Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Exp Toxicol ; 40(6): 897-914, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33233953

RESUMO

Lead is a ubiquitous heavy metal toxin of significant public health concern. Every individual varies in their response to lead's toxic effects due to underlying genetic variations in lead metabolizing enzymes or proteins distributed in the population. Earlier studies, including our lab, have attributed the influence of ALAD (δ-Aminolevulinate dehydratase) polymorphism on blood lead retention and ALAD activity. The present study aimed to investigate the influence of VDR (Vitamin D receptor) and HFE (Hemochromatosis) polymorphisms in modulating blood lead levels (BLLs) of occupationally exposed workers. 164 lead-exposed subjects involved in lead alloy manufacturing and battery breaking and recycling processes and 160 unexposed controls with BLLs below 10 µg/dL recruited in the study. Blood lead levels, along with a battery of biochemical assays and genotyping, were performed. Regression analysis revealed a negative influence of BLLs on ALAD activity (p < 0.0001) and a positive influence on smokeless tobacco use (p < 0.001) in lead-exposed subjects. A predicted haplotype of the three VDR polymorphisms computed from genotyping data revealed that T-A-A haplotype increased the BLLs by 0.93 units (p ≤ 0.05) and C-C-A haplotype decreased the BLLs by 7.25 units (p ≤ 0.05). Further analysis revealed that the wild-type CC genotype of HFE H63D presented a higher median BLL, indicating that variant C allele may have a role in increasing the concentration of lead. Hence, the polymorphism of genes associated with lead metabolism might aid in predicting genetic predisposition to lead and its associated effects.


Assuntos
Proteína da Hemocromatose/efeitos dos fármacos , Intoxicação por Chumbo/sangue , Intoxicação por Chumbo/genética , Chumbo/sangue , Exposição Ocupacional/efeitos adversos , Polimorfismo Genético , Receptores de Calcitriol/efeitos dos fármacos , Adulto , Feminino , Predisposição Genética para Doença , Proteína da Hemocromatose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Calcitriol/metabolismo
2.
Toxicology ; 441: 152525, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32540480

RESUMO

There is considerable interest in gene and environment interactions in neurodegenerative diseases. The HFE (homeostatic iron regulator) gene variant (H63D) is highly prevalent in the population and has been investigated as a disease modifier in multiple neurodegenerative diseases. We have developed a mouse model to interrogate the impact of this gene variant in a model of paraquat toxicity. Using primary astrocytes, we found that the H67D-Hfe(equivalent of the human H63D variant) astrocytes are less vulnerable than the WT-Hfe astrocytes to paraquat-induced cell death, mitochondrial damage, and cellular senescence. We hypothesized that the Hfe variant-associated protection is a result of the activation of the Nrf2 antioxidant defense system and found a significant increase in Nrf2 levels after paraquat exposure in the H67D-Hfe astrocytes than the WT-Hfe astrocytes. Moreover, decreasing Nrf2 by molecular or pharmaceutical manipulation resulted in increased vulnerability to paraquat in the H67D-Hfe astrocytes. To further elucidate the role of Hfe variant genotype in neuroprotection mediated by astrocytes, we added media from the paraquat-treated astrocytes to differentiated SH-SY5Y neuroblastoma cells and found a significantly larger reduction in the viability when treated with WT-Hfe astrocyte media than the H67D-Hfe astrocyte media possibly due to higher secretion of IL-6 observed in the WT-Hfe astrocytes. To further explore the mechanism of Nrf2 protection, we measured NQO1, the Nrf2-mediated antioxidant, in primary astrocytes and found a significantly higher NQO1 level in the H67D-Hfe astrocytes. To consider the translational potential of our findings, we utilized the PPMI (Parkinson's Progression Markers Initiative) clinical database and found that, consistent with the mouse study, H63D-HFE carriers had a significantly higher NQO1 level in the CSF than the WT-HFE carriers. Consistent with our previous reports on H63D-HFE in disease, these data further suggest that HFE genotype in the human population impacts the antioxidant defense system and can therefore alter pathogenesis.


Assuntos
Proteína da Hemocromatose/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Feminino , Genótipo , Proteína da Hemocromatose/efeitos dos fármacos , Proteína da Hemocromatose/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Paraquat/toxicidade
3.
Blood Cells Mol Dis ; 61: 37-45, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27667164

RESUMO

Hepcidin is the key regulator of systemic iron homeostasis. The iron-sensing mechanisms and the role of intracellular iron in modulating hepatic hepcidin secretion are unclear. Therefore, we created a novel cell line, recombinant-TfR1 HepG2, expressing iron-response-element-independent TFRC mRNA to promote cellular iron-overload and examined the effect of excess holotransferrin (5g/L) on cell-surface TfR1, iron content, hepcidin secretion and mRNA expressions of TFRC, HAMP, SLC40A1, HFE and TFR2. Results showed that the recombinant cells exceeded levels of cell-surface TfR1 in wild-type cells under basal (2.8-fold; p<0.03) and holotransferrin-supplemented conditions for 24h and 48h (4.4- and 7.5-fold, respectively; p<0.01). Also, these cells showed higher intracellular iron content than wild-type cells under basal (3-fold; p<0.03) and holotransferrin-supplemented conditions (6.6-fold at 4h; p<0.01). However, hepcidin secretion was not higher than wild-type cells. Moreover, holotransferrin treatment to recombinant cells did not elevate HAMP responses compared to untreated or wild-type cells. In conclusion, increased intracellular iron content in recombinant cells did not increase hepcidin responses compared to wild-type cells, resembling hemochromatosis. Furthermore, TFR2 expression altered within 4h of treatment, while HFE expression altered later at 24h and 48h, suggesting that TFR2 may function prior to HFE in HAMP regulation.


Assuntos
Hepcidinas/sangue , Transferrina/farmacologia , Antígenos CD/efeitos dos fármacos , Antígenos CD/genética , Proteína da Hemocromatose/sangue , Proteína da Hemocromatose/efeitos dos fármacos , Células Hep G2 , Hepcidinas/efeitos dos fármacos , Humanos , Ferro/sangue , Sobrecarga de Ferro , RNA Mensageiro/sangue , Receptores da Transferrina/efeitos dos fármacos , Receptores da Transferrina/genética , Proteínas Recombinantes , Proteína 2 de Ligação a Repetições Teloméricas/sangue , Proteína 2 de Ligação a Repetições Teloméricas/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA