Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685023

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Assuntos
Ferroptose , Hipocampo , Peroxidação de Lipídeos , Proteína de Ligação a Fosfatidiletanolamina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Encefalopatia Associada a Sepse , Ferroptose/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Masculino , Feminino , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/antagonistas & inibidores , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Modelos Animais de Doenças , Pré-Escolar , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Criança , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Malondialdeído/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lactente
2.
J R Soc Interface ; 20(208): 20230389, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963558

RESUMO

Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity-a hallmark of cancer metastasis. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two antagonistic 'teams' of players-while BACH1 belonged to the one driving pro-EMT, stem-like and therapy-resistant cell states, RKIP belonged to the one enabling pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network enable the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, and with patient survival data.


Assuntos
Neoplasias da Mama , Proteína de Ligação a Fosfatidiletanolamina , Humanos , Feminino , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Plasticidade Celular , Transição Epitelial-Mesenquimal , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
3.
Amino Acids ; 55(12): 1867-1878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814030

RESUMO

Hepatic stellate cell (HSC) activation is the key process in hepatic fibrosis (HF) development. Targeted death of HSCs could be effective in the prevention and treatment of HF. Phosphatidylethanolamine-binding protein (PEBP)1 can trigger ferroptosis by mediating peroxide production, but how it modulates HSC ferroptosis is not known. We screened natural small molecules that could bind with PEBP1, and investigated the mechanism by which it promotes HSC ferroptosis. The maximum binding energy of berberine with PEBP1 was - 8.51 kcal/mol, indicating that berberine could bind strongly with PEBP1. Berberine binding to PEBP1 could promote HSC ferroptosis via synergy of its actions with those of sorafenib, but it could not induce ferroptosis alone. Combined administration of berberine enhanced the ferroptotic effects of low-dose sorafenib upon HSCs. Herein, we revealed that PEBP1 might be a target that could enhance the effects of sorafenib, which could provide a new therapeutic approach for HF treatment.


Assuntos
Berberina , Ferroptose , Humanos , Sorafenibe/farmacologia , Sorafenibe/metabolismo , Sorafenibe/uso terapêutico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Berberina/farmacologia , Berberina/metabolismo , Berberina/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo
4.
Free Radic Biol Med ; 208: 458-467, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678654

RESUMO

Ferroptosis is a regulated form of cell death, the mechanism of which is still to be understood. 15-lipoxygenase (15LOX) complex with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) catalyzes the generation of pro-ferroptotic cell death signals, hydroperoxy-polyunsaturated PE. We focused on gaining new insights into the molecular basis of these pro-ferroptotic interactions using computational modeling and liquid chromatography-mass spectrometry experiments. Simulations of 15LOX-1/PEBP1 complex dynamics and interactions with lipids revealed that association with the membrane triggers a conformational change in the complex. This conformational change facilitates the access of stearoyl/arachidonoyl-PE (SAPE) substrates to the catalytic site. Furthermore, the binding of SAPE promotes tight interactions within the complex and induces further conformational changes that facilitate the oxidation reaction. The reaction yields two hydroperoxides as products, 15-HpETE-PE and 12-HpETE-PE, at a ratio of 5:1. A significant effect of PEBP1 is observed only on the predominant product. Moreover, combined experiments and simulations consistently demonstrate the significance of PEBP1 P112E mutation in generating ferroptotic cell death signals.


Assuntos
Araquidonato 15-Lipoxigenase , Ferroptose , Proteína de Ligação a Fosfatidiletanolamina , Morte Celular , Ferroptose/fisiologia , Oxirredução , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/fisiologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/fisiologia , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Humanos , Animais , Suínos
5.
World J Gastroenterol ; 29(26): 4200-4213, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37475847

RESUMO

BACKGROUND: Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. Tyrosine kinase inhibitors, such as imatinib, have been used as first-line therapy for the treatment of GISTs. Although these drugs have achieved considerable efficacy in some patients, reports of resistance and recurrence have emerged. Extracellular signal-regulated kinase 1/2 (ERK1/2) protein, as a member of the mitogen-activated protein kinase (MAPK) family, is a core molecule of this signaling pathway. Nowadays, research reports on the important clinical and prognostic value of phosphorylated-ERK (P-ERK) and phosphorylated-MAPK/ERK kinase (P-MEK) proteins closely related to raf kinase inhibitor protein (RKIP) have gradually emerged in digestive tract tumors such as gastric cancer, colon cancer, and pancreatic cancer. However, literature on the expression of these downstream proteins combined with RKIP in GIST is scarce. This study will focus on this aspect and search for answers to the problem. AIM: To detect the expression of RKIP, P-ERK, and P-MEK protein in GIST and to analyze their relationship with clinicopathological characteristics and prognosis of this disease. Try to establish a new prognosis evaluation model using RKIP and P-ERK in combination with analysis and its prognosis evaluation efficacy. METHODS: The research object of our experiment was 66 pathologically diagnosed GIST patients with complete clinical and follow-up information. These patients received surgical treatment at China Medical University Affiliated Hospital from January 2015 to January 2020. Immunohistochemical method was used to detect the expression of RKIP, P-ERK, and P-MEK proteins in GIST tissue samples from these patients. Kaplan-Meier method was used to calculate the survival rate of 63 patients with complete follow-up data. A Nomogram was used to represent the new prognostic evaluation model. The Cox multivariate regression analysis was conducted separately for each set of risk evaluation factors, based on two risk classification systems [the new risk grade model vs the modified National Institutes of Health (NIH) 2008 risk classification system]. Receiver operating characteristic (ROC) curves were used for evaluating the accuracy and efficiency of the two prognostic evaluation systems. RESULTS: In GIST tissues, RKIP protein showed positive expression in the cytoplasm and cell membrane, appearing as brownish-yellow or brown granules. The expression of RKIP was related to GIST tumor size, NIH grade, and mucosal invasion. P-ERK protein exhibited heterogeneous distribution in GIST cells, mainly in the cytoplasm, with occasional presence in the nucleus, and appeared as brownish-yellow granules, and the expression of P-ERK protein was associated with GIST tumor size, mitotic count, mucosal invasion, and NIH grade. Meanwhile, RKIP protein expression was negatively correlated with P-ERK expression. The results in COX multivariate regression analysis showed that RKIP protein expression was not an independent risk factor for tumor prognosis. However, RKIP combined with P-ERK protein expression were identified as independent risk factors for prognosis with statistical significance. Furthermore, we establish a new prognosis evaluation model using RKIP and P-ERK in combination and obtained the nomogram of the new prognosis evaluation model. ROC curve analysis also showed that the new evaluation model had better prognostic performance than the modified NIH 2008 risk classification system. CONCLUSION: Our experimental results showed that the expression of RKIP and P-ERK proteins in GIST was associated with tumor size, NIH 2008 staging, and tumor invasion, and P-ERK expression was also related to mitotic count. The expression of the two proteins had a certain negative correlation. The combined expression of RKIP and P-ERK proteins can serve as an independent risk factor for predicting the prognosis of GIST patients. The new risk assessment model incorporating RKIP and P-ERK has superior evaluation efficacy and is worth further practical application to validate.


Assuntos
Tumores do Estroma Gastrointestinal , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Prognóstico
6.
J Biol Chem ; 299(4): 103023, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805338

RESUMO

Raf kinase inhibitor protein (RKIP) is a multifunctional modulator of intracellular signal transduction. Although most of its functions have been considered cytosolic, we show here that the localization of RKIP is primarily nuclear in both growing and quiescent Madin-Darby canine kidney epithelial cells and in Cal-51 and BT-20 human breast cancer cells. We have identified a putative bipartite nuclear localization signal (NLS) in RKIP that maps to the surface of the protein surrounding a known regulatory region. Like classical NLS sequences, the putative NLS of RKIP is rich in arginine and lysine residues. Deletion of and point mutations in the putative NLS lead to decreased nuclear localization. Point mutation of all the basic residues in the putative NLS of RKIP particularly strongly reduces nuclear localization. We found consistent results in reexpression experiments with wildtype or mutant RKIP in RKIP-silenced cells. A fusion construct of the putative NLS of RKIP alone to a heterologous reporter protein leads to nuclear localization of the fusion protein, demonstrating that this sequence alone is sufficient for import into the nucleus. We found that RKIP interacts with the nuclear transport factor importin α in BT-20 and MDA-MB-231 human breast cancer cells, suggesting importin-mediated active nuclear translocation. Evaluating the biological function of nuclear localization of RKIP, we found that the presence of the putative NLS is important for the role of RKIP in mitotic checkpoint regulation in MCF-7 human breast cancer cells. Taken together, these findings suggest that a bipartite NLS in RKIP interacts with importin α for active transport of RKIP into the nucleus and that this process may be involved in the regulation of mitotic progression.


Assuntos
Sinais de Localização Nuclear , Proteína de Ligação a Fosfatidiletanolamina , alfa Carioferinas , Animais , Cães , Humanos , Transporte Ativo do Núcleo Celular , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Células Madin Darby de Rim Canino
7.
Chem Commun (Camb) ; 59(8): 1022-1025, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36598113

RESUMO

Ulcerative colitis (UC) is an inflammatory disease of the colon with an unmet need for therapeutic targets. Ethyl gallate (EG) is a natural small molecule for UC treatment, but its cellular target is unknown. By labelling EG with a diazirine photocrosslinker and a click chemistry handle, we identified phosphatidyl-ethanolamine binding protein1 (PEBP1) as a direct cellular target of EG by forming hydrogen bonds with Asp70 and Tyr120. In particular, hydrogen/deuterium exchange mass spectrometry indicated that EG induced the sequence (residues 141-153) embedding to inhibit S153 phosphorylation of PEBP1. Additionally, the EG-mediated sequence (residues 108-122) exposure significantly enhanced PEBP1-Raf-1 interaction to block the downstream NF-κB inflammatory pathway in macrophages. Moreover, PEBP1 siRNA substantially reversed the EG-dependent down-regulation of the phosphorylation of IKKß, IκBα and NF-κB, demonstrating that the NF-κB signal functioned as an essential anti-inflammation mechanism of PEBP1. Collectively, we revealed PEBP1 as a previously undescribed cellular target in macrophages for UC therapy and identified a new allosteric site for PEBP1 biology study using EG as a chemical probe.


Assuntos
Colite Ulcerativa , NF-kappa B , Humanos , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Ativação de Macrófagos , Quinase I-kappa B/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/química , Proteína de Ligação a Fosfatidiletanolamina/metabolismo
8.
Int J Mol Med ; 51(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382638

RESUMO

Raf kinase inhibitor protein (RKIP) is an inflammation­inhibiting mediator that is involved in several diseases; however, the potential mechanism of action of RKIP on the inflammatory response induced by influenza A virus (IAV) remains unclear. The present study aimed to investigate whether RKIP regulated the inflammatory response via the ERK/MAPK pathway. The present study detected the expression levels of RKIP and alterations in the inflammatory response in human normal bronchial epithelial BEAS­2B cells, diseased human bronchial epithelial cells and primary human bronchial epithelial cells infected with IAV. Cells were treated with locostatin to inhibit the expression of RKIP. RKIP was overexpressed by lentivirus transduction and the small molecule inhibitor SCH772984 was applied to specifically inhibit activation of the ERK/MAPK pathway. In addition, C57BL/6 mice were infected with IAV to further confirm the role of RKIP in regulation of the inflammatory response via ERK/MAPK in vivo. Western blotting, reverse transcription­quantitative PCR, ELISA, 5­ethynyl­-2'­deoxyuridine assay, immunofluorescence staining, Cell Counting Kit­8, cell cycle assay, hematoxylin and eosin staining, and immunohistochemistry were used to detect all of the changes. Notably, RKIP attenuated the inflammatory response that was triggered by IAV infection in airway epithelial cells, which was characterized by augmented inflammatory cytokines and cell cycle arrest. Furthermore, the ERK/MAPK pathway was revealed to be activated by IAV infection and downregulation of RKIP aggravated the airway inflammatory response. By contrast, overexpression of RKIP effectively ameliorated the airway inflammatory response induced by IAV. These findings demonstrated that RKIP may serve a protective role in airway epithelial cells by combating inflammation via the ERK/MAPK pathway. Collectively, the present findings suggested that RKIP may negatively regulate airway inflammation and thus may constitute a promising therapeutic strategy for airway inflammatory­related diseases that are induced by IAV.


Assuntos
Vírus da Influenza A , Proteína de Ligação a Fosfatidiletanolamina , Animais , Humanos , Camundongos , Inflamação , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo
9.
Biopharm Drug Dispos ; 43(6): 247-254, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519186

RESUMO

As an analog of clopidogrel and prasugrel, vicagrel is completely hydrolyzed to intermediate thiolactone metabolite 2-oxo-clopidogrel (also the precursor of active thiol metabolite H4) in human intestine, predominantly by AADAC and CES2; however, other unknown vicagrel hydrolases remain to be identified. In this study, recombinant human Raf kinase inhibitor protein (rhRKIP) and pooled human intestinal S9 (HIS9) fractions and microsome (HIM) preparations were used as the different enzyme sources; prasugrel as a probe drug for RKIP (a positive control), vicagrel as a substrate drug of interest, and the rate of the formation of thiolactone metabolites 2-oxo-clopidogrel and R95913 as metrics of hydrolase activity examined, respectively. In addition, an IC50 value of inhibition of rhRKIP-catalyzed vicagrel hydrolysis by locostatin was measured, and five classical esterase inhibitors with distinct esterase selectivity were used to dissect the involvement of multiple hydrolases in vicagrel hydrolysis. The results showed that rhRKIP hydrolyzed vicagrel in vitro, with the values of Km , Vmax , and CLint measured as 20.04 ± 1.99 µM, 434.60 ± 12.46 nM/min/mg protein, and 21.69 ± 0.28 ml/min/mg protein, respectively, and that an IC50 value of locostatin was estimated as 1.24 ± 0.04 mM for rhRKIP. In addition to locostatin, eserine and vinblastine strongly suppressed vicagrel hydrolysis in HIM. It is concluded that RKIP can catalyze the hydrolysis of vicagrel in the human intestine, and that vicagrel can be hydrolyzed by multiple hydrolases, such as RKIP, AADAC, and CES2, concomitantly.


Assuntos
Hidrolases , Proteína de Ligação a Fosfatidiletanolamina , Humanos , Cloridrato de Prasugrel/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Clopidogrel , Hidrolases/metabolismo , Esterases/metabolismo , Intestinos
10.
Drug Des Devel Ther ; 16: 3071-3085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118165

RESUMO

Background: Dihydromyricetin (DHM) exerts protective effects in various brain diseases. The aim of this research was to investigate the biological role of DHM in cerebral ischemia reperfusion (I/R) injury. Methods: We generated a rat model of cerebral I/R injury by performing middle cerebral artery occlusion/reperfusion (MCAO/R). The neurological score and brain water content of the experimental rats was then evaluated. The infarct volume and extent of apoptosis in brain tissues was then assessed by 2,3,5-triphenyltetrazolium (TTC) and TdT-mediated dUTP nick end labeling (TUNEL) staining. Hippocampal neuronal cells (HT22) were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) and cell counting kit-8 (CCK-8) assays and flow cytometry were performed to detect cell viability and apoptosis. The levels of lipid reactive oxygen species (ROS) and iron were detected and the expression levels of key proteins were assessed by Western blotting. Results: DHM obviously reduced neurological deficits, brain water content, infarct volume and cell apoptosis in the brain tissues of MCAO/R rats. DHM repressed ferroptosis and inhibited the sphingosine kinase 1 (SPHK1)/mammalian target of rapamycin (mTOR) pathway in MCAO/R rats. In addition, DHM promoted cell viability and repressed apoptosis in OGD/R-treated HT22 cells. DHM also suppressed the levels of lipid ROS and intracellular iron in OGD/R-treated HT22 cells. The expression levels of glutathione peroxidase 4 (GPX4) was enhanced while the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4) and phosphatidylethanolamine binding protein 1 (PEBP1) were reduced in OGD/R-treated HT22 cells in the presence of DHM. Moreover, the influence conferred by DHM was abrogated by the overexpression of SPHK1 or treatment with MHY1485 (an activator of mTOR). Conclusion: This research demonstrated that DHM repressed ferroptosis by inhibiting the SPHK1/mTOR signaling pathway, thereby alleviating cerebral I/R injury. Our findings suggest that DHM may be a candidate drug for cerebral I/R injury treatment.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Animais , Coenzima A/metabolismo , Coenzima A/farmacologia , Coenzima A/uso terapêutico , Flavonóis , Glucose/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Ferro , Ligases/metabolismo , Ligases/farmacologia , Ligases/uso terapêutico , Lipídeos/farmacologia , Mamíferos/metabolismo , Oxigênio/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/farmacologia , Proteína de Ligação a Fosfatidiletanolamina/uso terapêutico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fosfotransferases (Aceptor do Grupo Álcool) , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Água
11.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955931

RESUMO

Phosphatidylethanolamine binding protein 4 (PEBP4) is an understudied multifunctional small protein. Previous studies have shown that the expression of PEBP4 is increased in many cancer specimens, which correlates to cancer progression. The present study explored the mechanism by which PEBP4 regulates the growth and progression of hepatocellular carcinoma cells. Thus, we showed that knockdown of PEBP4 in MHCC97H cells, where its expression was relatively high, diminished activities of serine/threonine protein kinase B (PKB, also known as Akt), mammalian target of rapamycin complex 1(mTORC1), and mTORC2, events that were not restored by insulin-like growth factor 1 (IGF-1). Conversely, overexpression of PEBP4 in MHCC97L cells with the low endogenous level yielded opposite effects. Furthermore, physical association of PEBP4 with Akt, mTORC1, and mTORC2 was observed. Interestingly, introduction of AktS473D mutant, bypassing phosphorylation by mTORC2, rescued mTORC1 activity, but without effects on mTORC2 signaling. In contrast, the effect of PEBP4 overexpression on the activity of mTORC1 but not that of mTORC2 was suppressed by MK2206, a specific inhibitor of Akt. In conjunction, PEBP4 knockdown-engendered reduction of cell proliferation, migration and invasion was partially rescued by Akt S473D while increases in these parameters induced by overexpression of PEBP4 were completely abolished by MK2206, although the expression of epithelial mesenchymal transition (EMT) markers appeared to be fully regulated by the active mutant of Akt. Finally, knockdown of PEBP4 diminished the growth of tumor and metastasis, whereas they were enhanced by overexpression of PEBP4. Altogether, our study suggests that increased expression of PEBP4 exacerbates malignant behaviors of hepatocellular cancer cells through cooperative participation of mTORC1 and mTORC2.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Mol Cancer ; 21(1): 146, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840930

RESUMO

BACKGROUND: Increasing evidence has demonstrated that circular RNAs (circRNAs) are implicated in cancer progression. However, the aberrant expression and biological functions of circRNAs in clear cell renal cell carcinoma (cRCC) remain largely elusive. METHOD: Differentially expressed circRNAs in cRCC were filtered via bioinformatics analysis. Aberrant circPOLR2A expression was validated in cRCC tissues and cell lines via qRT-PCR. Sanger sequencing was used to identify the backsplicing site of circPOLR2A. In vitro and in vivo functional experiments were performed to evaluate the role of circPOLR2A in cRCC malignancy. RNA pull-down, mass spectrometry, RIP, FISH and immunofluorescence assays were used to identify and validate the circPOLR2A-interacting proteins. Ubiquitination modification and interaction between proteins were detected via Co-IP and western blotting. The m6A modification in circPOLR2A was validated by the meRIP assay. RESULTS: Bioinformatics analysis revealed that circPOLR2A was highly expressed in cRCC tissues and metastatic cRCC tissues. CircPOLR2A expression was associated with tumor size and TNM stage in cRCC patients. In vitro and in vivo functional assays revealed that circPOLR2A accelerated cRCC cell proliferation, migration, invasion and angiogenesis, while inhibiting apoptosis. Further mechanistic research suggested that circPOLR2A could interact with UBE3C and PEBP1 proteins, and that UBE3C could act as a specific ubiquitin E3 ligase for the PEBP1 protein. The UBE3C/circPOLR2A/PEBP1 protein-RNA ternary complex enhanced the UBE3C-mediated ubiquitination and degradation of the PEBP1 protein which could inactivate the ERK signaling pathway. Rescue experiments revealed that the PEBP1 protein was the functional downstream target of circPOLR2A. Furthermore, m6A modification in circPOLR2A was confirmed, and the m6A reader YTHDF2 could regulate circPOLR2A expression. CONCLUSION: Our study demonstrated that circPOLR2A modulated the UBE3C-mediated ubiquitination and degradation of the PEBP1 protein, and further activated the ERK pathway during cRCC progression and metastasis. The m6A reader, YTHDF2, regulated circPOLR2A expression in cRCC. Hence, circPOLR2A could be a potential target for the diagnosis and treatment of cRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sistema de Sinalização das MAP Quinases , Proteína de Ligação a Fosfatidiletanolamina , RNA Circular , Ubiquitina-Proteína Ligases , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Biomed Res Int ; 2022: 8077058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757465

RESUMO

Purpose: Dioscorea nipponica Makino (DNM) is a traditional herb with multiple medicinal functions. This study is aimed at exploring the therapeutic effects of DNM on asthma and the underlying mechanisms involving RKIP-mediated MAPK signaling pathway. Methods: An ovalbumin-induced asthma model was established in mice, which was further administrated with DNM and/or locostatin (RKIP inhibitor). ELISA was performed to detect the serum titers of OVA-IgE and OVA-IgG1, bronchoalveolar lavage fluid (BALF) levels of inflammation-related biomarkers, and tissue levels of oxidative stress-related biomarkers. The expression of RKIP was measured by quantitative real-time PCR, Western blot, immunohistochemistry, and immunofluorescence. HE staining was used to observe the pathological morphology of lung tissues. The protein expression of MAPK pathway-related proteins was detected by Western blot. Results: Compared with the controls, the model mice exhibited significantly higher serum titers of OVA-IgE and OVA-IgG1, BALF levels of IL-6, IL-8, IL-13, TGF-ß1, and MCP-1, tissue levels of MDA and ROS, lower BALF levels of IL-10 and IFN-γ, and tissue level of GSH. DNM relieved the allergic inflammatory response and oxidative stress in the model mice. DNM also recovered the downregulation of RKIP and the pathological injury of lung tissues in asthma mice. In addition, the Raf-1/MEK/MAPK/ERK pathway in the model mice was blocked by DNM. Silencing of RKIP by locostatin weakened the relieving effects of DNM on asthma through activating the Raf-1/MEK/MAPK/ERK pathway. Conclusion: DNM relieves asthma via blocking the Raf-1/MEK/MAPK/ERK pathway that mediated by RKIP upregulation.


Assuntos
Asma , Dioscorea , Sistema de Sinalização das MAP Quinases , Extratos Vegetais , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Dioscorea/química , Modelos Animais de Doenças , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ovalbumina , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-raf/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(25): e2121867119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696587

RESUMO

Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the ß-adrenergic receptor (ß-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes ß-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the ß-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Proteína de Ligação a Fosfatidiletanolamina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Humanos , Masculino , Células PC-3 , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosforilação , Neoplasias da Próstata/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais
15.
Bioengineered ; 13(5): 13341-13351, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635016

RESUMO

miR-205-5p plays a vital role in the inflammation of allergic rhinitis (AR). The study is designed to investigate the effects and mechanism of miR-205-5p in AR in vivo and in vitro. An OVA-induced mice model and anti-DNP IgE-induced RBL-2H3 cell model were established. The pathological alterations in the nasal mucosa were evaluated by hematoxylin-eosin (HE) staining. IgE and histamine levels were detected by corresponding kits and the expressions of PEBP1, High mobility group box-1 (HMGB1) and Toll-like receptor 4 (TLR4) were detected by western blot. The association of miR-205-5p and PEBP1 was determined by dual-luciferase reported assay. ß-hexosaminidase activity was to evaluate the degranulation of RBL-2H3 cell. The pathological injury of nasal mucosa was significantly improved by miR-205-5p inhibition compared to AR mice. Following the treatment of miR-205-5p inhibitor, the levels of helper T cell (Th1) cytokines, interleukin (IL)-2 and interferon-γ (IFN-γ) were increased, while the levels of Th2 cytokines, IL-4 and IL-13, as well as the levels of IgE and histamine were markedly decreased in AR mice. We further found that miR-205-5P inhibition induced increased expression of PEBP1 and decreased expressions of HMGB1and TLR4. In vitro, miR-205-5P was verified to bind to PEBP1. PEBP1 silencing led to the reverse of miR-205-5p effects on decreasing the levels of ß-hexosaminidase activity and histamine, as well as the expressions of HMGB1 and TLR4 on anti-DNP IgE-induced RBL-2H3 cells. Our results indicate that miR-205-5P inhibition may ameliorate pathological injury via PEBP1. MiR-205-5P/ PEBP1 could be potential drug targets in AR.


Assuntos
Proteína HMGB1 , MicroRNAs , Rinite Alérgica , Animais , Citocinas/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Histamina/uso terapêutico , Liberação de Histamina , Imunoglobulina E/metabolismo , Imunoglobulina E/uso terapêutico , Camundongos , MicroRNAs/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/uso terapêutico
16.
Aging (Albany NY) ; 14(7): 2989-3029, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396341

RESUMO

Proteostasis reflects the well-balanced synthesis, trafficking and degradation of cellular proteins. This is a fundamental aspect of the dynamic cellular proteome, which integrates multiple signaling pathways, but it becomes increasingly error-prone during aging. Phosphatidylethanolamine-binding proteins (PEBPs) are highly conserved regulators of signaling networks and could therefore affect aging-related processes. To test this hypothesis, we expressed PEPBs in a heterologous context to determine their ectopic activity. We found that heterologous expression of the tobacco (Nicotiana tabacum) PEBP NtFT4 in Drosophila melanogaster significantly increased the lifespan of adult flies and reduced age-related locomotor decline. Similarly, overexpression of the Drosophila ortholog CG7054 increased longevity, whereas its suppression by RNA interference had the opposite effect. In tobacco, NtFT4 acts as a floral regulator by integrating environmental and intrinsic stimuli to promote the transition to reproductive growth. In Drosophila, NtFT4 engaged distinct targets related to proteostasis, such as HSP26. In older flies, it also prolonged Hsp26 gene expression, which promotes longevity by maintaining protein integrity. In NtFT4-transgenic flies, we identified deregulated genes encoding proteases that may contribute to proteome stability at equilibrium. Our results demonstrate that the expression of NtFT4 influences multiple aspects of the proteome maintenance system via both physical interactions and transcriptional regulation, potentially explaining the aging-related phenotypes we observed.


Assuntos
Proteínas de Drosophila , Longevidade , Envelhecimento/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Longevidade/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteoma/metabolismo , Proteostase/genética , Nicotiana
17.
Transl Stroke Res ; 13(6): 1037-1054, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35355228

RESUMO

Pyroptosis has been proven to be responsible for secondary brain injury after intracerebral hemorrhage (ICH). A recent study reported that Raf kinase inhibitor protein (RKIP) inhibited assembly and activation of inflammasome in macrophages. Our present study aimed to investigate the effects of RKIP on inflammasome-mediated neuronal pyroptosis and underlying neuroprotective mechanisms in experimental ICH. Here, we showed that RKIP expression was decreased both in cerebrospinal fluid (CSF) samples from patients with ICH and in the peri-hematoma tissues after experimental ICH. In mouse ICH model, activation of RKIP remarkably improved neurological deficits, reduced brain water content and BBB disruption, and promoted hematoma absorption at 24 h after ICH, as well as alleviated neuronal degeneration, reduced membrane pore formation, and downregulated pyroptotic molecules NLRP3, caspase-1 P20, GSDMD-N, and mature IL-1ß. Besides, RKIP activation decreased the number of caspase-1 P20-positive neurons after ICH. However, RKIP inhibitor reserved the neuroprotective effects of RKIP at 24 h following ICH. Moreover, RKIP could bind with ASC, then interrupt the assembly of NLRP3 inflammasome. Mechanistically, inhibiting the caspase-1 by VX-765 attenuated brain injury and suppressed neuronal pyroptosis after RKIP inhibitor-pretreated ICH. In conclusion, our findings indicated that activation of RKIP could attenuate neuronal pyroptosis and brain injury after ICH, to some extent, through ASC/Caspase-1/GSDMD pathway. Thus, RKIP may be a potential target to attenuate brain injury via its anti-pyroptosis effect after ICH.


Assuntos
Lesões Encefálicas , Inflamassomos , Camundongos , Animais , Caspase 1/metabolismo , Caspase 1/farmacologia , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/farmacologia , Hemorragia Cerebral/complicações , Lesões Encefálicas/metabolismo , Transdução de Sinais , Neurônios/metabolismo , Modelos Animais de Doenças , Hematoma
18.
Clin Neurol Neurosurg ; 214: 107148, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35158167

RESUMO

BACKGROUND AND PURPOSE: Abnormal expression of phosphatidylethanolamine-binding protein 4 (PEBP4) has been identified in various types of malignant tumors. In the present study, we investigated the expression of PEBP4 in meningioma cases and examined whether PEBP4 expression was correlated with outcomes among these patients. MATERIALS AND METHODS: The expression levels of PEBP4 and Ki-67 in human meningioma tissues from 65 patients were evaluated by immunohistochemical staining. The correlation between PEBP4 immunoreactivity in meningioma samples and patients' clinical outcomes was examined using the Kruskal-Wallis correlation test. The prognostic value of PEBP4 expression in meningiomas patients also was investigated. RESULTS: Immunohistochemical analysis revealed up-regulated PEBP4 expression in both atypical and anaplastic meningiomas compared with classical meningiomas (13.38 ± 4.19% vs. 3.64 ± 2.04%, P < 0.001). PEBP4 immunoreactivity in meningioma samples was closely correlated with that for Ki-67 (Spearman r = 0.7922, P < 0.0001). PEBP4 expression was also associated with tumor differentiation grade and clinical recurrence (P < 0.05). Multivariate regression analysis showed with high PEBP4 expression was associated with a longer recurrence-free survival (hazard ratio=0.252, 95% confidence interval: 0.067-0.940, P = 0.040). CONCLUSION: PEBP4 may play an important role in the progression of meningioma, as high PEBP4 expression was associated with a higher pathological grade of meningioma. Moreover, PEBP4 expression may be a meaningful prognostic biomarker in meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Meníngeas/patologia , Meningioma/patologia , Recidiva Local de Neoplasia/patologia , Prognóstico
19.
Nat Commun ; 13(1): 846, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149691

RESUMO

Apoptosis and autophagy are two common forms of programmed cell death (PCD) used by host organisms to fight against virus infection. PCD in arthropod vectors can be manipulated by arboviruses, leading to arbovirus-vector coexistence, although the underlying mechanism is largely unknown. In this study, we find that coat protein (CP) of an insect-borne plant virus TYLCV directly interacts with a phosphatidylethanolamine-binding protein (PEBP) in its vector whitefly to downregulate MAPK signaling cascade. As a result, apoptosis is activated in the whitefly increasing viral load. Simultaneously, the PEBP4-CP interaction releases ATG8, a hallmark of autophagy initiation, which reduces arbovirus levels. Furthermore, apoptosis-promoted virus amplification is prevented by agonist-induced autophagy, whereas the autophagy-suppressed virus load is unaffected by manipulating apoptosis, suggesting that the viral load is predominantly determined by autophagy rather than by apoptosis. Our results demonstrate that a mild intracellular immune response including balanced apoptosis and autophagy might facilitate arbovirus preservation within its whitefly insect vector.


Assuntos
Apoptose/efeitos dos fármacos , Infecções por Arbovirus , Autofagia/efeitos dos fármacos , Hemípteros/virologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/farmacologia , Animais , Proteínas Reguladoras de Apoptose/farmacologia , Arbovírus , Homeostase , Insetos Vetores/virologia , Doenças das Plantas/virologia , Vírus de Plantas
20.
Cells ; 11(4)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203304

RESUMO

The RAF kinase inhibitor protein, RKIP, is a dual inhibitor of the RAF1 kinase and the G protein-coupled receptor kinase 2, GRK2. By inhibition of the RAF1-MAPK (mitogen-activated protein kinase) pathway, RKIP acts as a beneficial tumour suppressor. By inhibition of GRK2, RKIP counteracts GRK2-mediated desensitisation of G protein-coupled receptor (GPCR) signalling. GRK2 inhibition is considered to be cardioprotective under conditions of exaggerated GRK2 activity such as heart failure. However, cardioprotective GRK2 inhibition and pro-survival RAF1-MAPK pathway inhibition counteract each other, because inhibition of the pro-survival RAF1-MAPK cascade is detrimental for the heart. Therefore, the question arises, what is the net effect of these apparently divergent functions of RKIP in vivo? The available data show that, on one hand, GRK2 inhibition promotes cardioprotective signalling in isolated cardiomyocytes. On the other hand, inhibition of the pro-survival RAF1-MAPK pathway by RKIP deteriorates cardiomyocyte viability. In agreement with cardiotoxic effects, endogenous RKIP promotes cardiac fibrosis under conditions of cardiac stress, and transgenic RKIP induces heart dysfunction. Supported by next-generation sequencing (NGS) data of the RKIP-induced cardiac transcriptome, this review provides an overview of different RKIP functions and explains how beneficial GRK2 inhibition can go awry by RAF1-MAPK pathway inhibition. Based on RKIP studies, requirements for the development of a cardioprotective GRK2 inhibitor are deduced.


Assuntos
Miócitos Cardíacos , Neoplasias , Proteína de Ligação a Fosfatidiletanolamina , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Miócitos Cardíacos/metabolismo , Neoplasias/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...