Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Med Biol Eng Comput ; 62(2): 423-436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37889430

RESUMO

Human immunodeficiency virus type 1 (HIV-1) is a major global health problem, with over 38 million people infected worldwide. Current anti-HIV-1 drugs are limited in their ability to prevent the virus from replicating inside host cells, making them less effective as preventive measures. In contrast, viral inhibitors that inactivate the virus before it can bind to a host cell have great potential as drugs. In this study, we aimed to design mutant peptides that could block the interaction between gp120 and the CD4 receptor on host cells, thus preventing HIV-1 infection. We designed a 20-amino-acid peptide that mimicked the amino acids of the CD4 binding site and docked it to gp120. Molecular dynamics simulations were performed to calculate the energy of MMPBSA (Poisson-Boltzmann Surface Area) for each residue of the peptide, and unfavorable energy residues were identified as potential mutation points. Using MAESTRO (Multi AgEnt STability pRedictiOn), we measured ΔΔG (change in the change in Gibbs free energy) for mutations and generated a library of 240 mutated peptides using OSPREY software. The peptides were then screened for allergenicity and binding affinity. Finally, molecular dynamics simulations (via GROMACS 2020.2) and control docking (via HADDOCK 2.4) were used to evaluate the ability of four selected peptides to inhibit HIV-1 infection. Three peptides, P3 (AHRQIRQWFLTRGPNRSLWQ), P4 (VHRQIRQWFLTRGPNRSLWQ), and P9 (AHRQIRQMFLTRGPNRSLWQ), showed practical and potential as HIV inhibitors, based on their binding affinity and ability to inhibit infection. These peptides have the ability to inactivate the virus before it can bind to a host cell, thus representing a promising approach to HIV-1 prevention. Our findings suggest that mutant peptides designed to block the interaction between gp120 and the CD4 receptor have potential as HIV-1 inhibitors. These peptides could be used as preventive measures against HIV-1 transmission, and further research is needed to evaluate their safety and efficacy in clinical settings.


Assuntos
HIV-1 , Humanos , HIV-1/genética , HIV-1/metabolismo , Antígenos CD4/genética , Antígenos CD4/química , Antígenos CD4/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Sítios de Ligação , Mutação/genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/farmacologia
2.
Virol J ; 20(1): 50, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949470

RESUMO

BACKGROUND: Plants are used in traditional healing practices of many cultures worldwide. Momordica balsamina is a plant commonly used by traditional African healers as a part of a treatment for HIV/AIDS. It is typically given as a tea to patients with HIV/AIDS. Water-soluble extracts of this plant were found to contain anti-HIV activity. METHODS: We employed cell-based infectivity assays, surface plasmon resonance, and a molecular-cell model of the gp120-CD4 interaction to study the mechanism of action of the MoMo30-plant protein. Using Edman degradation results of the 15 N-terminal amino acids, we determined the gene sequence of the MoMo30-plant protein from an RNAseq library from total RNA extracted from Momordica balsamina. RESULTS: Here, we identify the active ingredient of water extracts of the leaves of Momordica balsamina as a 30 kDa protein we call MoMo30-plant. We have identified the gene for MoMo30 and found it is homologous to a group of plant lectins known as Hevamine A-like proteins. MoMo30-plant is distinct from other proteins previously reported agents from the Momordica species, such as ribosome-inactivating proteins such as MAP30 and Balsamin. MoMo30-plant binds to gp120 through its glycan groups and functions as a lectin or carbohydrate-binding agent (CBA). It inhibits HIV-1 at nanomolar levels and has minimal cellular toxicity at inhibitory levels. CONCLUSIONS: CBAs like MoMo30 can bind to glycans on the surface of the enveloped glycoprotein of HIV (gp120) and block entry. Exposure to CBAs has two effects on the virus. First, it blocks infection of susceptible cells. Secondly, MoMo30 drives the selection of viruses with altered glycosylation patterns, potentially altering their immunogenicity. Such an agent could represent a change in the treatment strategy for HIV/AIDS that allows a rapid reduction in viral loads while selecting for an underglycosylated virus, potentially facilitating the host immune response.


Assuntos
Síndrome da Imunodeficiência Adquirida , HIV-1 , Momordica , Plantas Medicinais , Humanos , HIV-1/genética , Momordica/química , Momordica/metabolismo , Proteínas de Plantas/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/farmacologia
3.
J Pharm Sci ; 109(1): 911-921, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682830

RESUMO

Inducing immune responses protecting from HIV infection or at least controlling replication poses a huge challenge to modern vaccinology. An increasingly discussed strategy to elicit a potent and broad neutralizing antibody response is the immobilization of HIV's trimeric envelope (Env) surface receptor on a nanoparticulate carrier. As a conceptual proof, we attached an Env variant (BG505 SOSIP.664) to highly stable and biocompatible silica nanoparticles (SiNPs) via site-specific covalent conjugation or nonspecific adsorption to SiNPs. First, we demonstrated the feasibility of SiNPs as platform for Env presentation by a thorough characterization process during which Env density, attachment stability, and antigenicity were evaluated for both formulations. Binding affinities to selected antibodies were in the low nanomolar range for both formulations confirming that the structural integrity of Env is retained after attachment. Second, we explored the recognition of SiNP conjugates by antigen presenting cells. Here, the uptake of Env attached to SiNPs via a site-specific covalent conjugation was 4.5-fold enhanced, whereas adsorbed Env resulted only in a moderate 1.4-fold increase compared with Env in its soluble form. Thus, we propose SiNPs with site-specifically and covalently conjugated Env preferably in a high density as a promising candidate for further investigations as vaccine platform.


Assuntos
Vacinas contra a AIDS/química , Portadores de Fármacos , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Nanopartículas , Dióxido de Silício/química , Vacinas contra a AIDS/metabolismo , Vacinas contra a AIDS/farmacologia , Adsorção , Animais , Anticorpos Neutralizantes/metabolismo , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos , Células Cultivadas , Células Dendríticas/metabolismo , Composição de Medicamentos , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/farmacologia , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Nanotecnologia , Estudo de Prova de Conceito , Multimerização Proteica , Estrutura Quaternária de Proteína , Propriedades de Superfície
4.
PLoS One ; 14(12): e0226343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869348

RESUMO

The oral, cervical, and genital mucosa, covered by stratified squamous epithelia with polarized organization and strong tight and adherens junctions, play a critical role in preventing transmission of viral pathogens, including human immunodeficiency virus (HIV). HIV-1 interaction with mucosal epithelial cells may depolarize epithelia and disrupt their tight and adherens junctions; however, the molecular mechanism of HIV-induced epithelial disruption has not been completely understood. We showed that prolonged interaction of cell-free HIV-1 virions, and viral envelope and transactivator proteins gp120 and tat, respectively, with tonsil, cervical, and foreskin epithelial cells induces an epithelial-mesenchymal transition (EMT). EMT is an epigenetic process leading to the disruption of mucosal epithelia and allowing the paracellular spread of viral and other pathogens. Interaction of cell-free virions and gp120 and tat proteins with epithelial cells substantially reduced E-cadherin expression and activated vimentin and N-cadherin expression, which are well-known mesenchymal markers. HIV gp120- and tat-induced EMT was mediated by SMAD2 phosphorylation and activation of transcription factors Slug, Snail, Twist1 and ZEB1. Activation of TGF-ß and MAPK signaling by gp120, tat, and cell-free HIV virions revealed the critical roles of these signaling pathways in EMT induction. gp120- and tat-induced EMT cells were highly migratory via collagen-coated membranes, which is one of the main features of mesenchymal cells. Inhibitors of TGF-ß1 and MAPK signaling reduced HIV-induced EMT, suggesting that inactivation of these signaling pathways may restore the normal barrier function of mucosal epithelia.


Assuntos
Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Genitália/citologia , Proteína gp120 do Envelope de HIV/farmacologia , Mucosa Bucal/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Células Cultivadas , Pré-Escolar , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Genitália/virologia , Células HEK293 , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Lactente , Recém-Nascido , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Masculino , Mucosa Bucal/fisiologia , Mucosa/citologia , Mucosa/efeitos dos fármacos
5.
J Neurosci ; 39(42): 8408-8421, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31471472

RESUMO

HIV-1 infection of the nervous system causes various neurological diseases, and synaptic degeneration is likely a critical step in the neuropathogenesis. Our prior studies revealed a significant decrease of synaptic protein, specifically in the spinal dorsal horn of patients with HIV-1 in whom pain developed, suggesting a potential contribution of synaptic degeneration to the pathogenesis of HIV-associated pain. However, the mechanism by which HIV-1 causes the spinal synaptic degeneration is unclear. Here, we identified a critical role of microglia in the synaptic degeneration. In primary cortical cultures (day in vitro 14) and spinal cords of 3- to 5-month-old mice (both sexes), microglial ablation inhibited gp120-induced synapse decrease. Fractalkine (FKN), a microglia activation chemokine specifically expressed in neurons, was upregulated by gp120, and knockout of the FKN receptor CX3CR1, which is predominantly expressed in microglia, protected synapses from gp120-induced toxicity. These results indicate that the neuron-to-microglia intercellular FKN/CX3CR1 signaling plays a role in gp120-induced synaptic degeneration. To elucidate the mechanism controlling this intercellular signaling, we tested the role of the Wnt/ß-catenin pathway in regulating FKN expression. Inhibition of Wnt/ß-catenin signaling blocked both gp120-induced FKN upregulation and synaptic degeneration, and gp120 stimulated Wnt/ß-catenin-regulated FKN expression via NMDA receptors (NMDARs). Furthermore, NMDAR antagonist APV, Wnt/ß-catenin signaling suppressor DKK1, or knockout of CX3CR1 alleviated gp120-induced mechanical allodynia in mice, suggesting a critical contribution of the Wnt/ß-catenin/FKN/CX3R1 pathway to gp120-induced pain. These findings collectively suggest that HIV-1 gp120 induces synaptic degeneration in the spinal pain neural circuit by activating microglia via Wnt3a/ß-catenin-regulated FKN expression in neurons.SIGNIFICANCE STATEMENT Synaptic degeneration develops in the spinal cord dorsal horn of HIV patients with chronic pain, but the patients without the pain disorder do not show this neuropathology, indicating a pathogenic contribution of the synaptic degeneration to the development of HIV-associated pain. However, the mechanism underlying the synaptic degeneration is unclear. We report here that HIV-1 gp120, a neurotoxic protein that is specifically associated with the manifestation of pain in HIV patients, induces synapse loss via microglia. Further studies elucidate that gp120 activates microglia by stimulating Wnt/ß-catenin-regulated fractalkine in neuron. The results demonstrate a critical role of microglia in the pathogenesis of HIV-associated synaptic degeneration in the spinal pain neural circuit.


Assuntos
Proteína gp120 do Envelope de HIV/farmacologia , Microglia/efeitos dos fármacos , Degeneração Neural/metabolismo , Medula Espinal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Neuralgia/metabolismo , Medula Espinal/metabolismo , Sinapses/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Cell Death Dis ; 10(8): 580, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31371699

RESUMO

Antiretroviral therapy extends survival but does not eliminate HIV from its cellular reservoirs. Between immune and stromal cells in the tissue microenvironment, a dynamic intercellular communication might influence host viral immune responses via intercellular transfer of extracellular vehicles (EVs) (microvesicles, exosome, or apoptotic bodies). It is increasingly recognized that HIV-infected macrophage-secreted nucleotide-rich exosomes might play a critical role in mediating communication between macrophages and other structural cells; however, molecular mechanisms underlying cell-cell crosstalk remain unknown. Here we show that HIV-1-infected macrophages and HIV-1 proteins Tat or gp120-treated macrophages express high levels of microRNAs, including miR-23a and miR-27a. Identical miRNAs expression patterns were detected in macrophage-secreted exosomes isolated from bronchoalveolar lavage fluid of HIV transgenic rats. Tat-treated macrophage-derived exosomal miR-23a attenuated posttranscriptional modulation of key tight junction protein zonula occludens (ZO-1) 3'-UTR in epithelial cells. In parallel, exosomal miR-27a released from Tat-treated macrophages altered the mitochondrial bioenergetics of recipient lung epithelial cells by targeting peroxisome proliferator-activated receptor gamma (PPARγ), while simultaneously stimulating glycolysis. Together, exosomal miRNAs shuttle from macrophages to epithelial cells and thereby explain in part HIV-mediated lung epithelial barrier dysfunction. These studies suggest that targeting miRNAs may be of therapeutic value to enhance lung health in HIV.


Assuntos
Pulmão/metabolismo , MicroRNAs/genética , Mitocôndrias/metabolismo , Movimento Celular/efeitos dos fármacos , Metabolismo Energético/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Vesículas Extracelulares/genética , Glicólise/genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/farmacologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Pulmão/patologia , Pulmão/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Mitocôndrias/patologia , Mitocôndrias/virologia , PPAR gama/genética , Proteína da Zônula de Oclusão-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
7.
Neurochem Res ; 44(7): 1636-1652, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31006091

RESUMO

HIV-1 gp120, an important subunit of the envelope spikes that decorate the surface of virions, is known to play a vital role in neuronal injury during HIV-1-associated neurocognitive disorder (HAND), although the pathological mechanism is not fully understood. Our previous studies have suggested that the V3 loop of HIV-1 gp120 (HIV-1 gp120 V3 loop) can induce neuronal apoptosis in the hippocampus, resulting in impairment in spatial learning and memory in Sprague-Dawley (SD) rats. In this study, we demonstrated that autophagy was significantly increased in rat primary hippocampal neurons in response to treatment of HIV-1 gp120 V3 loop. Importantly, HIV-1 gp120 V3 loop-induced autophagy played a dual role in the cell survival and death. An increase in autophagy for a short period inhibited apoptosis of neurons, while persistent autophagy over an extended period of time played a detrimental role by augmenting the apoptotic cascade in rat primary hippocampal neurons. In addition, we found that the HIV-1 gp120 V3 loop induced autophagy via AMPK/mTOR-dependent and calpain/mTOR-independent pathways, and the ERK/mTOR pathway plays a partial role. These findings provide evidence that HIV-1-induced autophagy plays a dual role in the survival and apoptosis of the primary rat hippocampal neurons and persistent autophagy may contribute to the pathogenesis of HAND, and autophagy modulation may represent a potential therapeutic strategy for reducing neuronal damage in HAND.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/farmacologia , HIV-1/química , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Calpaína/antagonistas & inibidores , Calpaína/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Flavonoides/farmacologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/toxicidade , Hipocampo/patologia , Masculino , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley
8.
Neuropharmacology ; 149: 161-168, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797029

RESUMO

HIV-Associated Neurocognitive disorder (HAND) affects nearly half of infected patients. The HIV envelope protein gp120 is shed by infected cells and is a potent neurotoxin in vitro that reproduces many aspects of HAND when expressed in vivo. Here, we show that HIV gp120 increases the amplitude of a tonic current mediated by γ-aminobutyric acid type-A receptors (GABAARs). Treating rat hippocampal cultures with 600 pM gp120IIIB for 4 h increased a tonic bicuculline-sensitive current, which remained elevated for 24 h. The increased current resulted from upregulation of extrasynaptic α5-containing GABAARs, as indicated by inhibition with the selective inverse agonist basmisanil. Treatment with gp120 increased α5-GABAAR immunoreactivity on the cell surface without new protein synthesis. The increase in tonic inhibition was prevented by a C-X-C chemokine receptor type 4 (CXCR4) antagonist or elimination of microglia from the culture. Treatment with interleukin-1ß (IL-1ß) increased the tonic current and an IL-1 receptor antagonist blocked the gp120-evoked response. Pharmacological or genetic inhibition of p38 mitogen-activated protein kinase (MAPK) prevented the gp120-evoked increase in tonic current and direct activation of a mutant form of p38 MAPK expressed in neurons increased the current. Collectively, these data show that gp120 activates CXCR4 to stimulate microglia to release IL-1ß. Subsequent stimulation of IL-1 receptors activates p38 MAPK in neurons leading to the upregulation of α5-containing GABAARs. Increased tonic inhibition impairs neuroplasticity and inhibition of α5-containing GABAARs improves cognitive function in disease models. Thus, gp120-induced upregulation of α5-containing GABAARs presents a novel therapeutic target for HAND.


Assuntos
Proteína gp120 do Envelope de HIV/farmacologia , Neurônios/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Bicuculina/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Interleucina-1beta/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores CXCR3/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores de Interleucina-1/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
9.
J Gen Virol ; 99(7): 937-947, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775175

RESUMO

We have shown that cell-free HIV-1 and viral proteins tat and gp120 activate mitogen-activated protein kinases (MAPKs) in tonsil epithelial cells, disrupting their tight and adherens junctions. This causes liberation of the HSV-1 receptor nectin-1 from assembled adherens junctions, leading to promotion of HSV-1 infection and spread. In the present study, we show that HIV-associated activation of MAPK leads to upregulation of transcription factor NF-κB and matrix metalloproteinase-9 (MMP-9). This induces the disruption of tight and adherens junctions, increasing HSV-1 cell-to-cell spread. Inhibition of HIV-associated MAPK activation by U0126 abolishes NF-κB and MMP-9 upregulation and reduces HSV-1 spread. Inactivation of MMP-9 also reduced HIV-promoted HSV-1 spread. These results indicate that HIV-1-activated MAPK/NF-κB and MMP-9 play a critical role in the disruption of oral epithelial junctions and HSV-1 cell-to-cell spread. Inhibition of MMP-9 expression in the oral epithelium of HIV-infected individuals may prevent the development of diseases caused by HSV-1, such as ulcers, necrotic lesions and gingivostomatitis.


Assuntos
Células Epiteliais/virologia , HIV-1/genética , Herpesvirus Humano 1/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Junções Aderentes/patologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/farmacologia , Humanos , Metaloproteinase 9 da Matriz/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Boca/citologia , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Junções Íntimas/patologia , Regulação para Cima , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
10.
J Neurosci ; 38(3): 555-574, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29196315

RESUMO

Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPß, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPß and its upstream factors are not clear in HIV pain state. Here, we used a neuropathic pain model of perineural HIV envelope glycoprotein gp120 application onto the rat sciatic nerve to test the role of phosphorylated C/EBPß (pC/EBPß) and its upstream pathway in the spinal cord dorsal horn (SCDH). HIV gp120 induced overexpression of pC/EBPß in the ipsilateral SCDH compared with contralateral SCDH. Inhibition of C/EBPß using siRNA against C/EBPß reduced mechanical allodynia. HIV gp120 also increased TNFα, TNFRI, mitochondrial superoxide (mtO2·-), and pCREB in the ipsilateral SCDH. ChIP-qPCR assay showed that pCREB enrichment on the C/EBPß gene promoter regions in rats with gp120 was higher than that in sham rats. Intrathecal TNF soluble receptor I (functionally blocking TNFα bioactivity) or knockdown of TNFRI using antisense oligodeoxynucleotide against TNFRI reduced mechanical allodynia, and decreased mtO2·-, pCREB and pC/EBPß. Intrathecal Mito-tempol (a mitochondria-targeted O2·-scavenger) reduced mechanical allodynia and decreased pCREB and pC/EBPß. Knockdown of CREB with antisense oligodeoxynucleotide against CREB reduced mechanical allodynia and lowered pC/EBPß. These results suggested that the pathway of TNFα/TNFRI-mtO2·--pCREB triggers pC/EBPß in the HIV gp120-induced neuropathic pain state. Furthermore, we confirmed the pathway using both cultured neurons treated with recombinant TNFα in vitro and repeated intrathecal injection of recombinant TNFα in naive rats. This finding provides new insights in the understanding of the HIV neuropathic pain mechanisms and treatment.SIGNIFICANCE STATEMENT Painful HIV-associated sensory neuropathy is a neurological complication of HIV infection. Phosphorylated C/EBPß (pC/EBPß) influences AIDS progression, but it is still not clear about the exact role of pC/EBPß and the detailed upstream factors of pC/EBPß in HIV-related pain. In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPß was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPß signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Dor Crônica/metabolismo , Proteína gp120 do Envelope de HIV/farmacologia , Neuralgia/metabolismo , Animais , Dor Crônica/virologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Infecções por HIV/complicações , Masculino , Neuralgia/virologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Biomed Res Int ; 2017: 7658970, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29119112

RESUMO

Improving vaccine immunogenicity by targeting antigens to dendritic cells has recently emerged as a new design strategy in vaccine development. In this study, the VP1 gene of foot-and-mouth disease virus (FMDV) serotype A was fused with the gene encoding human immunodeficiency virus (HIV) membrane glycoprotein gp120 or C2-V3 domain of hepatitis C virus (HCV) envelope glycoprotein E2, both of which are DC-SIGN-binding glycoproteins. After codon optimization, the VP1 protein and the two recombinant VP1-gp120 and VP1-E2 fusion proteins were expressed in Sf9 insect cells using the insect cell-baculovirus expression system. Western blotting showed that the VP1 protein and two recombinant VP1-gp120 and VP1-E2 fusion proteins were correctly expressed in the Sf9 insect cells and had good reactogenicity. Guinea pigs were then immunized with the purified proteins, and the resulting humoral and cellular immune responses were analyzed. The VP1-gp120 and VP1-E2 fusion proteins induced significantly higher specific anti-FMDV antibody levels than the VP1 protein and stronger cell-mediated immune responses. This study provides a new perspective for the development of novel FMDV subunit vaccines.


Assuntos
Proteínas do Capsídeo , Vírus da Febre Aftosa , Proteína gp120 do Envelope de HIV , Imunogenicidade da Vacina , Proteínas Recombinantes de Fusão , Vacinas Virais , Animais , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/farmacologia , Moléculas de Adesão Celular , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Cobaias , Proteína gp120 do Envelope de HIV/biossíntese , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/farmacologia , HIV-1/genética , Hepacivirus , Lectinas Tipo C , Receptores de Superfície Celular , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Células Sf9 , Spodoptera , Vacinas Virais/biossíntese , Vacinas Virais/genética , Vacinas Virais/farmacologia
12.
J Mol Neurosci ; 62(2): 199-208, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28560687

RESUMO

HIV-1 gp120 plays a critical role in the pathogenesis of HIV-associated pain, but the underlying molecular mechanisms are incompletely understood. This study aims to determine the effect and possible mechanism of HIV-1 gp120 on BDNF expression in BV2 cells (a murine-derived microglial cell line). We observed that gp120 (10 ng/ml) activated BV2 cells in cultures and upregulated proBDNF/mBDNF. Furthermore, gp120-treated BV2 also accumulated Wnt3a and ß-catenin, suggesting the activation of the Wnt/ß-catenin pathway. We demonstrated that activation of the pathway by Wnt3a upregulated BDNF expression. In contrast, inhibition of the Wnt/ß-catenin pathway by either DKK1 or IWR-1 attenuated BDNF upregulation induced by gp120 or Wnt3a. These findings collectively suggest that gp120 stimulates BDNF expression in BV2 cells via the Wnt/ß-catenin signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína gp120 do Envelope de HIV/farmacologia , Via de Sinalização Wnt , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Regulação para Cima , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
13.
Mol Pain ; 13: 1744806917707667, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28554250

RESUMO

Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X7 expression levels in gp120 treatment rats. Co-localization of the P2X7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1ß and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X7 receptor.


Assuntos
Proteína gp120 do Envelope de HIV/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Receptores Purinérgicos P2X7/metabolismo , Estilbenos/uso terapêutico , Animais , Western Blotting , Eletrofisiologia , Células HEK293 , Humanos , Interleucina-10 , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Resveratrol
14.
J Neurochem ; 141(4): 606-613, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28295345

RESUMO

The human immunodeficiency virus (HIV) envelope protein gp120 promotes axonal damage and neurite pruning, similar to that observed in HIV-positive subjects with neurocognitive disorders. Thus, gp120 has been used to examine molecular and cellular pathways underlying HIV-mediated neuronal dysfunction. Gp120 binds to tubulin beta III, a component of neuronal microtubules. Microtubule function, which modulates the homeostasis of neurons, is regulated by polymerization and post-translational modifications. Based on these considerations, we tested the hypothesis that gp120 induces dynamic instability of neuronal microtubules. We first observed that gp120 prevents the normal polymerization of tubulin in vitro. We then tested whether gp120 alters the post-translational modifications in tubulin by examining the ability of gp120 to change the levels of acetylated tubulin in primary rat neuronal cultures. Gp120 elicited a time-dependent decrease in tubulin acetylation that was reversed by Helix-A peptide, a compound that competitively displaces the binding of gp120 to neuronal microtubules. To determine whether post-translational modifications in tubulin also occur in vivo, we measured acetylated tubulin in the cerebral cortex of HIV transgenic rats (HIV-tg). We observed a decrease in tubulin acetylation in 5- and 9-month-old HIV-tg rats when compared to age-matched wild type. Neither changes in microglia morphology nor alterations in mRNA levels for interleukin-1ß and tumor necrosis factor α were detected in 5-month-old animals. Our findings propose neuronal microtubule instability as a novel mechanism of HIV neurotoxicity, without evidence of enhanced inflammation.


Assuntos
Proteína gp120 do Envelope de HIV/farmacologia , Proteína gp120 do Envelope de HIV/toxicidade , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Complexo AIDS Demência/patologia , Acetilação , Animais , Células Cultivadas , Humanos , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Masculino , Microtúbulos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
15.
Sci Rep ; 7: 40467, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074940

RESUMO

One of the most challenging issues in HIV-associated neurocognitive disorders (HAND) caused by HIV-1 virotoxins and drug abuse is the lack of understanding the underlying mechanisms that are commonly associated with disorders of the blood-brain barrier (BBB), which mainly consists of brain microvascular endothelial cells (BMEC). Here, we hypothesized that Glycoprotein 120 (gp120), methamphetamine (METH) and nicotine (NT) can enhance amyloid-beta (Aß) accumulation in BMEC through Alpha7 nicotinic acetylcholine receptor (α7 nAChR). Both in vitro (human BMEC) (HBMEC) and in vivo (mice) models of BBB were used to dissect the role of α7 nAChR in up-regulation of Aß induced by gp120, METH and NT. Aß release from and transport across HBMEC were significantly increased by these factors. Methyllycaconitine (MLA), an antagonist of α7 nAChR, could efficiently block these pathogenic effects. Furthermore, our animal data showed that these factors could significantly increase the levels of Aß, Tau and Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in mouse cerebrospinal fluid (CSF) and Aß in the mouse brains. These pathogenicities were significantly reduced by MLA, suggesting that α7 nAChR may play an important role in neuropathology caused by gp120, METH and NT, which are the major pathogenic factors contributing to the pathogenesis of HAND.


Assuntos
Amiloide/metabolismo , Encéfalo/patologia , Células Endoteliais/metabolismo , Proteína gp120 do Envelope de HIV/farmacologia , Metanfetamina/farmacologia , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/lesões , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Movimento Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células HL-60 , Humanos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas S100/metabolismo , Fatores de Tempo , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
16.
J Neuroimmune Pharmacol ; 12(2): 314-326, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28005232

RESUMO

It is widely accepted that human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120) plays an important role in HIV-1-induced neural injury and pathogenesis of HIV-1-associated dementia (HAND). Multiple pathways have been proposed for gp120-induced neurotoxicity, amongst is the activation of N-Methyl-D-Aspartate receptors (NMDARs). It has been shown that gp120 causes neuronal injury or death and gp120 transgenic mice exhibit neurological similarity to that of HAND, all of which can be blocked or attenuated by NMDAR antagonists. Several lines of evidence indicate the subtype and location of activated NMDARs are key determinants of the nature of NMDAR physiology. To examine the subtype and the location of NMDARs affected by gp120, we studied gp120 on subtype NMDAR-mediated EPSCs in the CA1 region of rat hippocampal slices through "blind" whole-cell patch recordings. Our results showed bath application of gp120 increased both NR2A- and NR2B-mediated EPSCs possibly via a presynaptic mechanism, with much stronger effect on NR2B-mediated EPSCs. In contrast, gp120 failed on enhancing AMPA receptor-mediated EPSCs. Ca2+ imaging studies revealed that gp120 potentiated glutamate-induced increase of intracellular Ca2+ concentration in rat hippocampal neuronal cultures which were blocked by a NMDAR antagonist, but not by an AMPA receptor antagonist, indicating gp120 induces Ca2+ influx through NMDARs. Further investigations demonstrated that gp120 increased the EPSCs mediated by extrasynaptic NR2BRs. Taken together, these results demonstrate that gp120 interacts with both NR2A and NR2B subtypes of NMDARs with a predominant action on the extrasynaptic NR2B, implicating a role NR2B may play in HIV-1-associated neuropathology.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína gp120 do Envelope de HIV/farmacologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas
17.
mBio ; 7(6)2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27965453

RESUMO

Leukocidin ED (LukED) is a bicomponent pore-forming toxin produced by Staphylococcus aureus that lyses host cells by targeting the chemokine receptors CC chemokine receptor type 5 (CCR5), CXCR1, CXCR2, and DARC. In addition to its role as a receptor for LukED, CCR5 is the major coreceptor for primary isolates of human immunodeficiency virus type 1 (HIV-1) and has been extensively studied. To compare how LukED and HIV-1 target CCR5, we analyzed their respective abilities to use CCR5/CCR2b chimeras to mediate cytotoxicity and virus entry. These analyses showed that the second and third extracellular loops (ECL) of CCR5 are necessary and sufficient for LukED to target the receptor and promote cell lysis. In contrast, the second ECL of CCR5 is necessary but not sufficient for HIV-1 infectivity. The analysis of CCR5 point mutations showed that glycine-163 is critical for HIV-1 infectivity, while arginine-274 and aspartic acid-276 are critical for LukED cytotoxicity. Point mutations in ECL2 diminished both HIV-1 infectivity and LukED cytotoxicity. Treatment of cells with LukED did not interfere with CCR5-tropic HIV-1 infectivity, demonstrating that LukED and the viral envelope glycoprotein use nonoverlapping sites on CCR5. Analysis of point mutations in LukE showed that amino acids 64 to 69 in the rim domain are required for CCR5 targeting and cytotoxicity. Taking the results together, this study identified the molecular basis by which LukED targets CCR5, highlighting the divergent molecular interactions evolved by HIV-1 and LukED to interact with CCR5. IMPORTANCE: The bicomponent pore-forming toxins are thought to play a vital role in the success of Staphylococcus aureus as a mammalian pathogen. One of the leukocidins, LukED, is necessary and sufficient for lethality in mice. At the molecular level, LukED causes cell lysis through binding to specific cellular receptors. CCR5 is one of the receptors targeted by LukED and is the major coreceptor for CCR5-tropic HIV-1. While the molecular interaction of CCR5 and HIV-1 is well characterized, the means by which LukED interacts with CCR5 is less clear. In this study, we demonstrated that receptor specificity is conferred through unique interactions between key domains on CCR5 and LukE. Although HIV-1 and LukED target the same receptor, our data demonstrated that they interact with CCR5 differently, highlighting the molecular complexity of host-pathogen interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Exotoxinas/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Interações Hospedeiro-Patógeno , Receptores CCR5/química , Receptores CCR5/metabolismo , Staphylococcus aureus/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Exotoxinas/genética , Exotoxinas/farmacologia , Células HEK293 , Proteína gp120 do Envelope de HIV/farmacologia , HIV-1/fisiologia , Humanos , Leucocidinas/metabolismo , Leucocidinas/farmacologia , Mutação Puntual , Receptores CCR5/genética , Staphylococcus aureus/fisiologia , Internalização do Vírus
18.
Inflammation ; 39(5): 1814-26, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27531364

RESUMO

This study was aimed at exploring the effects of P2X7 receptor on BV2 microglia cell injury induced by glycoprotein gp120 (gp120) and its underlying mechanisms. We used the MTS method to study the influence of different gp120 concentrations on BV2 microglia cells, and to test the degree of cell injury in each gp120 treatment group; quantitative real-time PCR (qPCR) and Western blot were used to detect the P2X7 mRNA and receptor protein expressions. Immunocytochemistry and Western blot were used to detect the P2X7 receptor expression and P65 NF-κB, respectively. We also measured the content of TNFα, IL-1ß, nitric oxide (NO) and reactive oxygen species (ROS). We found that the cell survival rate generally decreased as gp120 concentration increased, and the cell survival rate of the gp120 + Brilliant Blue G (BBG) group was higher than that of the gp120 group. Western blot and qPCR results showed that the expressions of P2X7 receptor protein and mRNA were positively dose-dependent with gp120 concentration; the results of immunocytochemistry and Western blot showed that the expressions of P2X7 receptor and P65 NF-κB in the gp120 group increased significantly compared to those of the control (Ctrl) group, but those in the gp120+BBG group decreased. Taken together, these results confirmed that the P2X7 receptor is involved in gp120-induced BV2 microglial cell injury and that the underlying mechanism may be associated with the over-activation of microglia caused by P2X7 receptor up-regulation, which leads to abundant release of inflammatory factors which exert toxic effects on the cells.


Assuntos
Proteína gp120 do Envelope de HIV/farmacologia , Microglia/patologia , Receptores Purinérgicos P2X7/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fatores Imunológicos/metabolismo , Camundongos , Microglia/virologia , RNA Mensageiro/análise , Receptores Purinérgicos P2X7/análise , Receptores Purinérgicos P2X7/genética , Fator de Transcrição RelA/metabolismo
19.
New Microbiol ; 39(1): 13-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26922982

RESUMO

Anemia is the most common hematological abnormality in human immunodeficiency virus (HIV)-infected patients. Besides chronic disease, opportunistic infections, nutritional deficiencies and antiretroviral drug toxicity, the direct role of HIV in the development of anemia has not yet been fully investigated. To explore the HIV-related mechanisms involved in the genesis of anemia, we used two experimental designs. In the first, HPCs purified from cord blood were challenged with HIV-1IIIb or recombinant gp120 (rgp120) and then committed to erythrocyte differentiation (EPO-post-treated HPCs). In the second, HPCs were first committed to differentiate towards the erythroid lineage and only afterwards challenged with HIV-1IIIb or rgp120 (EPO-pre-treated HPCs). Our results showed that HPCs and EPO-induced HPCs were not susceptible to HIV-1 infection. In addition, the two experimental designs (EPO post or pre-treated HPCs) independently showed that HIV-1IIIb or rgp120 were able to induce the impairment of survival, proliferation, and differentiation albeit differing in kinetics and extent. Interestingly, the gp120 interaction with CD4 and CXCR4 played a pivotal role in the impairment of erythrocyte differentiation by inducing TGF-b1 expression. These observations reveal an important additional mechanism involved in the genesis of anemia suggesting a complex competition between EPO-positive regulation and HIV-negative priming regarding erythrocyte survival, proliferation and maturation.


Assuntos
Anemia/complicações , Células Eritroides/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/farmacologia , Infecções por HIV/etiologia , HIV-1/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Antígenos CD34/metabolismo , Antígenos CD4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritropoetina/farmacologia , Sangue Fetal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoforinas/metabolismo , HIV-1/genética , Humanos , Receptores CXCR4/metabolismo , Proteínas Recombinantes
20.
J Neurovirol ; 22(3): 327-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26567012

RESUMO

Despite the recent advances in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-1) remains a global health threat. HIV-1 affects the central nervous system by releasing viral proteins that trigger neuronal death and neuroinflammation, and promotes alterations known as HIV-associated neurocognitive disorders (HAND). This disorder is not fully understood, and no specific treatments are available. Recently, we demonstrated that the HIV-1 envelope protein gp120IIIB induces a functional upregulation of the α7-nicotinic acetylcholine receptor (α7) in neuronal cells. Furthermore, this upregulation promotes cell death that can be abrogated with receptor antagonists, suggesting that α7 may play an important role in the development of HAND. The partial duplication of the gene coding for the α7, known as CHRFAM7A, negatively regulates α7 expression but its role in HIV infection has not been studied. Hence, we studied both CHRNA7 and CHRFAM7A regulation patterns in various gp120IIIB in vitro conditions. In addition, we measured CHRNA7 and CHRFAM7A expression levels in postmortem brain samples from patients suffering from different stages of HAND. Our results demonstrate the induction of CHRNA7 expression accompanied by a significant downregulation of CHRFAM7A in neuronal cells when exposed to pathophysiological concentrations of gp120IIIB. Our results suggest a dysregulation of CHRFAM7A and CHRNA7 expressions in the basal ganglia from postmortem brain samples of HIV+ subjects and expand the current knowledge about the consequences of HIV infection in the brain.


Assuntos
Complexo AIDS Demência/genética , Encéfalo/virologia , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Interações Hospedeiro-Patógeno , Receptor Nicotínico de Acetilcolina alfa7/genética , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Complexo AIDS Demência/virologia , Adulto , Autopsia , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Gânglios da Base/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/farmacologia , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...