. Here, we present the first evidence that CDC42 and CAV1 could be involved in the regulation of capacitation and the AR. Our findings show that CDC42 is activated early during capacitation, reaching an activation maximum after 20 min of capacitation. Spontaneous and progesterone-induced ARs were inhibited when sperm were capacitated in presence of secramine A, a specific CDC42 inhibitor. CAV1 and CDC42 were co-immunoprecipitated from the membranes of noncapacitated sperm; this association was reduced in capacitated sperm, and our data suggest that the phosphorylation (Tyr14) of CAV1 by c-Src is involved in such reductions. We suggest that CDC42 activation is favored by the disruption of the CAV1-CDC42 interaction, allowing for its participation in the regulation of capacitation and the AR.


Assuntos
Reação Acrossômica/fisiologia , Caveolina 1/fisiologia , Capacitação Espermática/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Acrossomo/química , Reação Acrossômica/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Caveolina 1/análise , Membrana Celular/química , Cobaias , Homeostase , Técnicas de Imunoadsorção , Masculino , Camundongos , Oximas/farmacologia , Fosforilação , Progesterona/farmacologia , Transdução de Sinais/fisiologia , Capacitação Espermática/efeitos dos fármacos , Espermatozoides/ultraestrutura , Proteína cdc42 de Ligação ao GTP/análise , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA