Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 167: 105538, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207854

RESUMO

Oxidative stress plays a key role in the pathogenesis of neuronal injury, including ischemia. Ras-related nuclear protein (RAN), a member of the Ras superfamily, involves in a variety of biological roles, such as cell division, proliferation, and signal transduction. Although RAN reveals antioxidant effect, its precise neuroprotective mechanisms are still unclear. Therefore, we investigated the effects of RAN on HT-22 cell which were exposed to H2O2-induced oxidative stress and ischemia animal model by using the cell permeable Tat-RAN fusion protein. We showed that Tat-RAN transduced into HT-22 cells, and markedly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation under oxidative stress. This fusion protein also controlled cellular signaling pathways, including mitogen-activated protein kinases (MAPKs), NF-κB, and apoptosis (Caspase-3, p53, Bax and Bcl-2). In the cerebral forebrain ischemia animal model, Tat-RAN significantly inhibited both neuronal cell death, and astrocyte and microglia activation. These results indicate that RAN significantly protects against hippocampal neuronal cell death, suggesting Tat-RAN will help to develop the therapies for neuronal brain diseases including ischemic injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Peróxido de Hidrogênio/farmacologia , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/farmacologia , Hipocampo/metabolismo , Isquemia/metabolismo , Estresse Oxidativo , Isquemia Encefálica/metabolismo , Apoptose , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Produtos do Gene tat/farmacologia , Modelos Animais de Doenças , Lesões Encefálicas/metabolismo , Fármacos Neuroprotetores/farmacologia
2.
BMC Cancer ; 22(1): 785, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850701

RESUMO

BACKGROUND: More than twenty years after its discovery, the role of the importin beta superfamily member Ran GTP-binding protein (RanBP) 17 is still ill defined. Previously, we observed notable RanBP17 RNA expression levels in head and neck squamous cell carcinoma (HNSCC) cell lines with disruptive TP53 mutations. METHODS: We deployed HNSCC cell lines as well as cell lines from other tumor entities such as HCT116, MDA-MB-231 and H460, which were derived from colon, breast and lung cancers respectively. RNAi was used to evaluate the effect of RanBP17 on cell proliferation. FACS analysis was used for cell sorting according to their respective cell cycle phase and for BrdU assays. Immunocytochemistry was deployed for colocalization studies of RanBP17 with Nucleolin and SC35 (nuclear speckles) domains. TCGA analysis was performed for prognostic assessment and correlation analysis of RanBP17 in HNSCC patients. RESULTS: RNAi knockdown of RanBP17, significantly reduced cell proliferation in HNSCC cell lines. This effect was also seen in the HNSCC unrelated cell lines HCT116 and MDA-MB-231. Similarly, inhibiting cell proliferation with cisplatin reduced RanBP17 in keratinocytes but lead to induction in tumor cell lines. A similar observation was made in tumor cell lines after treatment with the EGFR kinase inhibitor AG1478. In addition to previous reports, showing colocalization of RanBP17 with SC35 domains, we observed colocalization of RanBP17 to nuclear bodies that are distinct from nucleoli and SC35 domains. Interestingly, for HPV positive but not HPV negative HNSCC, TCGA data base analysis revealed a strong positive correlation of RanBP17 RNA with patient survival and CDKN2A. CONCLUSIONS: Our data point to a role of RanBP17 in proliferation of HNSCC and other epithelial cells. Furthermore, RanBP17 could potentially serve as a novel prognostic marker for HNSCC patients. However, we noted a major discrepancy between RanBP17 RNA and protein expression levels with the used antibodies. These observations could be explained by the presence of additional RanBP17 splice isoforms and more so of non-coding circular RanBP17 RNA species. These aspects need to be addressed in more detail by future studies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias de Cabeça e Pescoço/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia , RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/farmacologia
3.
J Immunother ; 30(3): 274-81, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17414318

RESUMO

We previously identified 2 cancer-associated antigens, immediate early response gene X-1 (IEX) and small GTPase (Ran), and their 5 epitopes using human leukocyte antigen (HLA)-A33-restricted and tumor-infiltrating T cells from a colon cancer patient. In this study, we examined whether or not these peptides can induce cytotoxic T lymphocytes (CTLs) in HLA-A11+ or HLA-A31+ epithelial cancer patients because the HLA-A11, HLA-A31, and HLA-A33 alleles share binding motifs as an HLA-A3 supertype family, which is widely distributed in many ethnic populations. Among them, the 2 peptides, IEX 47-56 and IEX 61-69, induced peptide-specific CTLs from peripheral blood mononuclear cells of cancer patients with the HLA-A11 and HLA-A31 alleles more efficiently than the other 3 peptides. Antibody blocking and cold inhibition experiments revealed that the cytotoxicity of peptide-induced CTLs against cancer cells was attributable to peptide-specific and CD8+ T cells. Together with our previous findings, these results indicate that the 2 IEX peptides could be appropriate vaccine candidates for HLA-A11, HLA-A31, and HLA-A33 positive epithelial cancer patients. This information could expand the chance of a peptide-based cancer vaccine for epithelial cancer patients of many ethnic populations.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Vacinas Anticâncer/imunologia , Antígeno HLA-A3/genética , Proteínas de Membrana/imunologia , Fragmentos de Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia , Proteína ran de Ligação ao GTP/imunologia , Alelos , Anticorpos Bloqueadores/farmacologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/farmacologia , Vacinas Anticâncer/química , Vacinas Anticâncer/farmacologia , Carcinoma/genética , Carcinoma/imunologia , Células Epiteliais/patologia , Antígenos HLA-A/genética , Antígeno HLA-A11 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/farmacologia , Fragmentos de Peptídeos/farmacologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/farmacologia
4.
PLoS One ; 2(2): e244, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17330139

RESUMO

Assembly of the mitotic spindle is a classic example of macromolecular self-organization. During spindle assembly, microtubules (MTs) accumulate around chromatin. In centrosomal spindles, centrosomes at the spindle poles are the dominating source of MT production. However, many systems assemble anastral spindles, i.e., spindles without centrosomes at the poles. How anastral spindles produce and maintain a high concentration of MTs in the absence of centrosome-catalyzed MT production is unknown. With a combined biochemistry-computer simulation approach, we show that the concerted activity of three components can efficiently concentrate microtubules (MTs) at chromatin: (1) an external stimulus in form of a RanGTP gradient centered on chromatin, (2) a feed-back loop where MTs induce production of new MTs, and (3) continuous re-organization of MT structures by dynamic instability. The mechanism proposed here can generate and maintain a dissipative MT super-structure within a RanGTP gradient.


Assuntos
Fuso Acromático/fisiologia , Proteína ran de Ligação ao GTP/farmacologia , Substituição de Aminoácidos , Animais , Catálise , Sistema Livre de Células , Cromatina/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Retroalimentação Fisiológica , Feminino , Guanosina Trifosfato/fisiologia , Microtúbulos/metabolismo , Modelos Biológicos , Morfogênese , Mutação de Sentido Incorreto , Oócitos , Paclitaxel/farmacologia , Dobramento de Proteína , Processos Estocásticos , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Proteína ran de Ligação ao GTP/genética
5.
Cell ; 113(1): 115-25, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12679039

RESUMO

All eukaryotic cells have regulatory mechanisms that limit genomic replication to a single round each cell cycle. These systems function by blocking formation of prereplication complexes. The regulatory mechanisms in the yeast S. cerevisiae have been identified, but these do not appear to be conserved in metazoans. Using Xenopus egg extracts, we have identified a metazoan-specific regulatory system that limits replication to a single round. We show that during S phase, soluble MCM helicase, an essential initiation factor, is inactivated when it associates with exportin-1/Crm1. Formation of this complex is dependent on both high Ran-GTP and cdk2 kinase activity. Lowering Ran-GTP within nuclei or nuclear extracts allows MCM to reassociate with chromatin during S phase and induces re-replication. Importantly, prevention of re-replication requires MCM-Crm1 complex formation, but it does not require export of MCM from the nucleus. Therefore, in metazoans, Crm1 functions in both nuclear export and blocking of re-replication.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Quinases relacionadas a CDC2 e CDC28 , Proteínas de Ciclo Celular/genética , Núcleo Celular/enzimologia , Replicação do DNA/genética , Células Eucarióticas/enzimologia , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares , Proteína ran de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Proteínas de Ciclo Celular/metabolismo , Extratos Celulares , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/farmacologia , Geminina , Carioferinas/genética , Proteína 1 de Manutenção de Minicromossomo/genética , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacologia , Oócitos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/genética , Proteínas de Xenopus , Xenopus laevis , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/farmacologia , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...